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Melting in two dimensions—the current status
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Abstract. The current status of the controversy relating to melting in two dimensions is
surveyed, To begin with, a review is given of the seminal work of Kosterlitz and Thouless. This
is followed by a discussion of the modifications introduced by Nelson and Halperin. The
search for the continuous transitions and the intermediate hexatic phase predicted by these
theories is then described, covering both the laboratory as well as simulation experiments.
Alternate viewpoints to the kT theory aired recently in the literature are also briefly examined.
The paper concludes with an outlook for the future. ‘
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1. Introduction

As is well known, melting is a first-order transition. This of course refers to three-
dimensional solids, but then we do live in a three-dimensional world. Be that as it mayj, it
is interesting to speculate on the nature of melting of lower dimensional solids. The
question is not purely academic since many solids actually behave as if they were of
lower dimensionality.

Our attention in this paper will be directed to the melting of 2D solids, a topic which
during the past decade has been the subject of active research as well as of lively
controversy (as yet unsettled). After discussing why 2D melting is of interest per se, we
will explain what the controversy is all about. We will then make a broad survey of the
various attempts to shed light on the controversy, and wind up with an outlook for the
future. Parenthetically we remark that although our focus is restricted to 2D melting,
this topic actually forms a part of the general area of phase transitions in 2-dimensions,
a subject with considerable implications far beyond condensed matter physics.

2. Some preliminaries

It is pertinent as well as useful to commence our discussion with a few general remarks
on order in lower-dimensional systems. Nearly fifty years ago, Peierls (1935) and
Landau (1937) demonstrated that long-range order is impossible in a 2D solid in the
sense that { (r —F)? , the mean-square fluctuation of the distance r between two atoms
separated by average distance 7, increases logarithmically with the size of the system, in
contrast to the finite value one obtains for a three-dimensional solid. In other words,
crystalline order is rendered impossible due to fluctuations. One can understand this
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intuitively by considering the number of nearest neighbours ina simple cubic, a square
and a one-dimensional lattice. Whereas in the three-dimensional lattice there are 6
nearest neighbours to “hold bac " every atom, there is less “check” in lower
dimensional systems, facilitating the disruption of order. Slightly more formally, if
{u*(R)» denotes the mean square fluctuation of atom at R, then froma consideration
of the thermal agitation caused by phonons it is found (Peierls 1935) that

ud ~qu/42.

This integral converges in three dimensions but diverges in lower dimensions, implying
the absence of long-range order. In physical terms, long wavelength phonons prevent
the solid from fully attaining a crystalline structure.

While the above line of reasoning is no doubt persuasive, one might legitimately
wonder why it is that the famous two-dimensional Ising model does not fall into this
slot but shows long-range ordering instead. Indeed, stimulated by such a line of
thought, there were several studies in the sixties concerning the nature of order in
various 2D systems. Mermin and Wagner (1966) for example, proved that there is no
spontaneous magnetization in a 2D magnet with spins having more than one degree of
freedom (-for comparison, the Ising spin has only one degree of freedom). Shortly
thereafter, Hohenberg (1967) demonstrated the absence of long-range order in a 2D
Bose fluid.

Even as evidence began to accumulate concerning the absence of long-range order
(Lro) in several 2D systems, Stanley and Kaplan (1966) discovered by analyzing the
high-temperature series expansion that the susceptibility of the 2D planar magnet (the
so-called XY model) diverged at a particular temperature, suggestive of a phase
transition. This was quite intriguing for, till then, one was used to a phase transition
accompanied by the onset of order. Did the work of Stanley and Kaplan imply that
phase transitions were possible without requiring Lro? It was at this juncture that
Kosterlitz and Thouless (1973) put forth their famous idea of phase transitions
accompanied by a change of “topological order” rather than the conventional LRO.
Understandably, great excitement was aroused, and various 2D systems were
experimentally studied to check out these novel concepts. While in 2D superfluid a
Kosterlitz-Thouless (kT) transition was observed as predicted (Bishop and Reppy

1978), the results on melting have been quite controversial and it is these that we shall be
dwelling upon.

3. The Kosterlitz-Thouless theory

3.1 Aspects of the 2D XY model

As a prelude to the kT theory, we shall briefly consider the 2D XY model in order to
highlight the essential physical content of the KT mechanism. We begin by labelling
systems using two integers (d, n), denoting respectively the dimensionality of the system
and that of the order parameter (i.e. the number of independent components in it). In
this scheme, the Ising model would be a (2,1) system, the Heisenberg model
investigated by Mermin and Wagner (1966) would be a (2, 3) system and so on. The
models of current interest (including the X Y model) belong to the (2, 2) family.
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The 2D X'Y model refers to a system of spins constrained to rotate in a plane. The
spins are often taken to be organized on a lattice. However, one eventually goes to a
continuum limit, whereupon the lattice structure can be ignored. Observe that the spin
Vector can continuously rotate and has an infinity of orientations to choose from, in
contrast to the Ising spin which has only two options. This leads to an important
difference in the group structure of the Hamiltonian. Whereas the Ising Hamiltonian
has the discrete symmetry Z, (group of two elements), the Hamiltonians of some of the
systems we shall be discussing all have the continuous symmetry O(2). Particle
physicists have strong interest in 2D O(n) models of various types (Barber 1980).

Passing reference must also be made to the Potts model (1952) which is a
generalization of the Ising model wherein the order parameter can take ¢ distinct
values. For ¢ = 2 (in 2D), the model reduces to the Ising model while in the limit g — co
one recovers the XY model. The Potts model thus interpolates between the Z , and O(2)
models. '

Returning to the XY model, its Hamiltonian may be expressed as

= —] Z Si'Sj, (1)
iy

. where J > Oand the sum {ij ) is over-nearest neighbour pairs only (on a square lattice,

say). Introducing for convenience the complex notation

¥ =S,—1i8, = |S|exp (i6),
and taking |S| = 1,

H = —J Z COS (01—‘0]) - (2)

<ij> .
At low temperatures where spins on neighbouring sites are expected to be highly
correlated, we may expand the cosine and retain only the quadratic term, obtaining

J
<G>

The above Hamiltonian corresponds to the spin wave approximation (Wegner 1967)

and is the starting point for the calculation of various physical properties. Of special

interest is

C(r) = YO *(r) >, (4)
the correlation function. Analysis shows

C(r)=r-"® for r- oo, (4a)
where ' ,
n(T) = k,T/2nJ. (4b)

This result confirms the absence of Lro, but its form is unexpected.

To appreciate this last remark, let us briefly recall the corresponding result for the
Ising model (see figure 1a). In the disordered phase, correlations decay exponentially
but precisely at the critical point, they have a power law behaviour (Stanley 1971). By
contrast, the spin wave approximation to the X Y model exhibits a power law behaviour
at all temperatures (see figure 1b). KT proposed that if one goes beyond the spin wave
approximation and includes appropriate topological defects, the line of critical points
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Figure 1. Schematic summary of the phase transitions of the 2D Ising (a) and X Ymodels (b),
(). In (b) is shown the X Ymodelin the spin wave approximation where every temperature isa
critical temperature. When vortices are included, the line of critical points is terminated at T as
shown in (c), with a transition in the correlation function (After Young 1980.)

would terminate at a finite temperature T, (see figure 1c). Below that temperature there
is power law behaviour while above there is exponential decay. The transition is thus
characterized by changes in the correlation function rather than by the appearance or
disappearance of Lro. As we shall presently see, these changes are linked to the

topological order in the system.

