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Abstract. Simplified formulae for the effective electromagnetic transition matrix
elements and the core polarization contribution to the effective two-nucleon inter-
action are derived. From these general expressions, the polarization effects in any
other physical quantity of interest can easily be written down. It is also proved

. B
that the usual RPA eigenvalue problem corresponding toa 2n X 2nmatrix ( _g —A )

is equivalent to the diagonalization of a »n X n matrix (4 + B) (4 — B).
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1. Introduction

Shell model calculations are carried out with the consideration of a few active
nucleons confined to a finite model space. The rest of the nucleons in the nucleus
form a passive core. The effect of both the assumptions of the passive core and
of the finite model space is incorporated by introducing effective charges to explain
electromagnetic transitions and moments, and by renormalizing the two-nucleon
interaction to explain the low-lying spectra of nuclei. The contribution to a given
matrix element arising from the virtual excitations of the core state: is usually
referred to as the ‘ core polarization’ contribution. Existence of collective modes
of oscillations of the core nucleus plays an important role in understanding these
polarization effects. Recently, the concept of effective operators has received
much attention through the point of view of understanding the spectroscopic

results of lighter nuclei in the doubly-magic region (Rowe 1973, Satchler 1972,
Ellis and Osnes 1972, Osnes et al 1971).

The microscopic approach to the shell model calculations for the open shell
nuclei starts with the Brueckner-Bethe theory. The effective interaction between
two nucleons in a nucleus is taken to be the G matrix (appropriate for the core
nucleus) derived from realistic nucleon-nucleon force, such as the Hamada-Johnston
force. Using this G, the core-polarization contribution to any matrix element
corresponding to a given physical process of interest is calculated in the random

phase approximation (RPA), Tamm-Dancoff approximation (TDA) and with
the unperturbed description of the core nucleus,
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2. Formalism

The study of core polarization effects is based on the many-body perturbation
theory, the unperturbed Hamiltonian being the sum of the core nucleons Hamil-
tonian and the valence nucleons one. The configuration space over which these
Hamiltonians are defined has no common intersection. The core states are
obtained by solving the RPA eigenvalue problem. The valence nucleon wave
functions are the eigenfunctions of the one-body shell model Hamiltonian. The
RPA eigenvalues and the eigenvectors are obtained by solving the matrix equation

Ay BAN\ (X, _ X\ X,
(=300 —a00) () =1 0(3) =« 0(y) ®
The matrices 4 (Af) and B (Af) are defined as follows
(Ph | A () | P'H) = (&, = &) By s + (— D524 G ('p' [A]; ph)

and
(Ph | BQAY) | p'H'y = (— 1)+ M G ('K [Af]; ph) (2)

The particle-hole coupled matrix elements in eq. (2) are defined in terms of the
cfiective interaction G, calculated from the Brueckner-Bethe-Goldstone theory
for the core nucleus,

G(filM]; ph)
= (— I)PmMt (] 3,) (1 4 3u)1 :
fiA [% %t ,
XZ(2J+1)(2T+I) [thJ b T](prT|G[thT) @)
J
The notation p, A, fand i is used in the phase factor and in the six-j symbol
stand for corresponding total angular momentum values 7, etc.; elsewhere, they

indicate all the quantum numbers necessary for the specification of shell mode
states.

Polarization effects are calculated from the second order perturbation theory
in the coupling of the valence nucleons. Its contribution to the electromagnetic
transition caused by an operator O (Af) comes from the two diagrams shown in
figure 1. The multi-polarity and the isospin character of the operator O are indicated

Figure 1. Core polarization contribution to the electromagnetic transition. The wavy
lines represent antisymmetrized G-matrix elements and the cross-hatched bubbles the
RPA description of the core. Straight line with a cross at the end indicates the
external electromagnetic interaction caused due to the operator O (A £)
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by Aand ¢ respectively. The effective transition matrix element is defined as the
sum of the transition matrix element of the electromagnetic interaction with the
valence nucleons and the core polarization contribution.

Following the method of Osnes and Warke (1969) the total core polarization

contribution to the transition amplitude can easily be written down from figure 1
(ENli. and Osnes 1972).

