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Relativistic Mean Field Approach and the Pseudo-Spin Symmetry
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Based on the Relativistic Mean Field (RMF) approach the existence of

the broken pseudo-spin symmetry is investigated. Both spherical RMF and

constrained deformed RMF calculations are carried out employing realistic

Lagrangian parameters for spherical and for deformed sample nuclei. The

quasi - degenerate pseudo-spin doublets are confirmed to exist near the fermi

surface for both spherical and deformed nuclei.
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Pseudospin symmetry has been discovered in nuclear physics nearly 30 years ago [1–3].

The recent claim [4] that pseudo-spin symmetry may arise due to near equality in magni-

tude of attractive scalar and repulsive vector fields in relativistic mean theory, has revived

the activity related to the understanding of the origin of this symmetry in real nuclei. The

concept of pseudo-spin symmetry [1,2] is based on the experimental observation of the ex-

istence of quasi-degenerate doublets of normal parity orbitals (n, ℓ, j = ℓ + 1

2
) and (n − 1,

ℓ+ 2, j = ℓ+ 3

2
) such as (4s1/2, 3d3/2), (3d5/2, 2g7/2) etc., in the same major shell. Since for

spherical systems the quantum numbers jπ are conserved, the pseudo-spin angular momenta

(ℓ̃, s̃ = 1/2) satisfy j̃ = j = l̃ ± 1

2
.

In order to interpret this near degenerate pair of j = ℓ + 1/2 and j = ℓ + 3/2 states

as pseudo-spin doublets corresponding to m̃s = ±1/2, ℓ̃ has to be ℓ + 1. It then follows

for the major oscillator quantum number: Ñ = N − 1, for the radial quantum number

ñ = (Ñ − ℓ̃)−1 and for the parity π̃ = −π. For zero pseudo-spin orbit splitting, the pseudo-
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spin multiplet will be degenerate. Thus the pair of orbitals (4s1/2, 3d3/2) and (3d5/2, 2g7/2)

can be viewed as the (2p̃1/2, 2p̃3/2) and (1f̃5/2, 1f̃7/2) pseudo-spin doublets. The symmetry

can also be investigated in deformed nuclei. In the asymptotic Nilsson scheme one finds the

pseudo-spin quantum numbers (Ñ = N − 1 , ñ3 = n3 , Λ̃ = Λ + 1 and Ω̃ = Ω) . Therefore,

the Nilsson orbitals [N, n3,Λ,Ω = Λ + 1/2] and [N, n3,Λ +2,Ω = Λ + 3/2] can be viewed as

the pseudo spin-orbit doublets [Ñ , ñ3, Λ̃, Ω̃ = Λ̃ ± 1/2] [5].

Apart from the rather formal relabeling of quantum numbers various proposals for an

explicit transformation from the normal scheme to the pseudo-spin scheme have been made

in the last twenty years and several nuclear properties have been investigated in this scheme

[6–9]. However, the origin of pseudo-spin symmetry remained unknown until the recent

observation of Ginocchio [4,10] where for the first time the origin of this symmetry is claimed

to be revealed as due to the near equality in magnitude of the attractive scalar and repulsive

vector fields in relativistic theories. Here in this letter we follow this idea and investigate

to what extent the pseudo-spin symmetry is broken for realistic cases. For this purpose

we concentrate as well on spherical as on deformed nuclei and we use the framework of

relativistic mean field (RMF) theory [11]. It has been shown that this phenomenological

approach is very successful in describing the ground state nuclear properties of spherical,

deformed and also for nuclei far away from the beta stability line (see for example [12–14].

The RMF starts with a Lagrangian density describing the nucleons as Dirac spinors ψ,

of mass m, interacting via the meson (σ-, ω-, and ρ-) and the electromagnetic fields. The

standard Lagrangian density used in the RMF theory is written as [13]:

L = ψ̄ (γ(i∂ − gωω − gρ~ρ~τ − eA) −m− gσσ)ψ

+
1

2
(∂σ)2 − U(σ) − 1

4
ΩµνΩ

µν +
1

2
m2

ωω
2

−1

4
~Rµν

~Rµν +
1

2
m2

ρ~ρ
2 − 1

4
FµνF

µν (1)

It includes a nonlinear self-interaction U(σ) of the σ-field:
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U(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4. (2)

which takes into account in a phenomenological way the density dependence of the param-

eters of the model. mσ(gσ), mω(gω), mρ(gρ) are the respective meson masses (coupling

constants) and g2 and g3 are the coupling strengths of the nonlinear sigma field U(σ).

It is straightforward to write the coupled baryon spinor and the mesons mean field

equations. Starting from the Dirac equation for the single nucleon radial wave function with

the spherical attractive scalar (S = −gσσ) and the repulsive vector (V = gωω) potentials

and following the standard procedure, by eliminating the small components (gi), the large

components (fi) obey the following second order differential equation:

{

−∇2 − S ′ + V ′

2m− E − (S + V )

(

∂

∂r
+
κi + 1

r

)}

fi

= − (2m−E − (S + V )) (E − (S − V )) fi. (3)

Here the eigenvalues denoted by κi, of the operator −β(Σ · L + 1) are given by

κi = ∓
(

ji +
1

2

)

for ji = ℓi ±
1

2
, (4)

and S ′ (V ′) are the derivatives of the potentials S (V ) with respect to r. The binding energy

E ≥ 0 is measured with respect to the nucleon mass M in natural units h̄ = c = 1.

