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Abstract

The classical problem of homogenization of elliptic operators with periodically oscillating
coefficients is revisited in this paper. As is well-known, homogenization process in classical
framework is concerned with the study of asymptotic behaviour of solutions u® of boundary
value problems associated with such operators when the period € > 0 of the coefficients is small.
In a previous work by C. CoNCA AND M. VANNINATHAN [5], a new proof of weak convergence
as ¢ — 0 towards the homogenized solution was furnished using Bloch wave decomposition.

Following the same approach here, we go further and introduce what we call Bloch Approz-
tmation which will provide energy norm approximation for the solution u®. We develop several
of its main features. As a simple application of this new object, we show that it contains both
the first and second order correctors. Necessarily, the Bloch approximation will have to capture
the oscillations of the solution in a sharper way. The present approach sheds new light and
offers an alternative to view classical results.
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1 Introduction

In this paper, the classical problem of homogenization of elliptic operators with periodically oscillat-
ing coefficients is revisited. As is well known, homogenization process is concerned with the study
of the behavior of solutions u® of boundary value problems associated with such operators when
the coefficients are periodic with small period € > 0. For an excellent introduction to this subject,
the reader is referred to the book of A. BENSOUSSAN, J.L. LioNS AND G. PAPANICOLAOU [1]. In
a previous work by C. CONCA AND M. VANNINATHAN [5], a new proof of weak convergence of u*
towards the homogenized solution u* was furnished using Bloch wave decomposition. Following the
same approach, we go further and introduce what we call Bloch Approzimation of the solution u°.
As a simple application of this new object, we treat the problem of correctors in homogenization.
At this point, it is worthwhile to remark that the homogenized solution u* is merely the weak
limit of solutions u° as ¢ — 0. The idea behind introducing correctors is to look for terms (called
first order correctors) which when added to the homogenized solution provide an approximation in
the energy norm for all € sufficiently small. Second order correctors yield an error estimate in the
energy norm of order O(¢). The main feature of Bloch approximation is that it contains both the
first and second order corrector terms. Another important feature is that it is easily computable
in principle.

Historically, a classical way of obtaining such correctors is to work in the physical space and use
multiscale expansion of the solution which was first introduced in the basic book just cited. As we
will see, the method of Bloch waves sheds new light and offers an alternative to view the classical
results. This method naturally leads us to work in the Fourier space, and thus in a framework dual
to the one used in L. TARTAR [8]. However, it is important to mention that the Bloch wave method
does not presuppose any multiscale structure of the solution; on the contrary, such a structure of
the solution will be a consequence of the present method. Although correctors are generally not
unique, our approach yields aposteriori the same ones as those obtained in [1].

Before proceeding further, we mention a word about the notations adopted in the sequel. Un-
less mentioned explicitly, the usual summation convention with respect to the repeated indices is
understood. The constants appearing in various estimates independent of ¢ are generically denoted
by ¢, c1, ¢ etc. Apart form the usual norms in Sobolev spaces H', H?, we will also use the following
semi-norms:
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Let us now introduce the problem to be studied in this work. We consider the operator
def 0 19} N
1.1 Az——(akgy—>, yeR
(1.1) o ( )ayg
where the coefficients satisfy
are € LE(Y)  where Y =]0, 2r[V, i.e., each ay is a
Y-periodic bounded measurable function defined on RY, and

Ja >0 such that ag(y)mene > an? YneRY, y €Y ae.,
age = ag, Yk, £=1,...,N.

(1.2)

For each ¢ > 0, we consider also the operator A where

¢ def 8 e 8 : e €T
(1.3) A 92p (akf(m)a—m) with  aj,(z) = akg(g) zeRY.

In homogenization theory, it is usual to refer to = and y the slow and the fast variables respectively.
X

They are related by y = . Associated with A®, let us consider the following boundary-value
problem

(1.4) At =f in Q, uf € HHQ),

which is posed in an arbitrary bounded domain € in RN and f is a given element in L?(Q). It is
classical that the above problem admits one and only one solution.

From the classical work [1], it is known that one can associate to A® a homogenized operator
A* given by

0 0
1.5 A*d:ef——< —)
(1.5) 9 \ 5,
The homogenized coefficients g, are constants and their definition is given below. The solution u°
of (1.4) converges weakly in Hg () to the so-called homogenized solution u* characterized by

(1.6) A*w*=f in Q, u*e€HNQ).

In the present paper, we do not consider the effects of boundaries postponing them to a subse-
quent article [3]. In the case of RV, it is natural to replace the operator A° by (A® + I). In that
case, if w® satisfies

(1.7) { (A*+Dw*=g in RV,

w® —w in  H(RY)-weak,
where g is a given function in L?(RY), then it can be seen that (see Proposition 6.1 below)
(1.8) w® — w* in  L*(RY)-strong.

In view of the above result, there is no concentration of L?-energy at infinity and therefore, we will
consider throughout this paper a sequence v and a function f € L*(RY) satisfying

Afuf = f in RV,

(1.9) u® — u* in  H(RY)-weak,
ut — u* in L?(RV)-strong.



The central issue in the analysis of the first order correctors is to obtain functions uj € H*(RY),
which can be easily constructed and have the following characteristic property

(1.10) |lu® — u* —5u‘i||H1(RN) —0 as e—0.

By definition, second order correctors u§ € H'(RY) will enjoy the property

(1.11) |u® — u* — euf — 2u < ce.

€

2 H HI(RN)
One of the purposes in this article is to carry out a more general construction than the classical one
for correctors, namely Bloch approximation 6°, which contains all the above correctors and justify
the procedure. Apart from this, #° contains a lot of information about the periodic medium which
will be amply demonstrated in this paper.

1.1 Survey of the previous results

In the classical book [1] the authors obtain an asymptotic expansion (with y = Z) of the form

W) = ) +e {05 @) + i) |+
(1.12) > .
£ 0 0 ) ) )

OxLTy

Here, X, is the unique solution of the cell problem

_ Odage

Ax, = — RV
(1.13) € HL(Y), My(x) L [y ay=o0
Y
The function Xy is characterized as the unique solution of
dxe 0 oxe., . N
Ax = ap + akmy— — 5 —(@mex,) — My (age) = My (agm5—) in R7,
- . st = o (@) — My (ake) = My (i 5

X, € Hu(Y), My(x,,)=0.