3.2 Role of topological defects

How do topological defects alter the character of the system at T, as sketched in
figure 1c? To answer this question, consider the vortex in figure 2a. This and its
companion in figure 2b are outside the purview of the spin wave approximation.
Observe that either of these vortices is capable of strongly disturbing spins far from the
region of the singularity. By contrast, in the spin wave approximation there are no such
long-range perturbing agencies (see figure 2c). However, with or without vortices, C(
always decays as r — co i.e. there is no Lro.

Vortices are like charges, and can be labelled with integers N positive and negative.
Those in figure 2 are the simplest, with | N| = 1. Theenergy of an isolated vortex may be
calculated from (2) by using the continuum approximation, and is found to be
(Kosterlitz and Thouless 1973) :

R J
E (vortex) = E, +J 2nrdr 3 Vo
ag '
= E,+nJIn(R/ao). (%)
Here R is the radius of the system and a, is a distance of atomic dimensions

characterizing the core. E, is the core energy associated with the region r < a,. Notice
that the energy of an isolated vortex tends to infinity if the radius of the system goes to
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Figure 2. Some possible 'spin arrangements of the 2D XY system. (a) and (b) depict the
situation in the presence of vortices, and clearly there is a substantial disturbance. By contrast,
there is less disturbance in (c) which illustrates the spin wave approximation.

infinity, implying that it would be very difficult to create a vortex in the thermodynamic
limit. As we shall presently see, this statement will require some qualification.

Next consider the vortex-antivortex pair in figure 3. On account of a mutual
cancellation effect, the spins at large distances are no longer severely disturbed, the
disturbance being confined to the neighbourhood of the pair. As may be expected, the
energy of the pair is finite, being given by '

E (pair) = 2E, + 2nJ In (r/ay), | (6)

where r is the separation.
Going back to the single vortex, although its creation is energy-expensive, there is an
entropy advantage associated with the fact that one can locate the vortex in various
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Figure 3. Vortex-antivortex pair in the 2D XY system.

ways. This entropy is 2k, In (R/a,) so that the free energy is

"F=E-TS
= (nJ —2k,;T)In (R/ay), )]
implying that for 7> 7, where
T, =nJ/2k,, . (8)

free vortices may indeed exist even in the thermodynamic limit.

Based on the above arguments, xT proposed the following scenario: At low
temperatures, only vortex pairs can exist. These are thermally generated and ride over a
spin wave background. Since (bound) pairs do not cause serious perturbations at large
distances (see figure 3), C(r) is essentially that given by the spin wave approximation.
Above T, the pairs dissociate since the system can now support free vortices. Technical
considerations (to be amplified later) demand that the number of vortices be small.
Even so, they drastically modify C(r) (-see also figure 2). As already noted, with such
strong fluctuations present, the spin wave approximation does not apply. Further, like
their counterparts in solids namely dislocations, vortices can move freely when
subjected to suitable forces. The system as a whole therefore acquires flow properties
and exhibits a concomitant loss of (spin) rigidity at T.. This then is the central feature of
the transition, the unbinding of pairs at 7, and the related loss of the corresponding
rigidity.

3.3 Topological order

Though conventional Lro is absent, kT suggest that one may differentiate between the
phases on either side of T, via the concept of topological order. Briefly, topological
order is an assessment of whether the topological defects are bound (“ordered”) or
unbound (“disordered”). To make such an assessment, one makes a large closed circuit
in the system and measures the phase angle all along the boundary. The total chan ge of
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the phase angle will be determined by the number and strength of the singular points
enclosed by the path. In the high temperature phase (figure 4a), there will be a
preponderance of isolated singularities. The number enclosed will be proportional to
the area A of the contour C and the average total phase change will be proportional to
the length L of C. In the low-temperature phase (figure 4b), the average total phase
change will be determined by the number of pairs cut by the path, and will be
proportional to (Ld)'/? where d is the mean separation of the pairs. Based on this
criterion, one can recognize a change in the topological order at T,. It is worth noting
that a similar assessment by traversing a closed contour is also made in lattice gauge
theories (Kogut 1979).

3.4 2D melting—The KT view

We turn now to melting in two dimensions. Analogous to the spin wave approximation,
we have the harmonic (phonon) approximation. Introducing

Pc(R) =exp (iGR), 9)

where G denotes a reciprocal lattice vector, we may as usual define the correlation
function '

Ce(R) = (pg(R)p*(0) >, (10)
which, for the 2D solid, varies as
lim C(R)~ R~ "6(7), (1
R—-o
‘ (a)

. (b)

Figure 4. Assessment of topological order is made by going round a simple closed contour
and measuring the overall change in phase angle. As discussed in text, the result depends on
whether the topological defects are unpaired (as in (a)) or are paired (as in (b)).
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One can now calculate the structure factor

S(q) = <|p@]* > | (12)

whereupon one finds that the familiar d-function Bragg singularities i.e
S(q)~49-6) _

become “smeared” into power law singularities (Jancovici 1967) i.e.,
5(q) ~ |q— G| ~**"e@ - (13)

One therefore has a “quasi” crystal which, incidentally, is the reason why one may still

label the diffraction peaks with the set { G }. Well-defined peaks in S(q) can be observed

provided 5 <2.
Now dislocation-mediated melting is really an old concept in three dimensions, going

back to the thirties (in a sense to Mott and Gurney 1939; for a review, see Cotterill
1980). With respect to two dimensions*, xT note that at low temperatures, the system,
though lacking crystallinity (see equation (13)), is a solid in that it is able to resist
external shear. Besides phonons, the system also supports bound dislocation pairs
which are thermally generated. The latter neither upset the power law decay of C c(®)
(see equation (11)) nor the rigidity. Above T, the melting temperature the pairs break,
and once free dislocations appear the system loses (elastic) rigidity, signalling a
transition to the fluid state. The topological order can be assessed as earlier i.e. by
making the Burgers circuit and measuring the failure in the path closure.

Regarding the details of the transition, one clearly needs a more refined analysis than
contained in equations (5)—(8). The crucial feature in such an analysis is the screening of
the pair interaction (6). The underlying physics is better appreciated by considering the
analogous case of a 2D gas of charged particles' with charges +g¢, electrically neutral
on the whole, and interacting via the logarithmic potential

U(Iri—rj‘-)= —2q,9;1n l‘,-;-l'j. +2p, r>ao

0

= 0, r <dg. (14)

Here g; and r; are the charge and position of the ith particle. 2y is the energy required to
create a pair of particles of equal and opposite charge a distance a, apart. In 2D solids,
the analogue of u is the dislocation core energy E, (-see also equation (5)). The quantity
a, is an appropriate cut-off of the order of the particle diameter or, for a lattice, the
lattice spacing. One expects that due to (14), opposite charges can link to form bound
pairs, i.e dipoles. For these pairs to unbind, U(r) must decrease, which can happen by
screening. ,
Focusing attention on a particular dipole of size r, the intetaction between the two
members constituting the dipole will be screened by (smaller) pairs lying within the

* For historical completeness it must be remarked that Feynman had independently proposed the idea of
dislocation-assisted melting in two dimensions. Unfortunately, this work is unpublished. An outline of this
theory is given by Elgin and Goodstein (1974) and by Dash (1978).

t By now the reader would undoubtedly have noticed that there are a variety of 2D systems. For
elucidating various features of the KT theory, we cite different examples as convenient!

