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The aim of this work is to demonstrate a curious property of general periodic
structures. It is well known that the corresponding homogenized matrix is positive
definite. We calculate here the next order Burnett coefficients associated with such
structures. We prove that these coefficients form a tensor which is negative
semidefinite. We also provide some examples showing degeneracy in
multidimension. 

. INTRODUCTION

The aim of this paper is to demonstrate a curious property of general periodic structures. Let
s consider acoustic wave propagation in a periodic medium with a small period denoted by �. To
rst order, we can approximate this medium by the associated homogenized medium. It is well
nown that the acoustic wave propagation in the homogenized medium provides good approxi-
ation to the propagation of sufficiently long waves in the original periodic medium �Refs. 1

nd 9�.
Here, we are interested in higher order approximation. From our previous work,2 it is known

hat the homogenized medium is described by the second order derivatives of the first Bloch
igenvalue �1��� at �=0 and the next order approximation to the periodic medium is provided by
fourth order tensor, namely the fourth derivatives of �1��� at �=0. In the physics literature such
igher order derivatives are known as Burnett coefficients and they are of great interest �Refs. 14
nd 8�. It is known that the homogenized matrix is positive definite.1 This work is devoted to the
tudy of the next order approximation.

The approximation of the periodic medium comes about from the asymptotic expansion of

1��� near �=0,

�1��� =
1

2!
�1��0��2 +

1

4!
�1

�4��0��4 + ¯ .

ubstituting �=��, we get the asymptotic expansion of the first eigenvalue associated to the
-periodic operator A� near �=0,
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�1
���� = �−2�1���� =

1

2!
�1��0��2 +

1

4!
�2�1

�4��0��4 + ¯ .

t is already established that the Hessian matrix �1��0� /2 coincides with the homogenized matrix
enoted by �qk�� �defined for instance in Ref. 1� and hence is positive definite. In this write-up, we
how that

1

4!
�1

�4��0��4 � 0 " � � RN.

urther, we show that there can be directions ��0 such that

1

4!
�1

�4��0��4 = 0.

owever, in one dimension, as we show below, such a degeneracy cannot happen unless the
edium is homogeneous.

Before starting our computations, let us interpret the above result in terms of acoustic wave
ropagation in the original �-periodic medium. From the above expansion, it is clear that

�1
���� �

1

2!
�1��0��2 if �2���4 is small.

his shows that the usual homogenized medium, as remarked above, provides a good description
rovided the waves are long. However, for short waves the above approximation is poor. Indeed if
2 ���4=O�1� and �4 ���6=o�1� then we have

�1
���� �

1

2!
�1��0��2 +

1

4!
�2�1

�4��0��4.

he above picture shows that long waves experience hyperbolic effects while short waves in
uestion undergo some dispersion too. This dispersive nature medium is described by the fourth
rder tensor �1

�4��0�. However, the dispersion is not classical. It has a negative sign and we may
hen call it negative dispersion. Strictly speaking, the corresponding initial value problem model-
ng the propagation of such short waves is not well posed. We would like to bring to the attention
f homogenization community that some curious materials �with negative refraction, negative
eflection coefficients� are being conceived and produced �see Refs. 5, 10, 11, and 13�. Viewed in
his light, our result says that a fine periodic structure provides one such curious material as far as
hort wave propagation is concerned. At this point, we would like to emphasize other features of
ur result. It came as a surprise to us to see a definite sign for the fourth order derivative, as it was
ot expected. Though our computations follow a general pattern, it is not clear to us whether
igher order derivatives too have a definite sign. The next remark is concerned with the level of
enerality at which we are working: we have no restriction whatsoever on the original periodic
edium except the classical ones. In other words, the material components used in mixing are

rbitrary, their proportions are arbitrary and the microgeometry of mixing is also arbitrary. This
ontrasts sharply with the current efforts in producing curious or smart materials using particular
omponents and following a particular design, for example, photonic crystals �see Refs. 7, 6, and
2�.

I. PRELIMINARIES

Let us now introduce the problem to be studied in this work. First, we remark that the
ummation with respect to the repeated indices is understood throughout this paper. We consider

he operator
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On Burnett coefficients
A =
def

−
�

�yk
�ak��y�

�

�y�
�, y � RN, �2.1�

here the coefficients satisfy

ak� � L#
��Y� where Y = � 0,2��N, i.e., each ak� is a

Y-periodic bounded measurable function defined on RN, and

$� 	 0 such that ak��y��k�� 
 ����2 " � � RN, y � Y a.e.,

ak� = a�k " k, � = 1, . . . ,N .