Further u; (), tz(x),... are independent of e and satisfy equations of the type A*u; = g; in RV,
where, for instance, g1 (z) = jng?Mu*, where bj;, are constants:

0 .
bjre = My <ajm% + akng) Vi, k,=1,.. N.
Ym

With these notations, the classical formula of the homogenized coefficients is as follows:

I
qre = My <akg+akm—> vk, l=1,...,N.
Y
(another characterization of g is given in Proposition 1.5 below).
Using the above expansion, the first order corrector term is obtained in [1]. More precisely, we

have



Theorem 1.1 We assume that the coefficients ay, satisfy assumptions (1.2), f € L>(RY), and the
solution X, € WL (Y), k =1,...,N. Then the first order corrector is defined by

x. ou*
ui(x) = —
1() Xp\Z Dzp
which means that
lu® — u* 6U1||H1 RN)—>0 as €—0. =

In this paper, we obtain a more general result using a different approach introduced in [5].
The basic tool of this new approach is Bloch waves 1 associated with A which we define now.
Let us consider the following spectral problem parameterized by n € RV: find A = \() € R and
Y =1(y;n) (not identically zero) such that

(1.15) Ap(m) = Am)p(;m) in RY, (n) is (n;Y)-periodic, ie.,
' Yy +2mm;n) = e IY(y;n)  Ym € LY, y € RY.

Next, we define ¢(y;1) = e~¥")(y;n) and (1.15) can be rewritten in terms of ¢ as follows:

(1.16) An)p=Xrp in RN, ¢is Y-periodic.
Here, the operator A(n) is defined by
0 0

1.17 A Y - < ) { — 4

(1.17) (n) o i, a/cz(y)(ayz +ine) |
which can be rewritten as

(1.18) An) = A+ inkCy, + mkmear(y)
with
def 3¢ 0
1.19 Crdp = —api(y)=— — =—(agi(y) o).
It is clear from (1.15) that the (n,Y") periodicity condition is unaltered if we replace n by (n+q)

with ¢ € Z" and 7 can therefore be confined to the dual cell n € Y' = [—3, F[V. It is well known

(CoNCA, PLANCHARD AND VANNINATHAN [4]) that for each n € Y, the above spectral problem
admits a discrete sequence of eigenvalues with the following properties:

{OS)\l(n) < Ap(n) <00 = 0,
Vm > 1, An(n) is a Llpschltz function of n € Y.

Besides, the corresponding eigenfunctions denoted by ¢, (+; 1) and ¢, (+; ) form orthonormal bases
in the spaces of all L? (RY)-functions which are (n; Y')-periodic and Y-periodic respectively; these
spaces are denoted by L#(n; Y) and LQ#(Y). It is worthwhile to remark that these eigenfunctions
belong in fact to the spaces H}i(n; Y) and H}i(Y) respectively, where

Hy(n;Y) = {zpeLz € Ly(nY) Vk:zl,...,N},

\ o

Hy(Y) = {¢6L3¢(Y € LL(Y) Vk:l,...,N}.

) ‘ M

The functions 9,,(:;n) and ¢, (;n) (referred to as Bloch waves) introduced above enable us
to describe the spectral resolution of A (an unbounded self-adjoint operator in L?(RY)) in the
orthogonal basis {€¥"¢,,(y;n)lm > 1,7 € Y'}. More precisely, we have



Theorem 1.2 Let g € L>(RY). The mt" Bloch coefficient of g is defined as follows:

(Bup)) = [ 9 " Gn(yimdy ¥m =1, neY’
RN
Then the following inverse formula holds:

o0

g(y) = / > (Bimg) ()€™ (y; n)dn.

v m=1

Further, we have Parseval’s identity:

/Ig Idy—/ZI mg)(n)[*dn.

Y,ml

Finally, for all g in the domam of A, we have

o0
= [ 3 A0 Brug) )™ g (i ).
vy m=1
To obtain the spectral resolution of A® in an analogous manner, let us introduce Bloch waves
at the e-scale:

A (&) = e72Am(m), G(@:8) = dm(ysm), i (@3€) = P (ys m),

T

where the variables (z,¢) and (y,7) are related by y = % and n = . Observe that ¢, (2;¢) is
eY-periodic (in z) and e~1Y” periodic with respect to £&. In the same manner, 95, (-;€) is (¢£;€Y)
periodic because of the relation ¢:, (2;&) = e €¢;, (z;¢). Note that the dual cell at e-scale is e 1Y’
and hence we take ¢ to vary in e 'Y’ in the sequel. With these notations, we have the following
result analogous to Theorem 1.2.

Theorem 1.3 Let g € L*(RY). The mt" Bloch coefficient of g at the e-scale is defined as follows:
(Brg)(©) = [ 9@)e™ G,y (w:)da Ym > 1, g€ Y
RN

Then the following inverse formula and Parseval’s identity hold:

o0

9@ = [ X (Brgl©e e, (wi ),
e-tyr m=1
z)?dz = d
R@g( ) /sz| ).

Finally, for all g in the domain of A%, we get

Agla) = [ 3 OB g (@i .

e—1yr m=1

Using the above theorem, the classical homogenization result was deduced in [5]. Let us recall
the main steps. The first one consists of considering a sequence u® € H'(RY) satisfying (1.9). We
can express the equation A°u® = f in RY in the equivalent form

(1.20) Xop(©)(BLu)(€) = (BLf)(&) ¥m>1, ety

In the homogenization process, one can neglect all the relations for m > 2. More precisely, it is
proved in [5] that the following result holds.



Proposition 1.4 Let

(1.21) vi(z) = / Y (Brud) (£)e™ gy, (x5 €)dé.
c—lyr m=2

Then |[v*||p2ervy < ce. m

Thus we can concentrate our attention only on the relation corresponding to the first Bloch wave:

(1.22) M(E)(Biu)(€) = (Bif)(€) Veee Y
The homogenized equation in the Fourier space
(1.23) qreCr€er(€) = f(€) vE e RN

is obtained from (1.22) by passing to the limit as ¢ — 0. Here, the symbol ~ stands for the classical

Fourier transformation |

f(§) = @ne / flx)e " Eda.

To this end, the following results were established and applied in [5]:

Proposition 1.5 We assume that age satisfy (1.2). Then there exists & > 0 such that the first
eigenvalue A\1(n) is an analytic function on Bgdéf{n | Inl < 6}, and there is a choice of the first
eigenvector ¢1(y;n) satisfying

n—¢i1(n) € H}%(Y) is analytic on By,
¢1(y;0) = p0 (= [Y[7V/2 = W)-

Moreover, we have the relations

A1(0) =0, DpA1(0) = %(0) =0 Vk=1,..,N,
; O
FDRM(0) = 552 (0) =i V=1,
and there exist constants ¢ and ¢ such that
(1.24) P < M) <@ Vney’,
(1.25) 0< MY <xnm) Ym>2 neY’,

where /\gN) is the second eigenvalue of the spectral problem for A in the cell Y with Neumann

boundary conditions on JY . .