=
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range of the field. These pairs will in turn be screened by others lying in their respective
fields and so on. One thus has a scaling situation as in the case of critical fluctuations
present during a conventional second-order phase transition, and not surprisingly,
renormalization group techniques make their entry.

Owing to screening, (14) becomes modified to

2% In (r/a)
&(r)

where ¢(r) is the space-dependent dielectric function, and includes the polarizability of
pairs with separation less than r. Introducing p(r) the probability of finding a pair with
separation r, one finds that ¢(r) and p(r) are coupled as follows (Kosterlitz 1974,
Halperin 1979):

Ug(r) = ; | (15)

&(r+dr) = &(r) +4n x pol. contributed by pairs in the
range r and (r +dr)
p2

= ¢(r) +dn— 5T

2nr p(r)dr,

p(r+dr) = p(r) exp [ Ti ® ] dr. (16)

Here r?/2T is the polarizability of a pair with separation r and [2dr/re(r)] is the work
done in increasing the separation of the pair by the amount dr. Using an iterative
procedure, one obtains from (16) the famous Kosterlitz recursion relations (Kosterlitz
1974). Such relations can be written down for every (2, 2) system i.e. the X Ymodel, 2D
crystal etc. '

We turn to the outcome of the recursive relations in the specific case of 2D crystal.
Two crucial quantities are:

@ y = exp (~E./k,T), and
.. _Ap(pt+d) @
(i) = m T’ (17)

where u and A are the Lamé constants and a the lattice spacing. During the
renormalization calculations, one has to rescale the dislocation core diameter from a,
to a, exp l causing y and K to become [-dependent. The recursive relations are of the
form (Kosterlitz 1974; Nelson 1978; Nelson and Halperin 1979; Young 1979):

PO~ f o,k

(l)

=00, KD) ‘ | (18)

The solution of these equations is too intricate to be discussed here. Of greater
interest are the renormalization group flows illustrated in figure 5. The different
trajectories effectively determine the system behaviour at different temperatures.

Let us follow a typical trajectory for T < T, from the starting line (see figure 5). The
flow takes us to the abscissa where y(I) is zero and K (/) has a finite value, which implies
that (i) the probability of finding a free dislocation is zero and (i) the renormalized
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Figure 5. Renormalization group flow in the kT theory. The quantities K and y are defined
in (17). The line for T = T,,, is the separatrix. The dislocation probability y(1) tends to zero in the
region to the left of the incoming separatrix which is the crystalline phase. The trajectories to
the right flow away to large y-values, signalling instability and the dissociation of dislocation
pairs.

stiffness is finite. The trajectory for T = T, is the separatrix, and trajectories to its right
flow away, implying that for T’ > T, (i) free dislocations can be found and (ii) the system
loses rigidity since K (I)— 0. The system behaviour close to T,, may be carefully
examined by zooming near the region where the separatrix curve meets the abscissa.
The principal findings are: J

() Cs(R) ~ R"a(), T-T, , (19)
where 1,(I") is related to the renormalized Lamé constants g (T') and AL(T") by

(3“3 + '11:)
=k, T|G . (20
16(T) BTI ‘4nﬂk(2ﬂx+ln) )
AtT,,, the exponent for the first Bragg point for a triangular lattice cannot exceed (1/3).
R
ii Cs(R) ~exp| — , T-T), 21
the correlation length &, diverging according to
const
~ —_— 7=03 .
&y CXP[(T—TM)”]’ v = 0-36963 (22)

(i) The renormalized stiffness constant K (T) (see equation (14)) varies as
1 ' .
-1 N N e — v
K'(T-T,) 167:(1 C|t|"), (23)

where C is a positive, nonuniversal constant and t = (I —T,,)/T,,. AboveT,, the stiffness
vanishes; K , therefore abruptly jumps to zero from the value 16n at T =T,,.

(iv) The specific heat has only an essential singularity. Physically this is related to the
fact that at 7, the density of dislocation is rather low. There is therefore very little
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entropy associated with it. However above T, there is a small bump (Berker and Nelson
1979).

Next to the order parameter, the quantities of interest in a conventional phase
transition are those which exhibit singularities. In the case of the kr transition, there is
no ordering in the conventional sense. The specific heat also is not very informative. The
only meaningful signatures are the translational correlations C(R) on either side of 7,,
(see (19) and (21)), and the temperature dependence of the stiffness (see (23)), all of
which are conveniently studied via x-ray and neutron scattering.

A few other related points must also be noted at this juncture. Firstly, the calculation
of the screening via (16) is a self-consistent one, and for this reason the kT theory is
essentially a mean field type of theory. Secondly, while solving the recursive equations,
the approximation is made that y is small (i.e defect density is small; see also remark (iv)
above), implying that the core energy E, is large (see (17)). So the picture (T > T,,) is that
of a dilute system of dislocations floating about in an otherwise harmonic solid. Should
the cores overlap, the theory collapses. In a superfluid, the vortex core sizeis ~ 1 A and
overlap is not a serious problem. On the other hand, the core size of a dislocation could
be several lattice spacings, and overlap becomes a real possibility (Kosterlitz 1980). One
must therefore be ready for surprises. We shall revert to this question later. Finally, the
transition is continuous; note especially the divergence of the correlation length
(equation (22)), reminiscent of a conventional second-order phase transition.
(However, a significant difference is that £ has an exponential rather than a power law
behaviour, Stanley 1971.)

3.4 Role of orientational correlations

About five years after kT advanced their theory, Halperin and Nelson (1978; see also
Nelson and Halperin 1979) drew attention to an important aspect of the problem not
considered by KT*. Nelson and Halperin (nH) argued that besides translational
correlations, one must also consider orientational correlations, and that when a solid
melts to become an isotropic liquid, it sheds both these correlations. NH therefore
introduce an orientational order parameter . Most of the focus so far has been on
triangular lattices which are the most close packed structures in two dimensions. For
this lattice, the bond_orientational parameter is given by

¥ (r) = exp [i66(r) ], (24)

where 0(r) is the orientation relative to the bond between nearest neighbour atoms. 6 is
related to the displacement field u(r) by

_1(0uy(r) du(r)
O(r) = 2< o ) (25)
Analogous to (10), one now has a orientational correlation function
Co(r) = (Y Q)Y*(r) ). (26)

Extending attention to orientational effects requires one now to consider new

* Taking into account a related paper by Young (1979), the melting theory is often referred to as KTHNY
theory.
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defects, namely disclinations. These are “rotational singularities”, two examples of
which are illustrated in figure 6. They are formed by taking a perfect triangular lattice
and either removing or adding a wedge. The curvatures resulting thereof are significant
(see, for example, Nelson 1983a) but we shall not consider them here. The interesting
point about disclinations is that a dislocation can be viewed as resulting from the
binding of a disclination pair, as illustrated in figure 6.In other words,a dislocation can
be regarded as a disclination dipole.