(1 Opar (A1) 1} 1)
= (=DM X ley — 0, Q] %, 0 (D)

*Z (= 1= (X, u@h) + Yo 0 @R RIO QD) I p)
+i e fi =y 4)

where
X ae (i) = 21. [Xa ae (PB) G (fi [M]; ph) + Y, ae(ph) G (filM]; PR

In equation (4), ¢, = ¢; — ¢, denotes the energy difference of valence nucleons
and the reduced matrix element is defined both with respect to

angular momentum and isospin reduction. Thevector G' ( fi [\f]) is defined in terms
of the particle-hole coupled matrix elements in eq. (3)

G (filad; ph) = (— WY~ G (if [M]; ph) (5

Defining the vector O (M, ph) = ( — L (A|O (A1) || p), it can be seen that
eq. (4) takes the following vector product form,

(S Op (M) 111)

= (=000 T % (_ g () “

In the derivation of eq. (6) use is made of the completeness of RPA eigenvectors.

Further, if one evaluates the inverse of the matrix ¢, — J, [Af] in eq. (6) and carries
out the matrix products, it reduces to

(f 11 O (W1} [14)
= (= I {0 (A1) ML () [4 (M) — B(Af)]

< [G AT + G (filAD)] — €,0 (M) M, ()
)G (fi[A]) — G (fi DR

(N
where the matrix
My (A) = [A (M) — B(M)] [4 (M) = B(A)] — e, (8)
For the case of ¢, =0, the core polarization contribution in eq. (7) becomes;
= DM O [A4 () + BOBF{G (i [M]) + 6 (fi [A)] %)
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Figare 2, Core polarization of a fully antisymmetric two-particle matrix element.
The wavy line represents G-matrix elements and the cross-hatched bubbles the RPA
description of the core.

After performing a little bit of matrix algebra, the above result can also be obtained
from the Barrett and Kirson (1970) formula. Following a similar approach, the
core polarization contribution to the effective interaction given by Osnes and Warke
cannot be simplified. However, the formulae derived by Kirson (1971) can be
put in a much simpler form. This difference between the two methods is due to
the fact that when e¢;,5= 0, the polarization contribution to the effective interaction
does not satisfy

(ab | Gononen T | €d) = (ed | Gpuonon (JT) | ab) (10)

while this equality is true for €, = 0. In what follows, we define the core polari-
zation contribution as

(ab | G (JT) | cd)
= % [(ab l Gphonon (JT’) I Cd) + (Cd I pronon (JT) l ab)] (l l)

As discussed by Osnes, Kuo and Warke (1971), the contribution to each matrix
element of G, comes from four diagrams shown in figure 2. Thus there would
be eight terms in eq. (11). Out of these, we consider the sum of only two terms ;
rest of the contribution can easily be written down from our final result. The
contribution of the first diagram coming from each term of eq. (11) is

(ab | Go (V' T7) | Cd)x = $[(1 4 8a) (1 + 8,17 (— 1741 %

T[] T [ R e en®) oy a] 12

n, J,

Here x',, ,r (bd) is defined with the interchange of G’ and G in eq. (4), defining
x,, v (bd). Using again the completeness relation of the RPA eigenvectors and
the following relation between the vectors ¢’ and G

G (ac[JT]; ph) = (— D*=° G (ca [JT] ; ph) (13)

it can be shown that the two terms in the squarc bracket of eq. (12) become

(= V(@ Ga T 6 (bd UTY) s S50 [?T)]) (14)

With the substitution of the inverse of the matrix, e, — 4 (J T') the matrix product
(14) reduces to :
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(e [(GGaUT) + & Gd I T MU T (AU = BUT)
x (G (ac [J T]) + G' (ac [J T}

—{GGAITY) — & Gd UTD} M (I TY(ATT) + B T))
X {G{ac JT) — G (ac (JTDH}

— € {GBAITY) + & (bd UTD} M., (JT) {G (ac [JTT)
— G’ (ac [J TV} + €, (G Bd[J T — G (bd[J T}
« M, (J TY{G (ac [J TT) + & (ac [J T])}] (15)

Using the expression in eq. {(15) for the square bracket in eq. (12), we obtain the
final form of the polarization contribution to the effective nucleon-nucleon inter-
action in a nucleus. The rest of the contribution coming from the other three

diagrams can be written down frem egs (12) and (15) by simply interchangi::}g
indices a € b and ¢ «> d. In the ca.e of e, = 0, the polarization countributioa in

eq. (12) takes a very simple ferm,
(ab|Go (J' T) | cd),

= 10+ 5) (1 + ST (— Dy7rersss
« 2 (G BT Jus edvry + & eavrm
3T
X [4 UT) + B TV (G (ac[J T + G (ae [JTD)

— (G AT — G bd TTHI{A(J T) — B

X (G (ae[JTY) — G' (ac [JTH} (16)
We have seen that Barrett and Kirson’s (1970) expression for the polarization
contribution to the effective interaction also takes this form. From eqs (12) and
(15), one can write down the core polarization contribution to any matrix element

for a physical process of interest by simply replacing the corresponding G and G’
on both the left and the right hand sides of eq. (15).