Apart from the above result of regularity on the Bloch spectrum, we need to prove that the
first Bloch transform is an approximation to Fourier transform. This result is naturally expected
from the fact that ¢5(x;&) — (2m) N2, as e — 0, V€ € RV,

Proposition 1.6 Let ¢° and g be in L2(RYN). Then
(i) If ¢ — g weakly in L*(RY), then X__ 1y, Big® — g weakly in L%OC(]R?) provided there is a

fized compact set K such that supp (¢°) C K, Ve.
(ii) If g — g in L2(RY), then X. 1y, B1g" — 7 in L? (]Rév) .

loc

These results easily lead us to the following homogenization theorem in R :



Theorem 1.7 We consider a sequence u® satisfying (1.9). Then

o ou® ou*
M o, it ox

in L*RN), Vk=1,.. N.

In particular, u* satisfies A*u* = f in RV . .

Once the homogenization result in RY is established, it is an easy matter to deduce the corre-

sponding result in a bounded domain €2 by localization techniques using a cut-off function ¢ € D(2)
(see [5]).

1.2 Presentation of new results: The Bloch approximation

Let us consider the sequence u® satisfying hypotheses (1.9). The Bloch Approzimation of u® is
defined by the following formula:

(1.26) @)Y [ O, v er.

e=1y’

First of all, let us remark that this object is not difficult to be computed in principle. Our goal
throughout this paper is to study properties of this function and particularly its relations with
various correctors terms. It is worth noticing that 6° is defined only in terms of the first Bloch
mode ¢]. We will see in Section 3 that higher Bloch modes ¢;,, m > 2 do not contribute at all in
the analysis of the correctors of first and second order in the energy norm. (It will be interesting to
know whether these higher order modes play a part in the analysis of correctors in stronger norms
H?,... etc. For H? estimates, we refer to our work [6]). Thus we are motivated to introduce the
projection onto the first Bloch mode: for all g € L?(RY), we define

(1.27) Pigla) = [ Bigl€)e ™ iw)de, we B,
e—1ly/

We note by the item (i7) of the Proposition 1.6 that the Fourier transform u# is an approximation
of Bju®. Therefore, heuristically speaking, the Bloch approximation 6° is close to Pyu®, and hence
to u®. With these notations, we will prove

Theorem 1.8 Assume that the coefficients aye satisfy (1.2). Let u® be the sequence introduced in
(1.9). Then if f € L*(RY), we have

(1.28) (u* —6°) =0 in H'Y(RY).
Furthermore, we have the estimate

(1'29) |ug - 9€|H1(RN) < C€HfHL2(RN)- "

It is worth remarking that even though error estimates of the type (1.29) are sometimes found in
the literature, they are usually obtained using maximum principle with more regularity hypotheses
on aps and f. Here, we obtain these natural estimates under optimal hypotheses.

Thanks to the above result, we are reduced to expand 6° in terms of ¢ in order to be able to
compare it with the classical correctors for w°. To fulfill this task, it is clear from the definition of
6, that it is necessary to obtain asymptotic expansions of the first eigenvalue Aj(¢), and the first



Bloch mode ¢j(+;¢). (In addition, for our purposes below, we need an asymptotic expansion of the
first Bloch transform Bjg(¢) for which we refer the reader to Section 5. These results strengthen
previous ones, in particular, Proposition 1.6). We state now results in this direction and their proofs
will be taken up in the following sections along with other auxiliary results. First, we introduce
some test functions Xxe, Xkem, Xkemn defined by the following cell problems (observe that the first
ones of them are nothing but the functions already introduced in (1.14)):

1 .
Ax,, = (ke = ar0) — 5 (CkXE + szk> in RV,

(1.30) L
X, € Hy(Y), MY(XM) = 0.
1
Apm =3 [(akz — qpo)X, + (aom — @m) X, + (@mk = @mi)Xx, = Ckx, —Cox_ —
(1.31) _omxkz} in RV,
1 _
Xiom S H#(Y)a MY(XMm) =0.
( 1 4 1
AXkEmn - EDICZWWLAl (0) o Z (Cnxkém T Ckxémn - CZank - CankZ) -

1
(1.32) +3 [(ald —qeo)X,, F (om — em)X,,, + (Gkm — Gem) X, +
+(amn — an)XM + (am — QEn)ka + (apn — an)Xém] in ]RN,

Xy € HE(Y), My(x, )=0. =

Proposition 1.9 All odd order derivatives of \1 at n = 0 vanish, i.e.,
DX (0) =0 VB ezY, |8 odd.

L kfmn

All even order derivatives of A1 at n = 0 can be calculated in a systematic fashion. For instance,
the fourth order derivatives have the following expressions: for all k,¢,m,n=1,....N

1, 11
EDan)\l (0) - Zm {Cnxkfm + Ckxfmn + Céxmnk + menké} dy o
Y

11

_ﬁm {(akg — qu)an + (aém - QEm)Xnk + (amn - an)XM'i‘
Y

+ (ank = ani)x,, + (@km — Gem) X, + (@on = qm)ka} dy. =
Various derivatives of ¢1 at n = 0 can also be calculated in a systematic fashion.

Proposition 1.10 We have the following expressions

Dygr(y:0) = ip”x, (v).
1
G Dk (w:0) = —pOx,, () — 7P,
1 . i
Dm0 = —ip®x, ) — 5 (B, ) + B, (0) + B, () o),

1

1
1 v) =35 (@ﬁ)xm(y) + 6§f,fxnk(y) +Bihx,, +

Dippn®1(y;0) = pOx

+Bx,, W)+ Binx () + B x, (1) + Big,p”

klmn



with

@ _ 11
Y
4 1 1
Y
1 1
|Y| Xy Xp T X0 X0, T XX, | Ay
1 1 2) (2 2) (2
ey (AEPAE) + A + A0L).

We note that all odd order derivatives of ¢; at n = 0 are purely imaginary and all even order
derivatives are real.

Since ¢1(+;n) is proved to be analytic for || < §, we can expand it and this gives rise to an
asymptotic expansion of #° which is as follows:

T * T 2u*
133) @) = w0 e (5@ — 2 (4,5 + AT (o) +

€ 0xL0xp

This can be rigorously proved. Our next result is a sample where we specify the precise hypotheses
needed to justify the above expansion up to three terms.