Based on the above additional concepts, NH sketch a scenario for melting involving
not only dislocations but disclinations as well. At low temperatures, the dislocations are
paired, and, on account of the internal structure of the dislocation (see figure 6), the
dislocation pair can be viewed as a disclination quadrupole. The harmonic phonons as
usual disrupt positional Lro leading to a power law behaviour for the translational
correlations as in (11), but, by contrast, the orientations exhibit Lro i.e.,

lim Cs(r) = [<¥ >, - 27

-

a constant which is temperature-dependent.

(T -~y

e

Figure 6. (a)and (b) illustrate respectively five- and seven- fold rotational singularities (i.e.
disclinations). For convenience, the atoms are suppressed and only the surrounding Wigner-
Seitz cells are shown. (c) illustrates how a pair of disclinations can combine to form a
dislocation. Here the atoms are shown along with their W-S cells.
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As the temperature is gradually increased, a stage is reached (7'=T,,) where
dislocations unbind. This, however, does not produce an isotropic liquid; instead the
system enters an intermediate phase in which, C(r) decays exponentially as in (21) but
rotational correlations, though asymptotically decaying, are still strong, being given by

Co(r) ~r—1e®),  TTi, | (28)

where
e (T) = 18k, T/nK ,(T). (29)

The quantity K, (T') called the Frank constant is related to the so-called bending energy
of orientational fluctuations as

1
H, =K, fd%(va)% o (30)
In effect, K, is a measure of the “angular stiffness’ of the system. Below 7;,,, K, = o0
indicative of perfect angular correlatlons but above T,, there is a temperature
dependence given by

K(T)~¢3(T), T-T,, (31)

where £, (T) is the same as in (22). This divergence is of course linked to the appearance
of long range orientational order below T,, (see (27)).

The phase with properties as in (21), (28) and (31) is like a liquid crystal in that it has
greater orientational order (power law decay) than translational order (exponential
decay). This phase is frequently referred to as a hexatic phase.

When heated, the hexatic phase in turn undergoes a transition at a temperature 77,
becoming an isotropic liquid. This occurs via the unbinding of the disclination pair,
causing a loss of the orientational correlations present in the hexatic phase. Thus, in the
NH picture, the free topological defects in the isotropic liquid are not the dislocations
but the disclinations. As noted by NH, the transition at 7; belongs to the same
universality class as the two-dimensional superfluid and the XY model, whence,

ne—% as T-»T;. (32)

The renormalized Frank constant jumps discontinuously to zero at 7; from the value
72k,T /n to which it decreases as T - T';. Above T},

Ce(r) ~exp (—r/¢s(T)) (33)
with

: b
E6(T) ~ explim:l- : (34)

As usual, there is only an essential singularity in the specific heat. In short, at T} there is
again a crossover from a power law to exponential decay, but this time, of the
orientational correlation function. Accompanying this change is a vanishing of the
orientational stiffness.

Figure 7 paraphrases the features of the original kT theory and the subsequent NH
modification. In passing we note that although Halperin and Nelson (1978) also
predicted continuous transitions, they were cautious enough to observe that they
“cannot rule out other mechanisms for melting, perhaps leading to a first-order
transition”.
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r"“s(T) exp (-r/8)

Figure 7. Comparison of the transitions predicted by the original T theory and by the
subsequent NH modification. For explanation, see text.

Laboratory experiments on 2D melting are frequently performed on layer systems
supported by a substrate. Nu have examined the role played by the substrate by adding
an orienting field to the defect Hamiltonian, and find the following: If the substrate can
be regarded as smooth, then the considerations of figure 7 continue to remain valid. On
~ the other hand, if the periodic nature of the perturbing potential from the substrate is
significant, then one must examine whether the periodicity of the substrate is
commensurate or not with that of the layer above (see also figure 8). Of interest is the
case where the substrate potential is weak and incommensurate. In this situation, there
is only one transition, namely, that at T,,; the other one at T; is washed out (for a
triangular lattice). '

A second question relates to phase diagrams. In condensed matter, we are used to
diagrams as infigures 9a and 9b. One would like to know how these are modified in the
light of the kTENY theory. The outcome is sketched in figure 9c and 9d, and will become
relevant later. '

The prelude has been somewhat lengthy but is indicative of the fact that 2D systems
are a theorist’s paradise! As we have seen, topological defects in 2D are point defects. It
turns out that the statistical mechanics of these is a lot simpler than that of line defects

(with which one has to deal in 3D). Hence the great popularity of 2D systems with

theoreticians. We turn now to the various attempts made to check the kTHNY theory.
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4. Experimental studies

4.1 Laboratory experiments

There are a number of candidate systems like liquid crystal films, electron films on
liquid helium, etc which are suitable for experimentally checking out the KTHNY theory.
Many of these have indeed been investigated (Sinha 1980) but the most detailed studies
so far have been on rare gas films absorbed on graphite.

The basal i.e (0001) plane of graphite is a good substrate for forming monolayers by
physisorption since it presents a relatively smooth potential to the layer absorbed.
Unfortunately, large single crystals of graphite are not available but this has not
deterred experimentalists. Instead they have skilfully exploited various exfoliated
graphite products. Basically all of these are built up of small flakes a few um broad and
~ 100-300 A thick. The useful size is characterized by the coherence length L (see
figure 10). The c axes of these flakes are all partially oriented about the normal to the
sheet but the azimuthal orientation about the c¢ axis is random. Various types of
exfoliated graphite like Grafoil, ucar-xyz and Papyex are now commercially available.
Very popular (especially in the past), Grafoil has L ~ 200 A, AB ~ 25° (see figure 10)
and a specific area for adsorption ~ 30 m?/g. The samples (for scattering experiments)
typically consist of a pile of discs cut from sheets of exfoliated material. Samples with
several grams of Grafoil are not uncommon. Very recently, “single crystals” of
exfoliated graphite have been prepared (Clarke et al to be published; quoted in
Rosenbaum et al (1983)) with L ~ 400 A and A6 ~ 3°.

Although notionally the graphite substrate may be deemed to exert only a weak
influence, the role of the substrate cannot be entirely overlooked. As already noted in
figure 8, the adsorbed layer could be commensurate* as well as incommensurate with
the substrate. Our interest is in the latter situation.

SHEET OF GRAFOIL

N L |
}%’“ﬁ%wz '

A

P(8) 4

/AG

- 8

Figure 10. Schematic drawing of the Grafoil sheet. L indicates the typical coherence length
of the adsorbed layers while P (6) describes the distribution arising from the non-parallelism of
the substrate surfaces (After Nielsen et al 1980). ‘

* It is interesting thag if the adsorbed atoms are in registry with the substrate, {u*) does not diverge
(Kosterlitz 1980).
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Monolayers of Ar, Krand Xe on graphite have been studied using both neutron and
x-ray scattering (Thorel et al 1976; Taub et al 1977; Horn et al 1978; Stephens et al 1979;
Hammond et al 1980; Heiney et al 1982; McTague et al 1982; Heiney et al 1983) and the
opinion has emerged that Xe on graphite is by far the best representative of 2D field-
free system (McTague et al 1982). Accordingly we shall examine the recent high
resolution results of Heiney et al (1983) obtained at the Stanford Synchrotron
Radiation Laboratory (ssrL). These experiments are a sequel to an earlier series done at
MIT using a rotating anode source but with somewhat lower resolution.