�2.2�

or each �	0, we consider also the �-periodic operator A� where

A� =
def

−
�

�xk
�ak�

� �x�
�

�x�
� with ak�

� �x� =
def

ak�� x

�
�, x � RN. �2.3�

n homogenization theory, it is usual to refer to x and y as the slow and the fast variables,
espectively. They are related by y=x /�.

Our results are based on Bloch waves � associated with the operator A which we define now.
et us consider the following spectral problem parametrized by ��RN: find �=�����R and �
��y ;�� �not zero� such that

A��· ;�� = ������· ;�� in RN, ��· ;�� is ��;Y� -periodic, i.e.,

��y + 2�m;�� = e2�im·���y ;�� " m � ZN, y � RN.
�2.4�

ext, by the Floquet theory, we define ��y ;��=e−iy·���y ;�� and �2.4� can be rewritten in terms of
as follows:

A���� = �� in RN, � is Y-periodic. �2.5�

ere, the operator A��� is called the translated operator and is defined by

A��� = e−iy·�Aeiy·�.

t is well known �see Refs. 1 and 3� that for each ��Y�= �−1/2 ,1 /2 �N, the above spectral
roblem �2.5� admits a discrete sequence of eigenvalues and their eigenfunctions �referred to as
loch waves� introduced above enable us to describe the spectral resolution of A �an unbounded
elf-adjoint operator in L2�RN�� in the orthogonal basis 	eiy·��m�y ;�� �m
1,��Y�
.

To obtain the spectral resolution of A�, let us introduce Bloch waves at the �-scale,

�m
� ��� = �−2�m���, �m

� �x;�� = �m�y ;��, �m
� �x;�� = �m�y ;�� ,

here the variables �x ,�� and �y ,�� are related by y=x /� and �=��. Observe that �m
� �x ;�� is

Y-periodic �in x� and �−1Y� periodic with respect to �. In the same manner, �m
� �· ;�� is ��� ;�Y�

eriodic because of the relation �m
� �x ;��=eix·��m

� �x ;��. Note that the dual cell at �-scale is �−1Y�
nd hence we take � to vary in �−1Y� in the sequel. With these notations, we have �see Ref. 1� the
ollowing.

Theorem 2.1: Let g�L2�RN�. The mth Bloch coefficient of g at the �-scale is defined as
ollows:

�Bm
� g���� = �

RN
g�x�e−ix·��̄m

� �x;��dx " m 
 1, � � �−1Y�.
hen the following inverse formula and Parseval’s identity hold:
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g�x� = �
�−1Y�

�
m=1

�

�Bm
� g����eix·��m

� �x;��d� ,

�
RN

�g�x��2 dx = �
�−1Y�

�
m=1

�

��Bm
� g�����2 d� .

inally, for all g in the domain of A�, we get

A�g�x� = �
�−1Y�

�
m=1

�

�m
� ����Bm

� g����eix·��m
� �x;��d� .

�

In the homogenization process, one can neglect all the modes for m
2 �see Refs. 4 and 2�. To
his end, we consider a sequence of solutions u� of the equation

A�u� = f in RN. �2.6�

e can show that the component of u� in the higher Bloch modes are not significant. More
recisely, let us consider v� defined by

v��x� = �
�−1Y�

�
m=2

�

�Bm
� u�����eix·��m

� �x;��d� . �2.7�

hich is nothing but the projection of u� corresponding to all higher Bloch modes. Then the
ollowing estimates on v� are derived in Ref. 2.

Proposition 2.2: Depending on the regularity of the source term f in �2.6�, we have

�i� If f �H−1�RN� : 
v�
L2�RN��c� 
 f
H−1�RN�.
�ii� If f �L2�RN� : 
v�
L2�RN��c�2 
 f
L2�RN�.
�iii� If f �L2�RN� : �v��H1�RN��c� 
 f
L2�RN�.
�iv� If f �H1�RN� : 
v�
L2�RN��c�3 � f �H1�RN�.
�v� If f �H1�RN� : �v��H1�RN��c�2 � f �H1�RN�.

ere, we denote by � · �H1�RN� the seminorm of H1�RN�. �

The above result is at the basis of neglecting higher order Bloch eigenvalues 	�m
� ���
m
2 in the

ontext of our discussion in the Introduction.