Theorem 1.11 Assume that the hypotheses of Theorem 1.8 hold.

(i) If u* € HY(RN), then

10° — u < cellu*||

|
L2(rN) HI(RN)

(ii) If f € L2 (RY) and x;, € W#OO(Y) where xy, is the solution of (1.13) and xj(z) = xx (£),
then we have ‘

(iii) If f € HY(RYN) and xp, xpe € W#OO(Y) where xpe is the solution of (1.30), ﬁ,(ci) are constants
defined in Proposition 1.10 and x5,(z) = xxe (£), then

ou*

9€—U*—€Xi% < cellf]l

N
k ‘Hl(RN) L2(RN)’

. ou* 2y O%u*
O (Xiﬂrﬁ;(ce))m < c?||fl

HL(RN)

0° —u* _6X]c

HY(RN)

It is important to note that these above expansions are of Taylor type owing to the analyticity
of A1(n) and ¢1(-;n). This is the main difference between this approach and the classical one found
in [1] where the expansion has a multiscale structure.

The expansions of Ai(n), ¢j(-;n), and Big(¢) obtained in Propositions 1.5, 1.9, and Propo-
sitions 5.1, 5.2, and 5.3 below has further interesting consequences which will be developed in a
forthcoming paper. For the time being, we will be content with a few remarks. Since higher order
modes can be neglected, the first eigenvalue \1(n) along with the first eigenvector ¢4 (+;7) represent
the periodic medium under consideration. Their contributions occur somewhat separetely without
interaction at the levels of homogenized equation and correctors. More precisely, the first eigenvalue

10



A1(n) contributes at various levels through its derivatives at n = 0. The first eigenvector ¢ (+;n) and
its first derivatives contribute through the first Bloch transform Bjg(¢) and its expansion described
in Propositions 5.2, 5.3.

In the homogenized equation, for instance, we see the product of the second order derivatives
of A\1(n) at n = 0 with the 0" order term of Bfg(¢), namely g(¢). We see a similar structure in the
correctors too. There seem to be situations where both interact and contribute jointly in a manner
different from the above. One example of such a situation is the study of the propagation of waves
in a periodic medium. It appears that the homogenized medium is not good enough to provide an
approximation to the propagation for large times because of the appearance of dispersion effects
shown numerically in F. SANTOSA AND W.W SyMEs [7]. We feel that this is an appropriate
place to highlight the improvements achieved in this work with respect to [7]. Apart from the
mathematical rigor, the main point is that the third order derivatives of A\1(n) at n = 0 are shown
to be zero even in the multi-dimensional case. (In fact all odd order derivatives vanish). Moreover,
our arguments are more general compared with the one-dimensional case covered in [7]. This will
have consequences in the propagation of waves in periodic media. We plan to cover these aspects
in a future publication.

We conclude this Introduction by saying how the rest of this paper is organized. Section 2 is
devoted to certain fundamental lemmas which are indispensable. As an immediate application, we
prove, in Section 3, that the higher order Bloch modes are negligible. Taylor expansion for A; and
¢1 are obtained in Section 4 which proves Propositions 1.9 and 1.10. Section 5 is devoted to the
description of the asymptotic behavior of the first Bloch transform Bi whose definition is given in
Theorem 1.2. Finally, in Section 6, we present the proofs of the main results, namely Theorem 1.8
and Theorem 1.11.

2 Fundamental lemmas

In this section, we prove a series of results which generalize the Parseval’s identity stated in Theo-
rem 1.3. These estimates will be useful in the sequel for the analysis of correctors. The following
two lemmas are easily seen to be generalizations of well-known classical results for —A.

Lemma 2.1 For all g € HY(RY), we have

oo
2 € € 2 2
Aol < | X Nl OIBg(@Ode < caloy,
e—1ly’ -

where ¢1 and ca are constants independent of € and g.

Proof. First of all, by uniform ellipticity of A®, we have
a / |Vg|2dx < / Afggdx < 3 / |Vg|2da.
RN RN RN
We can rewrite the middle term by applying Plancherel identity:

21) [ o@h@de = [ 3 Brg@Bh@ds Vg.h e P(EY).

e-1yr m=1

11



Indeed, using the spectral resolution of A¢, we get
/ Afggdr = / Z X (€)|BE,g(€)2de.
_IY’ m=1
This completes the proof.
By using the duality between H'(RY) and H~1(RY), we deduce

Lemma 2.2 For all g € H Y (RY), there exist ¢c; and cy which are independent of € and g, such
that

2 2 2
gl o </ ZHAE BLg©Pde < allgl?, -

_IY’ m=1

In our next lemma, we consider g° = ¢°(£¢) a measurable function defined on e71Y’, and another
function p = p(y;n) measurable with respect to (y;n) and Y-periodic in y. We then introduce

22) @)= [ FOpLiee)ds, @Y.
€_IYI

The following result estimates its L2(R"Y) and H'(R") norms.

Lemma 2.3 We assume ¢° € L?>(e 1Y) and p € LOO(Y’;H#(Y)). Then we have

1612y = [ 1 ©OP oGO, de
E—ly/
G°P = [ 1F©Pligpte6) + e plae) 2, e
H(RN) , . L2”
E—ly/

Proof. We expand p(y;7n) as a function of y in the orthonormal basis {¢m, (y;n)}oo—; where 7 is
a parameter:

Z am ¢m ysn )
m=1

Introducing this expression in (2.2), we get

o0
= [ FO X anl9)e 55 (w: )de.
= IY’ m=1
Applying the Parseval’s identity of Theorem 1.3, we get
1612y = [ 157 ©OF Y lam (=) e
e—1ly? m=1

This completes the proof of the first part of the lemma if we use the Parseval’s identity in L?(Y):
o0
(2.3) lo(; H2 Z m(mP? Vney'.
m=

12



For the second part of the lemma, we differentiate formally G*(x) with respect to . We obtain

Ve = [ @ (e + vt de
ey’

We remark that the above integral is of the same type as the one analyzed in the first part. This
completes the proof.

The next lemma presents H'! estimates on the Bloch modes.

Lemma 2.4 We suppose that the coefficients aye satisfy (1.2). Then there exists a constant ¢,
depending on ||age||pe(y) such that

Opm,
|5l

(2.4) o

< edmMY? VpeY',m>1, k=1,.,N.