Heiney et al have criss-crossed the phase diagram along various trajectories
(including constant temperature ones) in order to check out different possibilities.
Figure 11 shows representative profiles observed in one of these runs. The asymmetric
lineshapes are due to excess high g scattering arising from substrate azimuthal disorder.
Around 152K the lineshape changes, going over to a Lorentzian charateristic of
exponential decay of the correlation function. Heiney et al reckon that a transition

INTENSITY (10° counts /15 sec)

01,3 14 15 1.6 17 1.8
QA

Figure 11. Diffraction profiles of the (1, 0) spot of xenon adsorbed on graphite. The scans
have been made in the narrow region between 151-6K to 160K (After Heiney et al 1983).

P;"“zs




33 G Venkataraman and D Sahoo

151-8 152-0 1522 1524
T

T T 1 H T T .
ook ' -
o<
z 003 f }‘ j_’{_{’. -
o 002} - -
2
W og01 - Lot -
g 0 -] e 1.
Q 006} P
oy
< gos| /{ y
g 7
& oo 4
S
O 00 -
H o002k -
E:J |
W oot |- -
Z 1] b o das! ] 1 1 i
S0 152 154 158
TEMPERATURE (K)
T T T T
0-4 b~ n
0.3+ -
3 EREREEEE
021 -
0.1k .
1 1 1 ]
120 130 140 150

TEMPERATURE (K)

Figure 12. At the top are shown the inverse correlation lengths obtained by Lorentzian fits
to the data of figure 11. The solid lines are fits to the KTHNY form while the dashed lines are
power law fits. At the bottom is shown the temperature dependence of n (After Heiney et al
1983).

occurs at 152 K. The question whether it is of first order or continuous has been
examined quite carefully. Firstly, no hysteresis is observed. Secondly, as the transition
temperature is approached from below, the exponent obtained from the lineshape
analysis (Dutta and Sinha 1981) has the trend shown in figure 12. At the melting
temperature it is found that 027 < (melting) < 042, reasonably consistent with
KTHNY prediction 0-25 < n(7,,) < 0-33. Above 152 K where the line shape is consistent
with (22), analysis yields v = 0-4 (see also figure 12).

The evidence cited above no doubt strongly favours the kTuNY theory. Nevertheless
Heiney et al have carefully examined possible consistency of their data with first-order
transition. If the transition is indeed of first-order then near the transition temperature
one must encounter a coexistence patch. Assuming that the solid material is converted
into a liquid according to a lever law, they have analyzed their data. From the values of
x* obtained they conclude that the observed melting is consistent with a continuous
transition although a possible two-phase coexistence in a very narrow range between
151-6 and 151-95 K cannot be ruled out.

Recently, Rosebaum et al (1983) studied the melting .of monolayer xenon on the
surface of exfoliated single crystals, using x-ray scattering. According to the NH theory,



Melting in two dimensions 335

in the solid one must get six (1, 0) Bragg spots, which, owing to the lack of Lro, will have
some width both in the radial as well as angular directions with probably more in the
former. On melting into the hexatic phase, the six spots still survive* with, however,
enhanced width in both directions. As temperature is increased, the changes in the
orientational correlations will be more rapid than the corresponding ones in the
positional correlation. Consequently the angular width will increase more rapidly
compared to the radial width until at T; the spots merge to form a liquid ring. Such a
behaviour (see figure 13) is in fact seen in experiments. Rosenbaum et al categorically
rule out from the observed lineshapes, the possibility of a liquid-solid coexistence. Nor
do they believe that the observed spots could be due to an isotropic liquid subjected to a
substrate field. The field strength required would be three orders of magnitude too high.
They are confident that their experiment offers evidence for melting of the 2D solid into
an orientationally ordered liquid.

Besides adsorbed layers, melting of liquid crystal films also have been investigated to
test the validity of the xTHNY theory. An important feature of these experiments is the
use of freely suspended films, the preparation of which is schematically illustrated in
figure 14. While a monolayer film has yet to be realized, films with as low as two layers
have been successfully used.

Moncton and coworkers (Moncton and Pindak 1979, 1980; Moncton et al 1982)
have been particularly active in the study of x-ray diffraction from such films. An early
experiment (Moncton and Pindak 1980) on a material called 40-8 (butyloxybenzylidene
octylaniline) seemed to suggest that the melting was continuous with 7 at melting in the
range specified by the kTHNY theory. However, films thinner than 4 layers could not be
studied owing to film rupture problems. Subsequently, they switched to another
material 14S5 (Moncton et al 1982) which was amenable to the formation of films with
as low as two layers. It was found that the film with two molecular layers melted by a

RADIAL WIDTH

 ANGULAR WIDTH

Figure 13. Schematic drawing to illustrate the outcome of the experiment of Rosenbaum et
al (1983). Sketched here is the related variation of radial and angular widths of the (1, 0)
diffraction spot as temperature is increased. As T becomes larger, the angular width increases
more rapidly causing the six spots to merge into a ring.

* Technically, in the hexatic phase the mean square angular fluctuations {86 » — co and x-ray scattering
should give a ring. However, a weak substrate field is enough to restore the six spots. On the other hand, if the
orientational correlations are not strong (i.e. are hquxd hke asin (33)), then a very strong substrate field would
be needed to produce the spots.
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Spreader

Figure 14. Ultra thin layers of self-supporting liquid crystal films are prepared by drawing
the material across the open hole in the glass cover slide. The hole is about 6 x 6 mm?, Films as
thin as two molecular layers can be prepared (After Brinkman et al 1982).

single abrupt transition with hysteresis and no critical behaviour i.e. by a first-order
transition. These results are also in accordance with the findings of Bishop et al (1982)in
a related study in which shear mechanical measurements were made.

We have confined our survey to the most important of the several experiments done
so far. While the studies on adsorbed layers seem to favour the KTHNY theory, the
melting of liquid crystal films seem to point to a first order transition. Since both these
classes of experiments are open to their own objections, many have sought an answer
via computer simulation to which we now turn our attention.

4.2 Simulation experiments

Computer experiments on phase transitions have a long history going back to the
pioneering work of Alder and Wainwright (1962) who studied hard disc systems. The
experiments we review use either the Monte-Carlo approach (Metropolis et al 1953) or
the molecular dynamics approach (Rahman 1964). A large number of papers have been
published, of which table 1 offersa partial summary. Given this large volume of work,
we can indicate only the highlights. .

