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Abstract. We have reanalysed a homogeneous catalogue of shell-type
supernova remnants and we find that the radio data are consistent with
a birthrate of one in 22±3 yr. Our approach is based on the secular
decrease of surface brightness of the historical remnants whose ages are
precisely known. The abovementioned birthrate is significantly higher
than most previous estimates which range from one in 50–150 yr, and is
consistent with the supernova rate in our galaxy derived from historical
observations, as well as with recent estimates of the pulsar birthrate.
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1.  Introduction
 
The rate of Supernovae (SN) in our galaxy has been variously estimated to be one in
every 11 yr to one in 30 yr (Clark and Stephenson 1977a; Katgert and Oort 1967;
Tammann 1977). These numbers were arrived at in two different ways. One way was
to determine the observed SN rate in external galaxies of similar morphology to our
own. The other method was to estimate the rate of SN in our galaxy from historical
records. Katgert and Oort, using the latter approach have suggested a rate of one 
in 25 yr. and Clark and Stephenson suggested one in 30 yr or less. It may be recalled
that only 7 SN were recorded in the last 2 millennia. The failure to detect the other
70 or so SN which must have gone off in the last 2000 yr (as suggested by the above
rates) is explained by the above authors as due to obscuration, horizon limitations etc.

It is generally accepted that SN explosions are associated with the formation of
neutron stars as originally suggested by Baade and Zwicky (1934). According to
this picture, the birthrate of neutron stars must match the SN rate. It is also generally
believed that all neutron stars function as pulsars. Therefore it is natural to try to
relate the birthrate of pulsars to the SN rate. The pulsar birthrate estimates in the
literature vary from one every 7–40 yr (Taylor and Manchester 1977; Phinney and
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Blandford 1981). Recently, Vivekanand and Narayan (1981) have arrived at a rate of
one in 21+ 6

–4
 yr; since this is the first calculation to incorporate luminosity selection

effects, it is probably the most reliable number to date. Thus it would appear that
the pulsar birthrate and SN rate are reasonably consistent, though there are inherent
errors in each of these estimates.

The third number which must agree with the above two rates is the birthrate of
supernova remnants (SNRs), There have been numerous attempts in the literature
to estimate this in various ways. We mention a few of the methods and the results
obtained.

1. One assumes that all SNRs with surface brightness Σ greater than that of a
given age calibrator are younger. Using this method Caswell (1970) arrived at
Ƭ = 55+25 yr (where Ƭ is the mean interval between births of SNRs).

2. A variant of the above method is to assume that all SNRs with a linear diameter
D less than that of an SNR with known age are younger. Ilovaisky and Lequeux
(1972) obtained Ƭ  = 50 ± 25 yr, using this approach.

3. Clark and Caswell (1976) have argued that the cumulative counts of SNRs
[N(<D) and N (>Σ) plots] suggest that all SNRs with diameter  32 pc evolve
according to the self-similar solution given by Sedov. Using consistency arguments,
they relate Ƭ to E0/n, where E0 is the energy of the explosion and n is the density of the
interstellar medium. Using a value of E0/n=5 × 1051 erg cm3, as suggested by X-ray
observations of four remnants, they arrive at   ~ l50 yr. 

The above methods have some inherent drawbacks. For example, it need not be
true that a remnant with Σ greater than a given one is necessarily younger. The
brightness of the remnant may be intimately connected with the initial parameters of
the explosion, as well as the density of the ISM (Gull 1973). The same criticism
would apply to the N(<D) approach. Again, it may not be true that all remnants
with D<32 pc are evolving according to the Sedov solution. It is well known that
the exploding shell will evolve in a self-similar manner only when the mass swept up far
exceeds the mass ejected. This may not be true for a remnant of a given diameter, if
it is expanding in a region of very low density or the mass ejected is very high.

In this paper, we wish to reexamine this question. Our method, a variant of the
one used by Caswell (1970), is based on the secular decrease of the surface brightness
of historical shell SNRs. In a recent paper, Higdon and Lingenfelter (1980) have 
derived a birthrate for SNRs using a similar approach, though there are important
differences in detail. We shall return to this in later sections. In Section II, we shall 
outline our procedure and derive a birthrate for shell SNRs. In Section III, we
attempt to incorporate the possible effect of the density of the interstellar medium on
the radio brightness of the remnants. 
 