2(Y)

To prove this, let us introduce the bilinear forms associated with the operators A(n) and A,
respectively.

a6, ) J ake(y) (2—;; +ineg) (% + i ) dy,

d¢ 31/1
Ao Oy dy

@) = [au)ge

Y

The basic estimates on them are obtained in [4], p. 190: There exist constants ¢, ¢ which are
independent of € Y’ such that for all p € H #(Y)

2 2 2 . ~ 2 2 2
(2.5 C<HV¢IIL2(Y)N+I77| H¢IIL2(Y)>£ al 6,9) §0<HV¢IIL2(Y)N+I77I r|¢||L2(Y)>7

2 ~ 2
(2:6) VAR, oy < aldd) eI, .,
Proof of Lemma 2.4 For simplicity, we denote ¢,,(-; 1) by ¢, (n). We recall that it satisfies

(2.7) a(1; b (1), ) = A () (b (0), ) Vi € Hy(Y).
To deduce (2.4), it is enough to take ) = ¢, (n) and use (2.5).
Our next result concerns the estimation of expressions which are inverse to (2.2). We define
(2.8) 796 = [ g@e = pLict)dn for ¢eeTY,
RN

where g = g(z) is a measurable function defined on RY and p = p(y;n) is a measurable function
defined on Y xY'. We assume that p is Y-periodic in y. The required hypotheses on these functions
will depend on the estimate deduced on J¢g. This is illustrated in the results that follow which are
analogous to classical estimates on Fourier transform.

13



Lemma 2.5 (i) Ifg€ L*(RY) and p € LW(Y’;Li(Y)), then we have

(ii) If g € HY(RY) and p € LOO(Y’;H%&(Y)), then we have
H(]' + |§|2)1/2J89(€)“L2(€—1yl) S C{||V9HL2 ]RN ||p||Loo Y’ L2(Y))+

-1
S TR 7 FY ¥
Proof. The idea is to consider the product space L(Y'; L%&(Y)) and expand p(y;7n) in two steps.
First using the fact that {¢., (1)}, is an orthonormal basis in Li(Y), we get

oo

p(yin) = D amMdm(yin) YyeY, neY'.

m=1

Next, for each m, we can expand a,,(n) in the usual Fourier series:

am(n) = Z Amn €™ N e Y.

nezN

The corresponding Parseval’s identities are as follows:

loCsml, ) = %Zlam(n)l2 vney’,
/|am(77)|2d77 = > l|am* VmEN

vy nezN

Using this expansion, we can rewrite J¢g as follows:

Z Z amne2man£/g —193 £¢m = 65)

m=1neczN

which, according to the definition of Bf,¢(¢) is equal to

= Z Z amne2ﬁi€n.£B7€ng(f) = Z am(gf)Bfng(f)
m=1neczN m=1

By Cauchy-Schwarz inequality,

oo < (me ) )<Z|B )
o012, (DB )
A <Z|B )

14

IN



The proof of (i) is complete if we integrate the above inequality with respect to ¢ € ¢~'Y’ and
apply Theorem 1.3. For the proof of (ii), we multiply (2.8) by (—i), and obtain

(~i6) T / (o) (=) (%1 c6) do

which, by integration by parts, can be rewritten as

(-6 79(0) =~ [ 2L @e ™ p( s et — < / gte)e "< (Zictydn
L 9
RN

It is now sufficient to apply (i) to each of the terms on the right hand side of the above relation. =

Next, we will need some properties of the classical discrete Fourier transform in our asymptotic
description of the first Bloch transform. In particular, we are interested in the relation between
discrete and continuous Fourier transforms. To this end, let us begin by introducing some necessary
notations. Let {Y; },c,~ be the mesh of RN generated by the cell €Y. More precisely, Yy =a;+¢eY
where 2 = 27el is the origin of the cell Y,7. We recall the definition of the discrete Fourier transform
of a function corresponding to this mesh: Let p > N be given. For ¢ € W1 P(RY) with compact
support we define

(2.9) Feg(&) = Y glap)e ™t veee Y

tezN

It is worthwhile to recall that W1P?(RY) is embedded in €°(RY) when p > N and so g(z$) is
well-defined.

Lemma 2.6 For g € WYP(RY) (p > N) with compact support K, we have

(Z) gN(XE_lyngg)(f) — Wﬁ(f) fOT' é- S ]RN

.. p—2

(i1) ||5NF69“L2(€_1Y,) < c|K|?» {Hg“LP(RN —i—sHVgHLp N } |K| denotes the measure of K.
(iii) 5NX871Y,F89 - W@ in  L*(RN).

Proof. To prove (i), we multiply (2.9) by £V to get

o 2l eIV

tezN

{;‘NFE —

We regard the right side of the above equality as a Riemann sum of the integral

ﬁ / g(z)e TEdy

R

and hence converges to it as ¢ — 0.
To prove (ii), we observe that the right side of (2.9) is nothing but the Fourier series in the
variable ¢ € e~ 1Y’. Therefore, by Parseval’s identity, we get

N[ Rk = 3l

e—ly? lezN

15



We multiply this relation by £ and rewrite it as

(210) 2 [ PPl = oy Y eGP

=1y tezN
To estimate the right side of the above equality, we integrate the inequality
l9@7)2 < 2{lg(@)1? +1g(2) - g=D)P}, =€ YE.

over Y; to obtain

(211) 9?17 ] < 2{ [lo)Pdz + [ lo(w) - g(op) P},
Ye Yo

Since p > N, we can use the classical Morrey’s inequality (see BREZIS [2], p. 167) to deduce
(@) — 9(a?)] < e Vgl

Using the above estimate in (2.11) and using Holder inequality, and summing over £ € Z%, we
complete the proof of (ii).

The statement (iii) follows from the arguments based on Egorov’s Theorem because (ii) implies
weak convergence in L?(RY) of the sequence under consideration and (i) implies its point-wise
convergence. =

3 Higher Bloch modes are negligible
In this section, we consider a sequence of solutions u® of the equation with f € H—1(RY):
(3.1) Awf=f in RY, e HYRY).

Let us recall that the above equation is equivalent to (1.20) in the Bloch space. In what follows, we
present a systematic method of obtaining estimates on the solution in Sobolev spaces L? and H'.
In particular, we show that the component of u° in the higher Bloch modes do not play any role
in the analysis of correctors of first and second order provided f is sufficiently smooth. Thus we
consider v¢ defined in (1.21) which is nothing but the projection of u® corresponding to all higher
Bloch modes. Estimates on v* derived in this section improve Proposition 1.4.