4.2a Advantages—An important advantage of the simulation experiment is that it
enables one to follow events at the level of individual atoms. To appreciate this, we refer
to figure 15. Here 15a shows an instantaneous snapshot of the system. The coordi-
nation number of each atom in this assembly can now be analyzed via a
Dirichlet/Wigner-Seitz construction (see figure 6), and one can identify those with
anomalous coordination i.e. those not having the normal quota of six neighbours. One
can now suppress the “normal” atoms and project only the defect structure as done in
figure 15b. Such studies have not only shed much light on how defects evolve and
multiply, but more significant, have called attention to the possible role of grain
boundaries in the melting process.

A second useful pointer to emerge is the superiority of the constant pressure and
isothermal scans as opposed to traversal along an isochore (constant density scan). In
the former, the distinction between a first order and a continuous transition is more
clear-cut (as we shall presently see). In an isochore traversal on the other hand, one
could strike a coexistence patch, which, besides making the transition appear
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Figure 15. (a) shows a typical configuration of atoms during the simulation. + and —
denote respectively seven- and five-fold coordinations. In (b) is projected the defect structure
alone (After McTague et al 1980a).
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Figure 16. Equilibrium density and enthalpy per atom as a function of temperature for a
256 Lyatom system at P* = 0-01. The sharp breaks are characteristic of first-order transition
(After Abraham 1980).
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continuous, could also give erroneous indications about the presence of a hexatic phase.

Yet another merit of simulation is the ability to follow the trajectories of individual
atoms over a fairly large number of steps. We shall shortly consider examples of such
plots and their utility. '

4.2b Some results—In a typical simulation experiment, one considers an assembly of
particles interacting via a suitable potential. The particles are confined to a planar cell
and suitable boundary conditions are imposed (usually periodic boundary conditions;
exceptions however have been made: Hansen et al 1979; Abraham 1981b). The
thermodynamic conditions like pressure, temperature etc are specified and the
simulation is executed in a series of consecutive steps. Initially, a large number of steps
must be gone through (with suitable “steering”) so that equilibrium is attained
corresponding to the desired conditions. Near a transition, special care is necessary
since equilibration will require many more steps than usual. After attainment of
equilibrium, the system is run through more steps, during which “measurements” are
made. In a constant pressure run, for example, one would monitor the density and
enthalpy. Besides evaluating thermodynamic quantities, correlation functions are also
sometimes computed. In addition, defect patterns, trajectory plots etc are obtained as
required. This sequence is then repeated for a new set of initial conditions and in this
way a whole scan is made.

We consider now some representative results. Figure 16 shows the equilibrium
density and enthalpy per atom as a function of temperature for a 256 Lennard-Jones
(V(r) = 4e {(c/r)** — (6/r®)}) atom system at a fixed pressure. Abraham (1980) who did
this work, carried out such studies at three reduced pressures P* = Po?/¢ = 0-01, 0-05
and 1. The first two pressures were intentionally chosen low since Nu had speculated
that the melting could be first order at high pressures but continuous at low pressures
(see also figure 9). Abraham however finds that melting is always a discontinuous
process as in figure 16.

Figure 17 shows results for isothermal scan obtained by Toxvaerd (1981) for two
Lennard-Jones systems with 256 and 3600 particles respectively. Both exhibit Van der
Waal loops characteristic of a first order transition, the loop being smaller for the larger
system. Whether the transition will continue to be first order in the thermodynamic
limit is difficult to say but after investigating the size dependence from 256 to 3600
particles, Toxvaerd seems to feel that the transition will continue to remain weakly first
order. Broughton et al (1982) investigated a system of 780 particles interacting via a

REDUCED PRESSURE

REDUCED DENSITY

Figure 17. Pressure versus density at constant temperature for two L3 systems. The solid
circles are for 3600 particles and the open circles are for 256 particles (After Toxvaerd 1981).
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purely repulsive r~!? potential. They too find a weak, first-order transition. These
authors also studied a system with a single vacancy which gave them the same loop
during both forward and reverse scans, unlike the perfect system. Both Toxvaerd and
Broughton et al have detected grain boundaries from defect structure analysis (recall
figure 15). They also cautiously note that periodic boundary conditions could stabilize
the perfect solid, inhibiting the formation of vacancies and interstitials. In turn this
could inhibit dislocation climb and modify the character of the transition. However,
taking all factors into account, the overall assessment of both authors is that the melting
transition is not only weakly first order but just preempts the kT transition.

Special mention must be made of the work of Bakker et al (1982, 1984) who have
built a dedicated hardware processor enabling them to make a quantum jump. Instead
of dealing with 512 or 1024 particles as usual, they are able to study the molecular
dynamics of 10864 particles. Their device had the speed of a super computer, achieving
in 750 hours what would have taken 4000 hours in Amdahl 470 V /7-B. One expects this
approach will set a new trend. Incidentally, Bakker et al (1984) have studied a Lennard-
Jones system along the isochore p* = po? = 0-88, very close to that traversed earlier by
Frenkel and McTague (1979) and Toxvaerd (1980). Whereas Frenkel and McTague
interpreted their data as being indicative of two continuous transitions with an
intermediate hexatic phase, Bakker et al, in agreement with Toxvaerd, conclude that
melting is in fact first order, and that the intermediate phase is really a coexistence
region. .

This is a convenient juncture to introduce trajectory plots, a good example of which
is given in figure 18. The plots here pertain to a 256 atom Lennard-Jones system, and
were obtained during a scan along an isochore (Abraham 1981a). They show four
consecutive sequences, each generated from 8 x 10° Monte-Carlo steps. In each plot
one can see a crystalline as well as a liquid-like region, indicative of coexistence. Further,
the melted region appears to be mobile with passage of time, suggestive of a small
interfacial energy between the liquid and the solid. Such a coexistence could well mimic
a hexatic phase, even if the phase were absent.
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Figure 18. A consecutive sequence for four trajectory plots for a 256 Ly atom system. Each
plot is generated from 8 x 10° consecutive Monte-Carlo steps, with the system held at fixed
density and temperature. Observe the coexistence of solid and liquid regions (After Abraham
1981a).
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The simulations discussed thus far deal with systems having no physical boundaries.
Abraham (1981a, b) considered the role of surfaces since there is some evidence for
surface premelting in the case of 3D crystals (Broughton and Woodcock 1978). He finds
(see also figure 19) that a 2D solid with two surfaces is a stable crystal with premelted
surface at reduced temperature T* = 0-40 (T* = k,T'/¢) and a stable liquid at T*
= 0-42. An independent free energy analysis of the 2D Lennard-Jones system yields a
thermodynamic melting temperature of T* = 0-415 (Barker et al 1981). Abraham
further finds that a solid subjected to periodic boundary conditions melts at T* ~ 0-45
with a discontinuous jump in density (i.e. via first order). From this Abraham concludes
that a solid subjected to periodic boundary conditions superheats well beyond the
thermodynamic melting temperature. As he remarks (Abraham 1981a) the melting
temperature of the surfaceless solid “corresponds to an upper limit for the stability of
the metastable 2D solid”. Associated with the transition at T* = 0-45, there is the
stiffness dependence shown in figure 20. At the transition temperature, the measured
value of K is lower than 16n “because of defect formation in the solid constrained to
remain at solid density”. However, if K values obtained for T* < 0-45 are extrapolated,
they yield the solid curve shown in figure 20. K thus appears to Jump discontinuously to
zero at the transition from the universal value of 16x. This of course emerges from the
renormalization group analysis of k1. Why it should do so likewise in a first-order
transition is not clear.