II. FOURTH ORDER TENSOR �1
„4…
„0…

In this section, we present the expression for the fourth order tensor �1
�4��0� and show that it is

egative semidefinite. Recall that �1��� and �1�· ;�� depend analytically on � in a small neigh-
orhood B
 of �=0 �see Ref. 4�.

. Derivatives of the first Bloch eigenvalue and eigenvector

The purpose of this section is to present expressions for derivatives of the first Bloch eigen-
alue �1��� and the first Bloch eigenvector �1�· ;�� at �=0 and indicate a systematic method to
ompute them. For details of these computations, the reader is referred to Ref. 2. Our approach
xploits the connection between the Bloch space computation with the multiscale computation.

The derivatives of the first eigenvalue and eigenfunction in �=0 exist thanks to the regularity
roperty established in Ref. 4. In fact, we know that there exists 
	0 such that the first eigenvalue

1��� is an analytic function on B
= 	� � �� � �

, and there is a choice of the first eigenvector
1�y ;�� satisfying
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On Burnett coefficients
� → �1�· ;�� � H#
1�Y� is analytic on B
, �1�y ;0� = �Y�−1/2 =

1

�2��N/2 .

part from the above result of regularity on the Bloch spectrum, the following proposition was
lso proved in Ref. 2.

Proposition 3.1: We have the relations

�1�0� = 0, Dk�1�0� =
��1

��k
�0� = 0 " k = 1, . . . ,N ,

1

2
Dk�

2 �1�0� =
1

2

�2�1

��k � ��

�0� = qk� " k, � = 1, . . . ,N ,

here qk� are the homogenized coefficients defined by

qk� = MY�ak� + akm
���

�ym
� =

def 1

�Y��Y
�ak� + akm

���

�ym
�dy " k, � = 1, . . . ,N , �3.1�

ith test function �k defined by the following cell problem:

A�k =
�ak�

�y�

in RN,

�k � H#
1�Y�, MY��k� = 0. �3.2�

oreover, all odd order derivatives of �1 at �=0 vanish, i.e.,

D��1�0� = 0 " � � Z+
N, ��� odd .

ll even order derivatives of �1 at �=0 can be calculated in a systematic fashion. For instance,
he fourth order derivatives have the following expressions: for all k , � ,m ,n=1, . . . ,N,

1

4!
Dk�mn

4 �1�0� =
1

4

1

�Y��Y

	Cn�k�m + Ck��mn + C��mnk + Cm�nk�
dy

−
1

3!

1

�Y��Y

	�ak� − qk���mn + �a�m − q�m��nk + �amn − qmn��k�

+ �ank − qnk���m + �akm − qkm���n + �a�n − q�n��km
dy .

ere, the operator Ck is defined by

Ck� =
def

− akj�y�
��

�yj
−

�

�yj
�akj�y��� �3.3�

is skew-adjoint, Ck
*=−Ck�, and �k�, �k�m are the test functions defined by the following cell

roblems:

A�k� = �ak� − qk�� − 1
2 �Ck�� + C��k� in RN,

1
�k� � H#�Y�, MY��k�� = 0, �3.4�



a
s

B

T

T

Conca, Orive and Vanninathan
A�k�m = 1
3 ��ak� − qk���m + �a�m − q�m��k + �amk − qmk����

− 1
3 �Ck��m + C��mk + Cm�k�� in RN, �3.5�

�k�m � H#
1�Y�, MY��k�m� = 0.

�

The above expressions are obtained by differentiating the eigenvalue problem,

�A��� − �1�����1�· ;�� = 0,

nd using that the branch ���1�· ;�� can be so chosen that the following conditions are satisfied
imultaneously:

� � B
 � �1�· ;�� � H#
1�Y� is analytic,


�1�· ;��
L2�Y� = 1 " � � B
,

Im�
Y

�1�y ;��dy = 0 " � � B
.