 

2. Surface brightness–age relation
 
The radio surface brightness of a remnant is a function of its age. Basically, two
kinds of mechanisms for radio emission have been proposed in the literature for shell
remnants. In the first it is assumed that the magnetic field in the shell is the com- 
pressed interstellar field, and that the particles responsible for the synchrotron
radiation are either the interstellar cosmic rays or the particles produced in the
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original explosion (van der Laan 1962). The alternative is to say that the magnetic
field and/or the relativistic particles are generated within the shell itself. Gull (1973)
has advanced a model where both the magnetic field and the particle energy are
amplified by turbulent motions in the convective interface between the ejecta and the
interstellar gas. He has argued that this will continue till equipartition is reached
between the turbulent energy, the particle energy and the field energy. In this paper
we shall assume that this is the operative mechanism for young remnants. According
to this model, the radio emission will reach a maximum at a time t= t0 when the mass
swept up is of the order of 0·1–0·3 times the mass ejected, and then will decay with
time. Thus, for t     t0 one may write
 

(1)
 

where Σmaxis the brightness at time t0. Gull’s theory does not give any specific value
for α. In what follows we shall write
 

(2)
 
and treat α as a parameter. It should be emphasized here that this equation is general
in character and is not necessarily tied to Gull’s theory, though consistent with it.
For any given value of  , one can determine the constant A for a specific age cali-
brator. This combination of A and   can then be used to calculate the ‘ages’ of all the
known remnants, and thus a birthrate can be obtained. This assumes that α is cons-
tant in time.    We shall impose the following criteria for the choice of   .

1. If one restricts oneself to a time interval which is small compared to the mean
lifetime of remnants, then one must have N(< t) ∝ t, where t is the age of the rem-
nant.    This will be true as long as ‘deaths’ of remnants have not yet set in.

2. More than one age calibrator is available (see below) for determining the cons-
tant A, for a given  . The most appropriate value of   must satisfy the criterion that
it give reasonably good ages for all the other age calibrators.

As was mentioned in the Introduction, there were seven definite recordings of SN
in historical times. They were recorded in AD 185, AD 393, AD 1006, AD 1054,
AD 1181, AD 1572 (Tycho), and AD 1604 (Kepler). Clark and Stephenson (1977b)
have discussed in detail the association of radio SNRs with these historically-observed
explosions. They come to the conclusion that—with the exception of the supernova
of AD 393—a reasonably certain identification can be made in every other case. Re-
cently, it has been suggested (Ashworth 1980; Brecher and Wasserman 1980) that the
SN that produced the radio remnant Cas A may have been seen by the astronomer
Flamstead in AD 1680, but we shall not use this remnant as an age calibrator. The
Crab nebula and 3C 58 (probably associated with the SN of AD 1181) have a mor-
phology quite different from the other historical remnants, which are of the shell
type. There are reasons to believe (see for example Weiler and Panagia 1980;
Radhakrishnan and Srinivasan 1980a) that the evolution of these objects is different
from those of shell SNRs. In what follows, we shall therefore restrict ourselves to
shell SNRs. One is thus left with four shell remnants whose ages are accurately
known, viz. SNR185, SNR 1006, SNR1572 and SNR1604, with which one can calcu-
late the ages of all the known SNRs. We have used the catalogue of SNRs 
compiled by Clark and Caswell (1976). They list 120 SNRs out of which Σ (the
surface brightness at 408 MHz) is quoted for all but four. From this list of 116,
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we delete the Crab, 3C 58, MSH 15–56 and Vela X because of their filled-in appear- 
ance, and apply our analysis to the remaining 112. 

In Figs 1–3, we show N(<t) υs. t plots for α = 1·2, 2·5, 3·5 respectively. α = 1·2
corresponds to evolution according to the Sedov solution if β= 3(where, Σ ∝D–ß).
For a given  , each one of the curves corresponds to the constant A in Equation (2)
determined through one of the age calibrators.