We have already alluded to some of the doubts that can be cast on the experiments on
adsorbed films. One of these relates to the possible role of the second layer (which is
frequently present). To make an assessment, Abraham (1983; 1984; see also Koch and
Abraham 1983) simulated xenon films on graphite, the geometry of the computational
box being as in figure 21. The simulations covered also the conditions of the
experiments of Heiney et al (1982) and Rosenbaum et al (1983). Abraham’s main
conclusion is that the transition still remains first order, at variance with the findings of
the x-ray experiments. Imperfections in the laboratory graphite substrate could be a
possible source of the discrepancy.

a) kT/£=040

Figure 19. Trajectory plots of a 2D 512 Ly atom system with two free surfaces. The two
temperatures investigated are on either side of the thermodynamic melting point of 0-415.
(After Abraham 1981a).
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Reflecting wall

First layer
; /]

Second
layer

Graphite

Figure 21. Computational scheme for the simulation of the freezing of xenon on graphite.
The graphite surface defines the x, y plane at z = 0. Shown are two layers of adsorbed atoms,
the four faces across which periodic boundary conditions are applied and a reflecting wall at
the top (After Koch and Abraham 1983).

4.2¢ Some doubts—Though elegant, simulation also is not free from objections,
principal among which are the following (Broughton et al 1982):

(i) Typical sample sizes of 500-1000 atoms are too small to be representative of
thermodynamic specimens.

(i) Even the largest computer simulation run corresponds to a very short time on a lab
scale. Achievement of equilibrium near a transition is therefore a sensitive question,
especially if critical slowing down is a possibility.

(iii) Periodic b()undary conditions could modify the apparent nature of the transition.
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(iv) Simulation without an adequate number of built-in vacancies and interstitials
might not produce a sufficient amount of dislocation climb which is necessary for a
proper test of the kT theory. ‘

There are a few other supplementary queries that may be raised. It is fair to say that
those engaged in simulation have given serious consideration to all these objections in
carrying out their experiments and in analyzing the results. Some observers are however
not still convinced.

4.2d Simulation using defect Hamiltonian—We turn now to an entirely different kind of
simulation due to Saito (1982a, b) who, instead of working with atoms, used a defect
Hamiltonian defined on a triangular mesh with periodic boundary conditions. In the
thermodynamic limit, the defect Hamiltonian goes over to that of kT i.e of continuum
elasticity theory (as it should). Saito uses the Monte-Carlo method. A pair of nearest
neighbour sites are chosen at random from the mesh. If both sites are empty, one tries to
create a pair of dislocations with opposing Burgers vectors. If both sites are occupied
with dislocations of opposite Burgers vectors, an annihilation is attempted; otherwise
an exchange is tried. The trial is accepted according to the usual Boltzmann weight etc.

Saito finds that if E, the dislocation core energy is large, the melting transition is due
to dislocation unbinding and is in accord with the xr theory. For a small core energy,
however, the melting is of first order, being caused by the nucleation of grain boundary
loops. It is natural to speculate whether a system of atoms will show similar dichotomy
depending on whether the inter-atomic potential favours a large E, or not. In
collaboration with V. Sridhar and B, Chakraborty of our Centre, we are currently
examining this question vig simulation, Meanwhile, we learn that Van Himbergen
(1984) has carried out a similar study for the X ¥ model and finds both continuous as
first order transition, depending on the shape of the nearest neighbour interaction. One

therefore awaits Sridhar’s results with interest. ‘

5. Other mechanisms and viewpoints

In view of the doubts concerning the validity of the kT hypothesis, several alternate
viewpoints have recently been proposed. Guided by the results of several simulation
studies and the work of Fisher et al (1979) who noted that grain boundaries could
appear before T, is reached, Chui (1982, 1983) constructed a grain boundary theory of
melting. Chui models the grain boundary as an array of dislocations. A pair of
dislocations with Burger’s vectors b, b’ interact with each other via a potential of the

form .
e K et Db =)] b (r—r)]
V= "Z;(b b lnlr r| ’ I"‘r'lz ) (35)

where K is as in (17). The first term in (35) should be familiar to us from the
corresponding term of (14). The second term of (35) represents the anisotropic part of
the interaction. (The continuum Hamiltonian of NH, for example, will have a third term
related to the core energy E,. That, however, is not pertinent here.) A grain boundary
configuration appropriate to a triangular lattice was next considered, and the effective
potential between parallel grain boundaries at a distance Z apart was computed using

e

e Ay
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(35). In turn this formed the input for a free energy analysis of phase stability. The
conclusions drawn by Chui are:

(i) grain boundaries do make an appearance before T,,,

(i) a strongly first-order transition results if the grain boundaries are coupled to
density change or bound dislocations pairs,

(iii) the transition becomes weakly first order for a core energy < 2-847,,.

In short, grain boundary melting preempts the xt transition in Chui’s theory.

Ramakrishnan (1982, 1984) following his earlier work with Yussouff (1979),
approaches the transition from the liquid side i.e as a freezing problem. According to
this view, the solid emerges from the liquid primarily due to the dominance of a density
wave of crystalline periodicity and symmetry. The wavevector G of this wave is
identified with the first peak in S(g) the liquid structure factor. From the quantitiative
point of view, the theory considers the solid near melting as a calculable perturbation
on the liquid and shows that their free-energy difference is determined by two
parameters u(G) and ¢(G). Of these u(G) is defined by

p) = po(1+n+u(G) expiG-Y),

where p(r) is the density. ¢(G) is the Fourier transform of the fluid correlation function
and is related to the structure factor as ‘

S(G) = (1 —¢(G)) L.

A self-consistent relation for p(r) is derived involving also the potential V' (r), from
which the free energy difference is computed. The theory predicts a first-order
transition at a temperature Ty.

Ramakrishnan (1982) also considers the implication of 7, being greater or less than
the Kt transition temperature 7,,. Of course if T, <T,,, then the kT mechanism has no
chance. On the other hand if 7,, < T}, it could well happen that owing to lack of
sufficient run time, computer samples continue to appear as a solid and melt only when
T; is attained (via first order of course). Ramakrishnan therefore advocates suitable
experlments on spatial correlation to ascertain whether T, <T,, or Ty > T,, in systems
where T} is clearly identified.

In a series of high-powered (!) papers, Kleinert (1983a, b and references therein) has
reexamined the xT mechanism, with particular reference to the role of the core energy
~ term in the Hamiltonian for an assembly of defects. In the kT theory, the core energy
term has a form ~ E, Z(b2 ) with the further stipulation Zb = 0. In the Coulomb

model mentioned in § 3. 4 the corresponding expressions would be ) gf with Z q;=0

(charge neutrality).