. D4�1„0… is negative semidefinite

First, we denote the fourth derivatives as

Bk�mn =
1

4!
Dk�mn

4 �1�0� .

hus, by the Proposition 3.1, for any ��RN we get

Bk�mn�k���n�m =
1

4

1

�Y��Y

��Cn�n���k�m�k���m� + �Ck�k����mn���m�n��dy

+
1

4

1

�Y��Y

��C������mnk�m�n�k� + �Cm�m���nk��k���n��dy

−
1

3!

1

�Y��Y

��k���ak� − qk����mn�m�n� + ���m�a�m − q�m���nk�k�n��dy

−
1

3!

1

�Y��Y

��m�n�amn − qmn���k��k��� + �k�n�ank − qnk����m�m����dy

−
1

3!

1

�Y��Y

��m�k�akm − qkm����n���n� + ���m�a�n − q�n���km�m�k��dy .

Now, we introduce the following notations:

C = �nCn, ��1� = �k�k, ��2� = �k���k�, ��3� = �k���m�k�m,

a = �k�makm, q = �k�mqkm. �3.6�
hen, by the summation, the above expression is simplified to the following:
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Bk�mn�k���m�n =
1

�Y��Y

C��3� dy −
1

�Y��Y

�a − q���2� dy . �3.7�

Since the test function �k satisfies the cell problem �3.2�, we have by the notations �3.6�,

A��1� = �k
�ak�

�y�

. �3.8�

nalogously, by the cell problems �3.4� and �3.5�, we have the following Y-periodic problems:

A��2� = �a − q� − C��1�, �3.9�

A��3� = �a − q���1� − C��2�. �3.10�

By the notation �3.6�, since Ck is defined in �3.3�, we get

1

�Y��Y

C��3� dy = −
1

�Y��Y

�kak�

���3�

�y�

dy .

sing �3.8� and integrating by parts, we have

1

�Y��Y

C��3� dy =
1

�Y��Y

A��1���3� dy =
1

�Y��Y

��1�A��3� dy =
1

�Y��Y

��a − q����1��2 − ��1�C��2��dy ,

y �3.10�. Therefore, from �3.7�, we obtain

Bk�mn�k���m�n =
1

�Y��Y

�a − q����1��2 dy −
1

�Y��Y

��1�C��2� dy −
1

�Y��Y

�a − q���2� dy .

gain, by definition of C, we have C*=−C and hence

Bk�mn�k���m�n =
1

�Y��Y

�a − q����1��2 dy −
1

�Y��Y

��a − q� − C��1����2� dy .

sing now �3.9�, we get

Bk�mn�k���n�m =
1

�Y��Y

�a − q����1��2 dy −
1

�Y��Y

A��2���2� dy .

ubstituting,

a − q = A��2� + C��1�,

e can rewrite the above expression as follows:

Bk�mn�k���m�n = −
1

�Y��Y

A���2� −
1

2
���1��2� · ���2� −

1

2
���1��2�dy +

1

4

1

�Y��Y

A���1��2 · ���1��2 dy

+
1

�Y��Y

C��1� · ���1��2 dy . �3.11�

We show now that the last two terms of the above expression add up to zero. More precisely,

e prove
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1

4

1

�Y��Y

A���1��2 · ���1��2 dy +
1

�Y��Y

C��1� · ���1��2 dy = 0. �3.12�

o this end, let us first consider the last term. By definition of C,

�
Y

C��1� · ���1��2 dy = − 2�k�
Y

ak�

�

�y�
�1

3
���1��3�dy − �k�

Y

�ak�

�y�

���1��3 dy .

ia a simple integration by parts, we obtain

�
Y

C��1� · ���1��2 dy = −
1

3
�

Y

A��1� · ���1��3 dy . �3.13�

On the other hand, regarding the first term in �3.12�, we can establish a more general relation,

1

�p + 1�2�
Y

A���1��p+1 · ���1��p+1 dy =
1

2p + 1
�

Y

A��1� · ���1��2p+1 dy " p � N . �3.14�

his proof is simply obtained by writing the expression

ak�

���1�

�y�

���1�

�yk
���1��2p

n two different ways, namely

ak�

���1�

�y�

�

�yk
� 1

2p + 1
���1��2p+1� and ak�

�

�y�
� 1

p + 1
���1��p+1� �

�yk
� 1

p + 1
���1��p+1� .

simple integration of these expressions leads us to the above relation �3.14�. Finally, taking p
1 in �3.14� and using �3.13�, we get �3.12�. Thus, we conclude the proof of the following result.