Proposition 3.1 We have the following estimates for f € L*(RY),
OIS 2= T

(”) ||UE||L2(RN) S CSHfHHfl(RN)'

16



Proof. To show (i), we apply Lemma 2.1 with g = v®, and use the equation (1.20). We obtain

19012, e n / > Pt

,m2m

||f||2

< c sup .
m>2, e~ 1Y’ A; ( ) RY)

Proof of (i) is over since we have (cf. (1.25)):

1 1
3.2 sup < 2
( ) m>2, e~ 1Y/ A; (f) )\gN)

For the proof of (ii), we apply Lemma 2.2 with ¢ = f and the equation (1.20). We have

e = [ 3 B
e—lyr M= 2
> 1
= s | B () Pde.
/Y 2P
Writing
1 1+ B f(O)P
B¢ 2 _
xa@ IO = St T e
and using (3.2), we deduce that
1 e o _ _2|BRfO)P
A%(£)2|Bmf(f)| <ce ﬁfn(f)
The proof is complete if we use Lemma, 2.2. .

While the above proposition shows that v* can be neglected at the level of the first order
correctors (cf. (1.10)), the next result will demonstrate that v® can be neglected at the level of
correctors of first and second order. These finer estimates require naturally higher order regularity
of f but not of the coefficients ax¢(y). Let us state the following proposition whose proof is similar
to the previous one and hence will not be repeated.

Proposition 3.2 We have the following estimates for f € H'(RY),
(Z) |UE|H1(RN) S ng"f“[_[l(RN)?

@) 10 gy < I gy

Assuming ayp € W#OO(Y), we can obtain H2-estimates on the solution. This is difficult as it
involves more subtleties (see [6]).

17



4 Taylor expansion of the first Bloch eigenvalue and eigenvector

The purpose of this section is to indicate a systematic method to compute derivatives of the first
Bloch eigenvalue A1(n) and the first Bloch eigenvector ¢1(-;n) at n = 0. In particular, we will be
proving Proposition 1.9 and 1.10. Recall that A\ (n) and ¢1(+;n) depend analytically on 7 in a small
neighbourhood Bjs of n = 0. At the cost of reducing this neighbourhood, we claim that the branch
n +— ¢1(-;m) can be so chosen that the following conditions are satisfied simultaneously:

4.1 € Bs — ¢1(;n) € HL(Y) is analytic,
( n n o y
[prCsmllizzyy =1 Vn € By,
(4.3) 3m/¢1(y; n)dy =0 Vn € By.
Y

In the sequel, we will see that the above conditions fix uniquely the eigenvector ¢;(-;7). We remark
that the condition (4.2) is classical whereas the condition (4.3) is somewhat unusual and it can
be achieved as indicated below. The idea consists of multiplying ¢1(-;n) by a complex number
(a1 (n) +ias(n)) where aq(n) and as(n) are real analytic with respect to n and are chosen such that

am [ (as(n) +iaz()d (ys )y = 0.
Y

If we define
d(n) = (d (1), d2(n)) = (ﬁm/¢1(y;n)dy,%/¢1(y;n)dy)
Y Y

then the above condition is equivalent to

ai(n)di(n) + az(n)da(n) =0 Vn € Bs.

Obviously, one such choice which is analytic is as follows:

ai(n) = —da(n), a(n) =di(n).

Of course, the above procedure has destroyed the condition (4.2) (but not condition (4.1)). However,
it can be regained by dividing by |d(n)|. This is possible because d(0) # 0 by our choice of ¢1(+;0)
(see Proposition 1.5).

Thanks to our choice of the branch satisfying (4.1) - (4.3), we will now draw some consequences
which will simplify the computations below. In fact, differentiating (4.2) with respect to 7, we get
successively for all k,¢,m,n=1,...,N,

(4.4) Re(Drgr (1), ¢1(:5m)) =0,
(4.5) Re(Diod1 (i), ¢1(5m)) + Re(Dypr (+5m), Decpr () = 0,
(4.6) { Re(DR g, d1(55m), $1(5m)) + Re(Diydr(55m), Db (55 1))+
' +Re(DR,,, 1(55n), Dei(5n)) + Re(Dy (55n), D7, d1(-5m)) = 0,

18



Re (Dt gy $1(51), 1(55m)) + Re(D3y,, 1(5im), Dndhr(5m))+
(4 7) +me<Dl?:€n¢1('; 77)7 Dm¢1('; 77)> + 9‘{2<D]%€¢1(-; 77)7 Dr2nn¢1('; 77)>+
' +Re(D},,,1(::1), Depr(-im)) + Re(DF,,b1(-5m), D, d1(-5m))+
+Re(DR,$1(:im), D, d1(-5m)) + Re(Dri (+5n), D b1(55m)) =0,

where (-;-) denotes the scalar product in Li(Y). On the other hand, differentiation of (4.3) yields
(4.8) 3m/D5¢1(y; n)dy =0 for all B € Z7.
e

From these sets of relations, it follows that

(4.9) /D5¢1(y; 0)dy = 0 forall €2y with |3 odd.
e

4.1 First order derivatives

If we differentiate the eigenvalue equation (A(n) — A1(n))¢1(-;n) = 0, once with respect to 7, we
obtain

(4.10) Dy (A(n) = A(n)d1(-5m) + (A(n) = A(n)) Drgr(5m) = 0.
Taking scalar product with ¢1(-;7n), we get
(4.11) ([Dr(A = M)]¢1, é1) =0,

where we have suppressed the dependence on 7 for ease of writing. We will continue with this
convention in the sequel provided there is no ambiguity. It follows from (1.18) that

(4.12) DyA(0) =iC, Vnpev,

where the operator Cj, is defined in (1.19).
If we evaluate the relation (4.11) at n = 0 and use the structure of C}, we get immediately that

(4.13) DpA(0) =0 Vk=1,..,N.

The next step is to compute the first order derivatives of ¢1 at n = 0. To this end, we go back to
(4.10) and use (4.13). We obtain

ADpp¢1(+50) = =D A(0)¢1(+0) = —iCrer (- 0).
Taking into account (4.9) and the above equation, we can solve uniquely for D1 (y;0), and obtain

(4.14) Dy (y;0) = i (33 0)x, (v) = ip@x (1),

where, we recall, y; satisfies (1.13) and the constant p© was fixed in Proposition 1.5. Thus, the
first order derivative is completely determined and

(4.15) Dy ¢1(y;0) is purely imaginary.
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4.2 Second order derivatives

Our starting point is the relation (4.10) which we differentiate once with respect to . We obtain
(4.16) [Djo(A = A1)l¢1 + [Dr(A = A1)Deghy + [De(A — M)] Dby + (A — A1) Diypy = 0.