There are three striking features in these plots:
1. Beyond 300 years or so, the N(< t) curves are remarkably linear (till about 2000

years), indicating a uniform birthrate. Since, as we have already mentioned, it takes a
time t0 (which depends on the density of the medium etc.) for the radio brightness
to build up, the behaviour of the curves for the first few hundred years can be under-
stood. 

2. As   increases, the N(< t) curves calculated from SNR 185, SNR1572 and SNR
1604 approach each other; but the curves are insensitive to an increase in   beyond
2·5.  It may be noted that when SNR 1006 is used as a calibrator, one obtains a
much higher birthrate, irrespective of α. We shall discuss the possible reasons for
this in some detail in the next section.

3. Most of the SNRs appear to be less than 2000 years old.
An examination of Figs 1–3 shows that it is difficult to choose the optimum value

of α on this basis. In order to do this we have computed the residual R defined by
 

(3) 
 
 

Figure 1. The number of shell SNRs with ages less than a given age, for  = 1·2. The labels
refer to the calibrator used to determine the constant A in Equation (2).
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where tcal,i is the age of one of the above-mentioned calibrators, derived from
Equation (2) and ttrue, i is its actual age. It was found that R is minimum for
  = 3·5 and A= 4·4 ×10–10. Since the number of calibrators are only four, one
cannot obtain a meaningful statistical error for R. So we have adopted the
following approach to estimate the scatter in  and A. There are reasons to suspect
that SNR 1006 may be subluminous for its age (possible reasons are discussed in the
next section). If so, it will strongly bias the above procedure towards a larger value
of α. To get a feeling for this we left out SNR 1006 as a calibrator and repeated the 
above procedure. The minimum value of R now corresponded to  = 2·5 and
A = 1·1×10–12. In what follows we shall assume that α lies in the range 2·5–3·5. 

In Fig. 4 we show the number of SNRs whose ages are less than 2000 years, as a
function of  . The curves are labelled by the calibrator used. The flatness of the
curve labelled SNR 185 is an artifact because SNR 185 itself is ~ 2000 years old.
The dashed curve is a ‘ least-squares fit’ using all the four calibrators. For  = 3·5,
this gives for the mean interval Ƭ between SN that produce shell remnants, a value of 
19 yr. 

A similar procedure, but leaving out SNR 1006 this time, gives Ƭ = 25 yr (for the
appropriate value of α = 2·5). Since the true value of   can lie anywhere in the range
2·5–3·5, we obtain  = 22 ± 3 yr. In this context it is worth mentioning that the
measured value of α for Tycho is 2·0 ± 0·8 (Strom, Goss and Shaver· 1982), con-
sistent with our range for α. There is one other remnant, viz. Cas A, for which α has
been measured. In this case α ~ 3 (Stankevich 1979).
 
 

 

Figure 2. N(< t) versus  t plot for α = 2·5.
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Figure 3.  N(< t) versus t plot for    = 3·5.

 

Figure 4.  The number of SNRs whose ages are less than 2000 years as a function of α. The labels
refer to the calibrator used. For each value of α we have also determined this number with an A
which minimises the residual R (Equation 3); this curve is labelled ‘leastsquares’ fit
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At this stage it is perhaps worth emphasizing the salient differences between the
method outlined above and that adopted by Higdon and Lingenfelter (1980). The
starting point is the secular decrease in the surface brightness (Equations 1 and 2).
However, we determine both A and   by ‘ fitting’ the historical remnants; Higdon
and Lingenfelter assume   = 2·3, which they say is given by Gull’s theory (though we
cannot find such an explicit statement in Gull 1973). They then normalise Equation
(1) by assuming that Kepler is at its maximum brightness and that Kepler, Tycho,
SNR 1006 and SNR 185 are all expanding in regions of similar density.
 