According to Kleinert, a single disclination is really a point singularity at the end of a
string of dislocations, rather like the “Dirac string” of the magnetic monopole.
Kleinert’s view is that a core energy term of the KT type is inappropriate since it implies
.an infinite energy for the dislocation string, automatically ruling out dislocation pile up
and a concomitant first-order transition. By following a route earlier established by
Villain (1975) vis-a-vis the 2D XY model, Kleinert derives an expression for the
partition function which, unlike that of K, is free from this “objection”. An interesting
feature of Kleinert’s work is the use of duality concept, already familiar in lattice gauge
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theory (Kogut 1979), spin glass (Fradkin et al 1978) etc.*. The net outcome of Kleinert’s
analysis is that melting in two dimensions is a first-order process. Very recently, Janke
and Kleinert (1984) have backed up this conclusion with a Monte-Carlo simulation.

6. Summary and concluding remarks

Despite the early start given by Peierls (1935) and Landau (1937) on the theoretical side
and the pioneering experimental work of Langmuir (1938) on surfaces, 2D solids did
not receive much attention for a long time, possibly because the departure from true
crystallinity was almost notional*. However, the deep enquiry in the sixties concerning
the nature of ordering in 2D systems revived interest, leading to the novel proposal by
Kosterlitz and Thouless (1973) that phase transitions are possible without being
accompanied by ordering in the usual sense.

Several systems (superfluid films, electrons on liquid helium etc) have been
experimented upon to test the validity of the kT idea (see for example, Sinha 1980). As
far as melting in 2D is concerned, the important question is whether it is prompted by
long wavelength or short wavelength fluctuations. If it is the former, then the transition
is not only continuous but has several unusual features. A crucial factor is the role
played by topological defects, in particular the dissociation of bound pairs. On the
other hand if melting occurs mainly due to a pile-up of disruption of local arrangements
ie. due to short wavelength fluctuations (which is facilitated by core overlap—see
remarks in §3.3), then the transition is of first order as in 3D.

We have presented a sampling of the more detailed (lab) experiments on melting
carried out so far. Most of these have been on adsorbed films of rare gas atoms, and the
results seem to favour the kTHNY theory. The results on self-supporting films of liquid
crystals seem however to favour a first-order transition.

In contrast to the lab experiments, the computer experiments do not have problems
of specimen preparation and therefore have been quite popular. The evidence from
such simulations appears to be in favour of a first-order transition. However, as in the
case of the lab experiments, the results are not totally objection-free.t For some, no
matter how detailed the simulation, these experiments come nowhere near to real life on
account of the various factors discussed earlier. On the other hand, the practitioners of
simulation by and large seem convinced that the transition is of first order, although
some are more cautious than others in articulating their opinions. In passing, it is
interesting to note that Abraham (1984) in his simulation studies is able to reinterpret
the x-ray results of Heiney et al (1983) and of Rosenbaum et al (1983) in support of a
first order transition, although the experimenters themselves feel their results point toa
continuous transition!

At the moment there is lull of sorts, with each “camp” holding on to its own view

* See also Jose et al (1977) and Nelson (1978).
* Abraham (1980), for example, estimates that for acorrelation loss ~ 6 A, the 2D crystal must have a size
~ 10! light years! It is remarkable, however, that diffraction experiments reveal via line shapes even these
" minute differences.

t Within the simulation camp itself there has been some cross fire! See Toxvaerd (1984) and Abraham and
Koch (1984).
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point* Resumption of vigorous activity is, however, very much on the cards especially
on the lab experiments side, with accent on eliminating the various objections raised in
the past. Besides the ever-popular diffraction studies, other supporting investigations
may also be anticipated, e.g. on shear properties. Hopefully these will settle the issue
once and for all in an unambiguous manner. Meanwhile one should not lose sight of the
finding of Saito (1982a, b) that one can get either a first order or a continuous transition,
depending on the value of E, the core energy. There is also the related work on the XY
model (Van Himbergen 1984) where this dichotomy has been analyzed. It could well
happen that there aresome 2D lattices which melt via a kT mechanism and others which
do not!

It would indeed be a pity if in the final analysis it is established that 2D melting does
not occur by a xr process. If so, it would be a narrow miss, for the transition appears to
be on the edge of being a kr type, as indicated by many of the experiments done so far.
In a way this underscores how sensitive the outcome of a given experiment is to
“disturbances” (e.g. imperfections in the substrate).

Even if it turns out that 2D melting is first order, the kT paper would not be without
significance, having exerted a strong influence on the study of phase transitions in 2D.
Of special interest is the influence exerted “across the border” on particle physics. This is
not altogether surprising, given the parallels between statistical mechanics and field
theory (Kogut 1979), and particle theorists’ interest in topological objects (Coleman
1977 and Rajaraman 1982). Thus, whatever be the final outcome as regards melting, the
KTHNY and all related papers have been beneficial in their own way to the progress of
physics, having made a beginning concerning the statistical mechanics of topological
defects.

7. Other reviews

In view of its great popularity, there naturally have been several reviews on the KT
transition from time to time. It is pertinent therefore to call attention to these, and place
our own in the proper perspective.

In one of the early reviews, Kosterlitz and Thouless (1978) emphasize superfluidity,
understandable in view of the forum. A subsequent survey entitled “ordering in two
dimensions” by Kosterlitz (1980) is broadbased but the accent is almost entirely on
theory. Halperin has reviewed the subject in his Kyoto lectures (Halperin 1979) and in
the Les Housches School (Halperin 1981). The discussions are extensive and again the
emphasis in on theory. Barber (1980) does not restrict himself to the kT problem but
covers instead the whole gamut of O(n) models in 2D. In the process, he indicated
linkages to the problem of quark confinement. Nelson (1979) has several useful and
interesting comments on the XY model and its various gauge generalizations. Young

* For example, Nelson (1983b) remarks “I doubt that the simulation techniques used by Abraham et al
could reproduce the apparently continuous melting transition of incommensurate xenon on graphite
observed recently via precision x-ray diffraction by Heiney et al.”. Abraham (1984) on the other hand holds,
“From our present study the status is clear for the high-temperature xenon film on graphite . . . . We observe
first-order melting of xenon .. . ™.
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(1980) gives a simple and crisp introduction to the central idea of the kT theory.
Abraham (1981a) has a very readable article on simulation experiments but it is a
paraphrase of his own extensive work. Brinkman et al (1982) offer a brief but popular
survey of the 2D melting question. Mention should also be made of the conference
volume edited by Sinha (1980) which gives a good overview of the then state of the art
relating to phase transitions in 2D. Our paper restricts to the melting problem alone,
but goes into some detail both on the conceptual as well as on the experimental side.
The discussion of the experimental situation is reasonably uptodate. The present review
should therefore be a useful complement to the various earlier surveys.
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Note added in proof

After this paper was sent for publication, we became aware of:

{i) A review by D R Nelson on Two Dimensional Superfluidity and Melting (in F undamental Problems in
Statistical Mechanics V 1980 ed E G D Cohen Amsterdam: North Holland).
(ii) a paper by A Holz 1984 (Phys. Lett, 105A 472) who comments on Kleinert’s work, and
(iii) a paper by S B Hurlbutand J G Dash 1984.(Phys. Rev. Lett. 53, 1931) who report a first-order melting for
“He monolayer on graphite.

Attention is also invited to the Conference Proceedings entitled Melting, Localization and Chaos (editors R
Kalia and P Vashista 1982 Amsterdam: North Holland) which contains many papers relevant to the present
article.
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