Taking scalar product with ¢, we get

(4.17)  ([Dio(A = M)]b1, d1) + ([Dr(A — M)|Digr, 1) + ([De(A — M1)1Dgpr, 1) = 0,

for all n € B;. If we use the information obtained in Paragraph 4.1 on Dy A1(0), Dié1(+;0), Dy A(0),
and the following

(418) DI%EA(U) = 2ak€(y) Vkag =1,...N, ne Yla
we obtain
1, | |
gD = o [ o)y = 557 [ (Cox, )+ Cox, )y
' v v
1
(4.19) = 5(%4 +qu) = qre Yk, L=1,..,N.

As before, the next step is to compute DZ,¢1(-;0). For this purpose, we go back to (4.16) and
rewrite it with n = 0 as follows:

ADE1(50) = { =20a — @) + Cix, + Cox, | n(30)

By comparing the above equation with (1.30) and using the simplicity of the eigenvalue under
consideration, we see that D2,¢1(+;0) is of the form

1
5 DR (4:0) = —pOx,, (v) — 87 p”
for some constant ﬁ,gi). Thanks to (4.5) and (4.8), we can infer that

(4.20) B,(j) and DZ,41(-;0) are real.

Moreover, /B,(ci) admits the expression given in Proposition 1.10.

4.3 Third order derivatives

From the calculations done so far, it is now clear how to proceed further to calculate higher order
derivatives. So, we will be brief here. Differentiating (4.16), we get

(D3 (A = A\1)]p1 + [Dig(A — A1) D1 + [D7,, (A — A1) D1+
(4.21) +[Di (A= X)]Depy + [Di(A — M)]D7 1 + [De(A = M)]DR 1+
+[D (A = M)|Dje1 + (A = M) Diatr = 0.

Taking scalar product with ¢1, we get

(DR (A = X)) @1, 1) + ([Die(A = A1) D, 1 + ([D7,, (A — A1) Dypr, 1)+
(4.22) +([Djn (A = M)|Deipr, d1) + ([Di(A = A)1D7, b1, 1)+
+([De(A = A\)]D7br, 1) + ([Dm(A — M) Diopr, d1) = 0.
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To conclude that D3, A1(0) = 0, it is enough to use the following information in the above relation:

(4.23) { Dy A is purely imaginary, D3?,A isveal, D}, A =0,

$1(0), D2,01(0) are real, Dy (0) is purely imaginary.

It is evident that the above argument is very general and so can be used to establish that all odd
order derivatives of A1 at n = 0 vanish. This proves the first part of Proposition 1.9.

To find the third order derivatives of ¢; at n = 0, we realize that (4.21) defines a periodic
problem for D3, ¢1(-;0) which can be compared with (1.31). Further, the relation (4.9) says that
its average vanishes. These observations are enough to get the expression of D3, 1(+;0) given in
Proposition 1.10. We conclude by observing the following important property:

(4.24) D3, d1(y;0) s purely imaginary.

4.4 Fourth order derivatives

To arrive at the expressions for the fourth order derivatives of A\; and ¢; at n = 0 given in
Propositions 1.9 and 1.10, we follow the same arguments as in Paragraph 4.3.
5 Convergence of the first Bloch transform to Fourier transform

This section is devoted to the proof of next proposition which shows the sense in which Fourier
transform is approximated by the first Bloch transform.

Proposition 5.1

(i) For every g € L*(RN) with compact support, we have

Xy (B9 5 (&) in L (EY).

(ii) If g € L*(RY), we have

X1y, (E)Big(é) = §(¢) in L*RY).

This will be a consequence of a more general result. In order to state it, we need to introduce
some new notations. To every function p = p(y;n) defined on Y x Y’ which is Y-periodic in y, we
associate the following function:

| L
(5.1) 7V (n) = m/p(y; ne ¥y, nev'.
Y

With this notation, we have

Proposition 5.2 We suppose p € LOO(Y’;LZ#(Y)). Then for all g € WYP(RN) with compact
support K and with p > N, we have

(5:2) X1y (©) (T79(6) = @250 (e0)g(6)) >0 in L2(RY).
where, we recall, J*g was defined in (2.8). =

The proof will be taken up later. Admitting it for the moment, we turn our attention to
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Proof of Proposition 5.1 If g € L2(RY) with compact support K, we have for all ¢ € RV:

Xy (OBT9(&) =GO < Ix__y,, (OBig(©) = )] +10x__,,., (&) — ()]
Rl e 15 2€) = 10}y + 1061y (6) = DI,

IN

If |¢| is bounded, then using the fact that the map n — ¢1(-;n) € LZ#(Y) is Lipschitz near n = 0,
we deduce

||p1(5€8) — ¢1(';0)HL2(Y) < ce.

This completes the proof of (i).
The proof of (ii) is more involved. Firstly, according to Theorem 1.3, we have the uniform
estimate:

[ 1Bg©Rde < [ lg(e)Pas
ey’ RN

and so, by the usual density arguments, it is enough to prove (ii) with g € D(RY). We can now
complete the proof using Proposition 5.2. Indeed, with p = ¢1, we see that

p(e€) = p” and  Big(6) = Jg(¢) VEERY,
which implies, by Lebesgue’s dominated convergence theorem, that

@02 x 07 ()d() = §(6) i L*(RY).

Proof of Proposition 5.2 The key point is that the variation of p(£;ef) with respect to x is
faster than that of g. To exploit this, we consider the e-mesh {Y;},c,~ generated by the cell ¢Y’
which was already introduced at the end of Section 2. We decompose

63 Te&) = X [e@empEict)do = Y o) [ oLt +17(0)
ZGZNY{E tezN Yf

(5.4 1€ = Y [ (o) - glai)e " Ep(Zi)do.

EEZNy'[e

The first term on the right side of (5.3) can be, by means of the change of variables = z + ey,
transformed into

Y [N Feg(€)p ) (e€)

where F¢g is the discrete Fourier transform of ¢ and 5(*) is defined in (5.1). Since we know that

Xe—1yr(€)eNFeg(€) — Wﬁ(f) in L2(RY) (cf. Lemma, 2.6), our hypothesis on p ensures that

(5.5) ‘ —0.

Xoryr©) {IY [V F29(8) — 2m)25(6)} 50 (e¢)|

L2(RN)
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Thus, to complete the proof, it is enough to show that

c(K)

T x Py
p

(56) 1750 2y IVl

Lp(RN)’

To this end, we rewrite 7] in a slightly different form, namely

(57) 56 = [ F@e oL ee)da,

where

(5.9 Gi@) = ¥ (9@) = glad)x, (o).
ez ‘

We already know how to estimate integrals of the type (5.7) in L?(RY) (see Lemma 2.5) and so we
can deduce (5.6) provided we have the estimate

o(K)

(5.9)

Thanks to our hypothesis, we can deduce a stronger estimate, namely

C

where ¢ is a constant independent of K, the support of g. We note that (5.10) is a simple conse-
quence of Morrey’s estimate (see [2], p. 167).