On the other hand eliminating the large component fi we have for the small component

gi the following second order differential equation:

{

−∇2 − S ′ − V ′

E − (S − V )

(

∂

∂r
− κi − 1

r

)}

gi

= (2m− E − (S + V )) (E − (S − V )) gi. (5)

For the case of equal strengths, S = V , the Eq. (5) reduces to:

−∇2gi + E(S + V ) gi = E(2m−E) gi. (6)

Clearly Eq. (6) has an energy dependent potential (E(V + S)) and has the eigenvalue

E(2m− E). After scaling the radial variable r = x/(
√
E), the potential has a complicated
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(
√
E) dependence i.e., S

(

x/
√
E
)

+ V
(

x/
√
E
)

. In such a situation this equation (6) is

no longer a normal Schrödinger eigenvalue equation. Further, it is obvious that in this

equation all solutions with “bound” states in the Fermi sea with E ≥ 0 are shifted to one

degenerate eigenvalue with E = 0, which, in fact, is not bound. The corresponding wave

functions are not normalizable. This indeed is an unphysical situation. This equation is the

same as the equation (3) of Ref. [4] in the scaled variable x when written in terms of the

partial waves and using the relation ℓ(ℓ + 1) = κ(κ − 1). Here ℓ, the angular momentum

of the lower component gi is identified with the pseudo-spin angular momentum (ℓ̃). This

is the pseudo-spin symmetry limit of Ref. [4], where the doublets j = ℓ̃ ± 1/2 with the

same ℓ̃ are degenerate. However, in this limit only the Dirac sea states exist and no Dirac

valence bound states and therefore contradicts reality. According to these considerations in

all realistic situations the pseudo-spin symmetry must be broken. Therefore the question

arises, to which extent it is broken in real nuclei. So far only the spherical case has been

investigated for square well potentials [4] and for spherical solutions of the RMF equations

[15,16].

In the present letter we investigate the broken pseudo-spin symmetry both for the spheri-

cal and deformed nuclei within the relativistic mean field approach. For our study, we choose

208Pb as a representative of spherical nuclei and 154Dy as a representative of deformed nu-

clei. We use in our calculations the Lagrangian parameter set NL3 [17] which successfully

reproduces the ground state properties of nuclei, spread over the entire periodic table. The

other parameter sets like NL1 and NLSH (see [14]) are expected to give almost identical

results for these nuclei.

First, spherical RMF calculations in the coordinate space are carried out for 208Pb. The

calculated binding energy and the charge radius agree remarkably well with the experiment.

The calculated single particle energies for the bound orbitals near the fermi surface are shown

in Fig. (1a) for neutrons and protons. It is clear from the figure that the pairs of bound

neutron valence orbitals (2g7/2,3d5/2) and (1i11/2,2g9/2) which correspond to pseudo-spin
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doublets (2f̃7/2,2f̃5/2) and (1h̃11/2,1h̃9/2) respectively, are quasi-degenerate indicating only

a small breaking of pseudo-spin symmetry. The same is more or less true for the pairs of

neutron hole ((2f5/2,3p3/2),(1h9/2,2f7/2)), proton valence (particle) (1h9/2,2f7/2)), and proton

hole ((2d3/2,3s1/2), (1g7/2,2d5/2)), orbitals forming the pseudo-spin doublets. But here the

energy separation between the partners of the respective doublets is relatively larger. The

larger is the binding energy the larger is the separation. This indicates that the concept

of the pseudo-spin symmetry becomes better and better for the orbitals as their energies

approach closer and closer to the continuum. This is consistent with the results found in

Ref. [4] for the square well potentials. In addition, the energy separation becomes larger, if

the pseudo-orbital angular momentum (ℓ̃) increases. The dependence of the energy splitting

of the pseudo-spin partners on the energy E and on the pseudo-orbital angular momentum

ℓ̃ can easily be understood from Eq.(5). For a given pseudo-orbital angular momentum ℓ̃

the term in Eq.(5) which splits the pseudo-spin partners is:

S ′ − V ′

(S − V ) − E

κi

r
(7)

It has the energy dependence (E − (S − V )) in the denominator. Now (S − V ) is about

50 MeV. Bound states in the Fermi sea have a binding energy E < 50 MeV. For increasing

binding energy E , i.e. going to more deeply bound states, the denominator decreases. This

then results in a larger energy splitting between the pseudo-spin partners. For example for

the orbit ℓ̃ = 3 the energy splitting between the pseudo-spin partners (1g7/2 and 2d5/2))

will be relatively larger as compared to that between (2g7/2 and 3d5/2)). In addition, the

bigger is the value of ℓ̃ the larger is the splitting. For instance,the energy splitting between

the pseudo-spin partners (1i11/2 and 2g9/2) corresponding to ℓ̃ = 5 is relatively larger as

compared to that between the partners (2g7/2 and 3d5/2) which corresponds to ℓ̃ = 3, in the

same major shell. Interestingly, the sign of the energy splittings between the partners of

the neutron valence doublets is opposite to those of the neutron hole, proton particle and

proton hole doublets.