Proposition 3.2: The tensor of fourth derivatives of �1 in 0 is negative semidefinite. More
recisely, for any ��RN, we get

1

4!
Dk�mn

4 �1�0��k���m�n = −
1

�Y��Y

A���2� −
1

2
���1��2� · ���2� −

1

2
���1��2�dy � 0. �3.15�

�

. One-dimensional case

In this case, we get a more simple formula for the form associated with the fourth order
erivatives of �1. More exactly, we show that, for any ��R, we have

1

4!
D4�1�0��4 = −

q

2�
�

0

2�

���1��2 dy � 0. �3.16�

ndeed, by �3.7� we know that

1

4!
D4�1�0��4 =

1

2�
�

0

2�

�C��3� − �a − q���2��dy .

hen, we prove �3.16� by showing that

�2�

C��3� dy = �2�

�− q���1��2 + �a − q���2��dy . �3.17�

0 0
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To prove the above result, we first establish some formulas where we use one-dimensional
ature of the problem. Considering �3.8� and integrating, we get

a
d��1�

dy
= �q − a�� . �3.18�

ow, considering �3.9� and integrating, we get

a
d��2�

dy
= − a��1�� + c ,

here c is some constant. Dividing the above relation by a and integrating it over Y, we get c
0 and then the following relation results:

d��2�

dy
= − ��1�� . �3.19�

Because of the above relations �3.18� and �3.19�, there are simplifications in one dimension
hich can be exploited to establish �3.17�. To this end, it is enough to use the equations satisfied
y ��1� and ��3� and integration by parts.

Remark 3.3: An immediate consequence of (3.16) is

D4�1�0� = 0 Û a�y� is constant . �3.20�

ndeed, if D4�1�0�=0 then ��1�=0 and by (3.18), the coefficient a�y� is constant. �

V. DEGENERATE CASES

Unfortunately, in several space dimensions �3.20� need not be true. It can happen that the
oefficients 	ak�
 are not constants and yet

Dk�mn
4 �1�0��k���m�n = 0 for some � � 0. �4.1�

n this section, we show some examples of such degenerates cases.
First, we propose to prove two equivalent expressions for �4.1�.
Proposition 4.1: Let us pose

��2� = �k�
�2��k��,

here the constants �k�
�2� are defined by

�k�
�2� =

1

2!

1

�Y��Y

���k dy . �4.2�

hen, if there exists ��RN− 	0
 satisfying (4.1), we get

��2� = 1
2 ���1��2 − ��2�. �4.3�

lso (4.1), is equivalent to the following Hamilton-Jacobi type equation for ��1�:

a − q + 2�kak�

���1�

�y�

+ ak�

���1�

�yk

���1�

�y�

= 0. �4.4�

�

Proof: From �3.15� and �4.1�, we have immediately that ��2�− 1
2 ���1��2=C, for some constant

�1� �2�
. Integrating this relation and using the definition of � and � , we get



a

S

a

W
d

�

w

�
e

A

M
t

1

Conca, Orive and Vanninathan
C�Y� = −
1

2
�k���

Y

�k�� dy ,

nd by definition �4.2� of �k�
�2�, we obtain �4.3�.

Applying the operator A on the relation �4.3�, we get

A��2� = A� 1
2 ���1��2� .

ince ��1� and ��2� are solutions of �3.8� and �3.9�, respectively, we have

A��2� = a − q + 2�kak�

���1�

�y�

+ A��1� · ��1�

nd

A�1

2
���1��2� = A��1� · ��1� − ak�

���1�

�y�

���1�

�yk
.

e subtract the last two expressions and arrive at �4.4�. Conversely, we can start from �4.4� and
educe �4.3�. This completes the proof. �

Next, we present some examples of degenerate cases in several space dimensions.
Case of laminates: We place ourselves in two dimensions. Consider the matrix of coefficients

ak��y��,

�a11�y1� 0

0 a22
� ,

ith a22 being a constant. Taking �= �0,1�, the following can be easily checked:

�2 � 0, ��1� � 0, q22 = a22, a = q = a22.

Recall that �2 is the solution of �3.2��. Thus, the equation �4.4� and hence the property �4.1� are
asily satisfied but �ak��y�� is not a constant matrix.
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