 

3. Dependence of the surface brightness on the density of the interstellar medium
 
The method outlined above assumes that all remnants brighter than a given one are
younger. This need not be true. For example, the remnant SNR 1006 may be
very subluminous since its surface brightness is somewhat smaller than that of Vela
XYZ. If the Vela pulsar is associated with the latter remnant its age would be ~ 104 

yr (Clark and Caswell 1976). Thus if one uses SNR 1006 as an age calibrator one 
would grossly underestimate the ages of other remnants. This is precisely what we 
found in Figs 1–3. One possible reason why SNR 1006 is subluminous is that it is
at a height of 325 pc above the galactic plane, where the hydrogen density is expected 
to be smaller than in the plane. For a given initial energy of the explosion (E0), a
remnant expanding in a region of low ambient density will attain a larger diameter in a
given time than one expanding in a higher-density medium and will, therefore, have 
a lower surface brightness. In addition to this, two remnants of the same diameter
may have different Σs if the density of the medium determines the radio flux in some
way. Combining these two effects Caswell and Lerche (1979) have argued that the
Σs of two SNRs of the same age but at different z (distance from the galactic plane)
may be related as follows:
 

(4)
 
 

Where zΣ is the ‘ scale height for the surface brightness ‘. They have suggested that zΣ 
~110 pc. If one pursued similar arguments put forward by Milne (1979), one would
get zΣ = 50 pc. It must be remembered that Equation (4) merely takes into account
the variation of density as a function of z and does not take into account local fluc-
tuations of density in the interstellar medium (ISM). We shall come back to this
point later.

Let us now return to the SNR 1006 and its anomalously low surface brightness.
If one ignores the fluctuations in density in the plane, one can use Equation (4) to
normalize the Σs of all the remnants and thus convert a catalogue complete down
to a limiting surface brightness (Clark and Caswell 1976) to one complete to a limiting
age (Caswell and Lerche 1979; Milne 1979). One can then repeat the procedure
adopted in Section 2 and obtain a new birthrate for SNRs. The results of the cal-
culations using zΣ = 100 pc are shown in Fig. 5; the labels have the same meaning as
in Fig 4. We have not included the results obtained with Kepler as a calibrator; 
the reasons for this will be discussed below. Again, it will be seen that the mean birth-
rate is fairly insensitive to  . Using the same criteria mentioned in the previous
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Figure 5. The curves have the same meaning as in Fig. 4, but the surface brightness of all the
remnants were scaled up using Equation (4) and zΣ  = 100 pc; this is denoted by Σs.
 
 

section, we would like to suggest that for zΣ= 100 pc, the evolution of the surface
brightness is best described by α = 2·5 ± 0·1 yielding  = 25 ± 1 yr. For zΣ =150
pc,we find Ƭ = 22 ± 3 yr for the same range of   .

An examination of Figs 4 and 5 reveals that the birthrate obtained through SNR
185 and SNR 1572 are not affected much by the zΣ used to normalize the ΣS (Fig. 4
corresponds to zΣ = ∞, i.e. no scaling). This is because most of the SNRs are at
fairly small z (z185 = 100 pc, z1572 = 150 pc etc); and hence their Σs are not scaled
up very much (Clark and Caswell 1976, give a scale height of 60 pc for the distri-
bution of SNRs).

SNR 1604 (Kepler) poses a problem, however. There are no reliable measurements
of the distance to Kepler and therefore its height above the galactic plane is uncertain.
Assuming that it was a typical Type I SN one can place it at a distance of between
6·5 to 10 kpc (Clark and Stephenson 1977b); this would correspond to a z-distance
of 770 to 1180 pc above the plane. Yet, its diameter (9 pc at d = 10 kpc) and surface 
brightness (twice that of Tycho) suggest that it is expanding into a region of density
similar to that in the plane. Clark and Stephenson (1977b) have suggested that if
one adopted a distance of 10 kpc, it would place the remnant in the nuclear bulge of
the galaxy; perhaps the scale height of the gas in the bulge is much higher than in the
disk. At any rate, it would be meaningless to scale up the surface brightness of
Kepler with a zΣ  ~ 100 pc;it would make it more than 100 times brighter than Tycho! 
Recently, Danziger and Goss (1980) have suggested a distance of 3·2 kpc to Kepler.
This would place the remnant at 380 pc above the plane, but would make its linear
diameter a mere 3 pc, Given its age, such a small diameter would imply a very low
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value for  E0 /n ~ 1049 erg cm 3, where E0 is the energy of the explosion and n the
density of the medium. It is because of these gross uncertainties that we have not
used Kepler as a calibrator in the analysis given in this section.