The normalized single nucleon wave functions (both large (f) and small (g) components)
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are plotted for the pseudo-spin partners corresponding to the valence neutron pairs, the

neutron hole pairs and valence proton pairs in Figs. 1 (b), (c) and (d) respectively. The

phase of the lower components (g) of one of the partners is reversed while plotting, in order

to exemplify the differences in the lower components of the pseudo-spin partners. Clearly,

the lower components are much smaller in magnitude as expected and are almost equal in

magnitude. In the case of exact pseudo-spin symmetry, the lower component of the pseudo-

spin partners should be identical (except for the phase). The very small differences between

these g’s which mainly appear around the surface are negligible for the pseudo-spin partners

having very small binding energies.

Next we consider deformed systems and impose constraint on the quadrupole moment.

Constrained relativistic Hartree calculations have been carried out for the nucleus 154Dy.

The coupled differential equations for the spinors and the meson fields are given in Ref.

[13]. They have been solved by expanding the spinors and the meson fields in terms of

anisotropic oscillator wave functions. Numerical details are given in Refs. [13] and [18].

Pairing correlations are treated in the constant gap approximation and the Lagrangian

parameter set NL3 [17] is used. The calculated potential energy surface is shown in Fig. 2.

The value of the calculated ground state deformation parameter β2 is 0.202 which is to be

compared with 0.237, the corresponding experimental value. The calculated ground state

binding energy 1262.95 MeV differs from the corresponding experimental value by merely

1.2 MeV.

The energies of the bound neutron pairs of orbitals corresponding to pseudo-spin doublets

are plotted against the deformation β2 ranging from 0.0 to 0.5 in Fig. 3. The asymptotic

Nilsson quantum numbers [N, n3,Λ,Ω] are good for large values of the deformation β2. The

pseudo-spin doublets [Ñ, ñ3, Λ̃, Ω̃ = Λ̃ ± 1/2] [5] are indicated by [Ñ, ñ3, Λ̃] ↑ and ↓ in

the figure. For zero deformation (β2 = 0) the orbitals are indicated by the corresponding

spherical states. The figure reveals the following:

(i) The energy splitting between the pseudo-spin partners is smaller for the valence orbitals
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and for the partners just below the Fermi surface.

(ii) This energy difference is relatively larger for the partners having larger pseudo-spin

angular momentum (ℓ̃).

(iii) In general, this separation stays almost constant and does not vary with deformation

after reasonable value of β2.

(iv) The energy difference between the ↓ and the ↑ partners always remains positive except

for [ ˜404], where there is crossing at around β = 0.3. Such a crossing is not very

unusual, it has also been observed in Ref. [5].

These systematics are consistent with those observed in the spherical case above. A

similar plot for the proton pseudo-spin doublets shown in Fig. 4 reveals identical systematics

as those observed for the neutron case (Fig. 3). It is interesting to note that in Ref. [5] the

energy difference between the valence neutron pseudo-spin partners is negative (opposite

to ours) while it has the same sign as ours for protons. This may be due to the negative

value obtained for V ℓs , the strength of the pseudo-spin orbit interaction, from the Nilsson

parameterization for 82 < N < 126.

Similar calculations have also been carried out for other spherical and deformed nuclei

and they show identical systematics. The conclusions presented here, are therefore rather

general.

In conclusion, it is shown in the relativistic mean field framework that quasi-degenerate

pseudo-spin doublets do exist near the fermi surface for both spherical and deformed nuclei.

The pseudo-spin symmetry is restored better and better as one moves closer to the continuum

limit. These conclusions confirm the findings of Ginocchio [4,10].

One of the authors (G.A.L) acknowledges support from the DAAD. The work is also

supported in part by the Bundesministerium für Bildung und Forschung under the project

06 TM 875.
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FIG. 1. Pseudo-spin splitting in the spherical nucleus 208Pb: (a) single particle spectra in the

vicinity of the Fermi surface for neutrons ν and protons (π) and large (f) and small (g) components

of the Dirac wave functions for the pseudo-spin doublets ν2d̃ (b), ν2f̃ (c) and π2g̃ (d)

FIG. 2. Energy surface of the deformed nucleus 154Dy as function of the quadrupole moment q

in units of barn

FIG. 3. Single particle energies of the deformed Dirac equation for the neutrons in the nucleus

154Dy as a function of the quadrupole deformation parameter β2. Asymptotic pseudo-spin quantum

numbers are given and the pseudo-spin partners are indicated by arrows ↑ and ↓

FIG. 4. Single particle energies for protons in 154Dy, for details see Fig. 3
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