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Abstract

We show that the problem of finding a maximum renamable Horn
problem within a propositional satisfiability problem is NP-hard but can
be formulated as a set packing and therefore a maximum clique problem,
for which numerous algorithms and heuristics have been developed.

1 Introduction

Horn clauses are widely used because, for them, satisfiability and inference prob-
lems are soluble in linear time. “Renamable Horn” problems (which are Horn
up to a rescaling of variables) are also soluble in linear time. We address the
problem of obtaining a renamable Horn problem by removing as few variables
as possible from a given non-Horn satisfiability problem. One can then solve
the original problem by enumerating truth assignments to the removed variables
and solving a renamable Horn problem for each assignment.

We show that finding a maximal renamable Horn subproblem can be for-
mulated as a maximum clique problem, for which numerous algorithms and
heuristics have been developed and tested [2, 3, 6, 7, 8, 9]. We also observe that
finding such a subproblem is NP-hard.
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2 Embedded Renamable Horn Sets

A set of clauses is Horn when each clause in it contains at most one positive
literal. To scale a set of clauses is to replace every occurrence of z; with —z;
and every occurrence of —x; with z;, for zero or more variables z;. A renamable
Horn set (RHS) is a clause set that can be scaled to obtain a Horn set.

The time required to check the satisfiability of a Horn set is linear in the
number of literals [5]. There are also linear-time algorithms that determine
whether a given clause set is renamable Horn and find an appropriate scaling
when one exists [1, 4]. Tt is therefore possible to solve the satisfiability problem
for an RHS in linear time.

Given a clause set S, let X be a subset of the variables occurring in .S, and
let X contain the variables not in X. Define S(X) to be the result of removing
from S all occurrences of variables in X. If S(X) is renamable Horn, we say
that it is an embedded RHS of S. An embedded RHS of maximum size is a
mazimum embedded RHS.

Let v : X — {7, F'} be a mapping that assigns truth values to variables in
X. Then S(X,v) is the clause set that results when each x; occurring in X
is fixed to the value v(z;). That is, S(X,v) is the result of removing from S
every clause containing a negated variable x; for which v(z;) = F', every clause
containing a posited x; for which v(z;) = T, every negated occurrence of a
variable x; for which v(z;) = T, and every posited occurrence of a variable z;
for which v(z;) = F.

Since S(X,v) C S(X) for any assignment v, S(X,v) is renamable Horn if
S(X)is. Also S issatisfiable if and only if S(X, v) is satisfiable for some v. Thus
if S(X) is renamable Horn, we can check S for satisfiability in O(2/X1L) time,
where L is the number of literals in S(X), by enumerating the 21X1 assignments
v. We naturally prefer S(X) to be a maximum embedded RHS of S, so that
|X| is as small as possible.

3 Finding a Maximum Embedded RHS

The problem of finding a maximum embedded RHS of a set S of m clauses
containing n variables can be formulated as the following set packing problem.

max 2 Y+ (1)
s.t. Ay+ By <e
y]ay] E{Oal}a auja
Here € is a vector of 1’s and A and B are 0-1 m x n matrices. We define A by

letting a; ; = 1 precisely when the literal z; occurs in clause ¢, and B by letting
b;; = 1 precisely when —x; occurs in clause ¢.



We interpret y; = 1 as indicating a positive scaling for z; and y; = 1 as
indicating a negative scaling. If y; = y; = 0, we omit variable z; altogether.
Thus problem (1) finds a largest set of variables that, when rescaled in some
fashion, yield a Horn set. In other words, it finds a maximum embedded RHS.
We have shown the following.

Theorem 1 If (y,7) solves (1), then S({z; | y; +7; = 1}) is a mazimum
embedded RHS of S.

It is well known that a set packing problem,

max Z]' 2 (2)
st. Qz<e z €{0,1},

can be formulated as a maximum clique problem on a graph. The graph contains
a node for each z; and an arc (z;,7;) whenever columns j and k of @ are
orthogonal. A clique is a set of nodes in which every pair is connected by an
arc. If C'is a clique of maximum size, then z given by z; = 1 if node z; € C|
and z; = 0 otherwise, is an optimal solution of the set packing problem. In the
A B
I 1|

We can not only solve the maximum embedded RHS problem as a set packing
problem but can do the reverse as well. Given an m x n set packing problem
(2), consider the clause set,

present case z = (y,7) and @) = [

\/ zj, i=1,...,m, (3)
quzl
—x V...V ox, Vyr Vs,

-1 V...V ox, Voy Viys.

None of the z;’s can be negatively scaled in the maximum embedded RHS
of (3). Clearly, at most one can be negatively scaled, and if one is, y; and
yo must be deleted. In this case one could do better by deleting the negatively
scaled variable and retaining y; and y». Thus the maximum number of variables
retained in (3) is the maximum number of z;’s equal to 1 in a solution of (2).
Since (2) is NP-hard, we have,

Theorem 2 Finding a mazimum embedded RHS is NP-hard.
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