As was mentioned above, we have so far ignored possible variations in the density
of the ISM at any given z. This may be at least as important as the variation in
density with z. According to the emerging picture of the large-scale structure of
the ISM there are two kinds of intercloud medium; one with nw ~  0·2-0·3 cm–3,
T ~ 8000 Κ and the other with nH ~ 10–2.5 cm–3, T ~106 Κ (McKee and Ostriker
1977; Radhakrishnan and Srinivasan 1980b). The precise filling factors of these two 
components of the ISM are not known, but it is clear that if the above picture is true
then some of the remnants must be expanding in the tenuous medium and the rest in the
dense medium.

According to Gull (1973) the maximum surface brightness and the time t0 when
this is reached will scale as Σ m    n1.42, t0   n 

-1/3. These scaling laws when com-
bined with Equation (1) tell us how the ages of two remnants, with a given Σ, scale
with the density of the ISM into which they are expanding. One can formally write
 
 

(5)
 
 
where fH and fW, are the filling factors of the hot and warm medium respectively. If all
the calibrators were expanding in the same component of the ISM, and if we knew the
densities and filling factors of both the components, one could in principle use Equa-
tion (5) to correct the birthrate obtained in Section 2. Since these are not known,
we shall not attempt to do this in this paper. Higdon and Lingenfelter (1980) have
assumed that Kepler, Tycho and SNR 185 are expanding in the hot, low-density
medium and deduced an effective birthrate for SNRs by treating the filling factor as
a parameter. However, recent observation of the expansion of Tycho suggests that 
it was decelerated significantly implying that it may not be expanding in the coronal
gas (Strom, Goss and Shaver 1982).
 
 

4. Discussion and summary
 
There has been a longstanding discrepancy between estimates of the SN rate in our
galaxy and the SNR birthrate which ranged from one in 50 yr to one in 150 yr
(Ilovaisky and Lequeux 1972; Clark and Caswell 1976; Caswell and Lerche 1979).
Clark and Stephenson (1977a) suggested that the above discrepancy could be recon-
ciled if only ~ 20 per cent of SNRs are ‘ long lived’. This is acceptable only if
SNRs do not turn on till they are’ middle aged’. Bright young remnants such as Cas
A, Kepler and Tycho militate against this. Alternatively, one can say that not all
Supernovae leave behind radio remnants. This possibility has to be rejected because
all the recorded SN in historical times have produced a remnant of one kind or
another. It has also been suggested (Lozinskaya 1979; Tomisaka, Habe and Ikeuchi
1980) that most of interstellar space is filled with a hot, very low-density gas (as
suggested by McKee and Ostriker 1977) and that remnants expanding in this gas will
not be detected. The difficulty with this argument is that it would require all the
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historical SN to have occurred in the dense medium with a very low filling factor.
All these force one to the conclusion that the SNR birthrate must match the SN rate.

This was our motivation to have a fresh look at the SNR birthrate using the secular
decrease in the surface brightness of the historical remnants as the starting point. The
distinct advantage of this method over many of the previous ones is that it uses only
the surface brightness which is independent of the distance to the source. Age cal-
culations in the ‘standard model’ explicitly or implicitly involve the linear diameter,
to determine which a distance estimate is needed. This is possible only for a fraction
of SNRs. The disadvantage of our method is that there are very few historical rem-
nants and one has to assume they are typical of the whole sample.

We now summarise our important conclusions and their implications:
1. The secular decrease of the surface brightness of the calibrators used is best

described by Σ   t–α, where α is between 2·5 and 3·5. This is consistent with the
measured slope of 2·0 ± 0·8 for Tycho and ~3 for Cas A.

2. This rate of decrease, if taken as typical of all SNRs, implies a birthrate for
shell remnants of 1 in 22 ± 3 yr. This is in reasonable agreement with the supernova
rate deduced from historical observations.

3. A majority of SNRs are relatively young with ages of a few thousand years.
This is to be contrasted with the typical SNR lifetime of ≳ 104 yr as derived from
the ‘standard’ model. *

4. Since only ~ 6 out of 120 SNRs resemble the Crab nebula and the mean lifetime
of a shell remnant as derived by us is comparable to the expected lifetime of the Crab
nebula (Weiler 1978; Weiler and Panagia 1980) it becomes unimportant to correct
the birthrate of shell SNRs to obtain the total birthrate of all SNRs.
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