The form of the matrix M in eqs (7) and (15) suggests that the RPA equations

may be equivalent to the sigenvalue problem corresponding to the matrices
(A4 B)(4—B) and (4 — B)(A4 + B). In fact with simple algebra, one can
prove that

[per (25 _ 2 w)]’
~ Det[(d + B)(A — B) — w?]

X Det (A — B) (4 + B) — w?)] (17)
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In deriving eq. (17), we used the result that the RPA eigenvalues occur in pairs
+ w,. This implies that the determinant on the right hand side of eq. (17)is an
even function of w. The two determinants on the right band side of this equation
are equal since the corresponding matrices are the transpose of each other. Thus,
we proved that the eigenvalues of the 2nX2n RPA matrix are given by the square
roots of the eigenvalues of the matrix (4 + B) (4 — B) [or of the matrix (4 — B)
X (4 -+ B)]. From this result one also infers that this matrix may be related to
the square of the RPA matrix. In fact, thig eigenvalue problem is exactly identical
with the diagonalization of (4 + B) (4 — B) and (4 — B) (4 + B). Let us denote
the eigenvectors of the matrix (4 4 B) (4 — B), corresponding to the eigen-
values w,?by u, Since this matrix is not hermitian, u,’s do not satisfy the usual
orthonormality relations. It is easy to show that v, = (4 — B) u, |, are the
eigenvectors of the matrix (4 — B) (4 + B) with the eigenvalue w,2. Using the
eigenvalue equations of u, and v,, one obtains the orthonormality relations

~

v, Uy = O, (18)

The RPA eigenvectors corresponding to the eigenvalues w, are then given by

X, = "1’-[”1: + (4 — B) uﬂ/wﬂ]

and (19)
Y, = 3 (s — (4 — B) un/wn]

The relation in eq. (18) ensures the usual orthonormality relations of the RPA
vectors. This method of solving the 2n X 2n RPA matrix eigenvalue problem.
requires the solution of only one n X n matrix diagonalization. This would make
it possible to extend the study of the collective states of nucleiin the heavier mass
region with the inclusion of reasonably large particle-hole space. A rather dif-
ferent approach for the RPA eigenvalue problem was also suggested by Chi (1970).

The derivation of eqs (7) and (15) depends on the assumption of a non-zero eigen-
value of the RPA equations (particularly the case of ¢, = 0). It would be interest-
ing to generalize the above approach for this case.

3. Results and conclusion

The merit of our formulae is that the core polarization contributions are calculated
from only the knowledge of a n X n inverse matrix, M~1. The laborious job of
calculating and storing the RPA eigenvalues and the eigenvectors is avoided.
Even though thic was not the difficulty in Barrett and Kirson’s method, one still
had to evaluate inverse of the matrices which were really not needed. Besides
this, they have to take e, = 0, in which case our expression (16) is extremely simple.
Because of the numerical difficulties involved, such calculations are carried out
only for 0 and 4°Ca nuclei, that too with a moderate particle-hole space to con-
struct A and B matrices. This approach would allow us to extend such studies
in the nuclei of heavier mass region. One can even include the larger particle-
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hole space. In the TDA and the unperturbed description of the core, this con-
tribution can be obtained simply by setting B (JT) = 0, and B (JT) = 0 and 4 (JT' )
= (e,— ¢,) respectively. Inclusion of particle-hole vertex and propagator corrrec-
tion can be introduced by simply redefining the matrices 4 (JT) and B (JT) in

eq. (15). The effect of the renormalization of the outer vertex considered by Kirson
(1971) changes only the matrices G and G’ in eq. (15).

The reduction of the RPA eigenvalue problem to a m X n matrix diagonaliza~-

tion would make it possible to extend the study of the collective states of nuclei
in the heavier mass region.
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