Finally, we note that (5.9) can be obtained from (5.10) with ¢(K) = c|K|17% and a simple
application of Holder inequality. =

The proof of Proposition 5.2 shows that the result can be strengthened by assuming suitable
smoothness on g. Our next result is an example in this direction. It introduces naturally the
following quantities:

1 i
(5.11) P (n) = m/p(y; myre”YMdy Vk=1,..,N, neY’
Y

Then we have the following corrector result for J®g:

Proposition 5.3 We suppose p € LOO(Y’;LZ#(Y)). Then for all g € W*P(RN) with compact
support K and with p > N, we have

Xy (O {779(6) = @m) N[0 (e6) + e p™ ()]G} > 0 i LX(RY).
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Proof. We follow the idea of the proof of Proposition 5.2. We decompose Jg(&) as

612 e = 3 [{oh) + Vi) (0= ap)} e TEp(ic)dn 4 r5(6),

ZGZNYIE

where

(5.13) )= /{g(x) —g(z7) = Vg(a7) - (x —ap)}e ™ £p(g,af)d:f:
ZGZNYIE

We can estimate r5(&) as follows:

c(K)

c 2
||7"2||L2(€_1y,) S (2 _ M)g ||'0||L°°(Y’;L;E(Y)) |g|W2,p(RN).
p

(5.14)

This, in fact, will be a consequence of Lemma 2.5, because we can represent r5 as follows:

(5.15) 136 = [ G oL ),

with

(5.16) B0 = ¥ (9@) = glai) = Vglai) - (v = a1) x,. (2)
tezN ¢

which admits the following estimates:

(K)

(517) “ ||L2 RN) < (2__) 2|g|W2:D ]RN)
p

(5.18) 1951 0 ) < Gy ey
p

As before (5.17) will be a consequence of (5.18) with ¢(K) = ¢|K|' ™7
To establish (5.18), what we need is a generalization of Morrey’s inequality for W27 functions,
namely

(5.19) |g(z) = g(27) = Vg(27) - (v — ap)| < z—aiy Vo e Yy

C
(2 _ E) | p |g|W2,p(Y'le)
p

Admitting the above estimate, it is an easy matter to prove (5.18). But the above estimate is a
consequence of Morrey’s inequality for the gradient Vg € W1P(RY) and the representation

g9(x) —g(7) — Vg(z7) - (z — 27) = /{Vg((l — g +tw) — Vg(ap)} - (¢ —zp)dt Ve €Yy,
0

This completes the proof of the estimate (5.14) on r5. Thus, as expected, r5 tends to zero more
rapidly. The same cannot be said for the first term on the right side of (5.12). Indeed, it is equal
to

(5:20 Y1 E O ) + ¥ F DO )|
According to Lemma 2.6, we have the following convergence (apart from (5.5))

9,
621 Xy V[ F 50 - 20 Piag i ) >0 i LE).

This clearly allows us to complete the proof. .

99
oxy,
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6 Proof of the main convergence results

Applying the previously developed techniques and results, we are now in a position to prove the
main convergence results stated in Section 1.2 of Introduction (namely Theorems 1.8, 1.11, and
the statement (1.8)). We begin by recalling briefly the set-up. We take f € L?(R") and consider
a sequence u° satisfying (1.9), i.e.,

Afuf = f in RV,
(6.1) u® — u* in  H(RY)-weak,
ut — u* in L?(RV)-strong.

6.1 No concentration of energy at infinity

Our hypothesis that u® — u* in L?(RY)-strong may, at first sight, look artificial. But this in not
the case. If Q is bounded and smooth, then it is classical that the weak convergence in H!(f2)
will automatically imply the strong convergence in L2(2). This is not the case in RY. To make
comparisons, the correct operator to consider is (A° + I) instead of A° in RV . In that case, we have

Proposition 6.1 Assume that w® satisfies

(6.2) { (A + Dw® = in RN,

w® — w* in  HY(RN)-weak,
where g is a given function in L*(RN). Then
w® — w* in  L*(RY)-strong.

Proof. First of all, following the idea of Proposition 3.1, we can neglect higher Bloch modes of
w® and w*. More precisely, we can show

Yo [Bruw (©Pde < et
e—1y” m=2
o0
Y BRw(€)Pde < et
e—lyr m=2
Therefore, it remains to prove
(63) | 1Biwr©) - B ©)dg 0.
e—1lyr

The equation in (6.2) gives the relation

(14X () Biw(€) = Big(¢), ¢ee 'Y
We use it to write

Big(§)

Xy OB = BIw(©) = X075

= 0°(©) ~ (X Ly (BT (@)~ 07(©))
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According to Proposition 5.1, the last term tends to zero in L?(RY). It suffices to show

ig(§)

(6.4) N
Note that w* satisfies the homogenized equation A*w* 4+ w* = g in RY, which is equivalent to

(38N 068 +1) 0O =3(0), ¢,

So, (6.4) is reduced to

Big(§) 9()
L4+ X5(8) 14 1iD2,M(0)&&

(6.5) X 1y(6) -0 in L*RY).

The above expression can be written in the form

a® +b°
CE

where

= (143 DEMO6E) [x .y ©B1© -3

o= - (0 - 3PN 0)64) 30,
c = ax©) (145 Dh0as).

Now, we have the convergence

e X, 1y, (€)Big(§) —g(&)
== TN @ — 0 in L*(RY)

because [1 + Aj(£)] > 1 and by the virtue of Proposition 5.1.

The convergence of IC’—E is not immediate. To show this, we split the energy into three parts,

taking v > 0 a fixed constant:

/ (i’—i)zdu / (i—i)zdf-i- / <i—i>2d§.
] <se—1 lg]<se—1 |€]>de—1

€<~ 1€1>~

In the first two parts, we use the estimate

(6.6 X (6) — 5 DR O < cePe for 6] <o,

which holds since A\1(0) = DA;(0) = 0 (see Proposition 1.5). In the first integral, we have ¢ > 1
and |b7(€)| < ey3¢|g(€)] and consequently, it is less than

S GRS
RN
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and hence converges to zero. In the second integral, we have
1 .
¢ > SXN(ODEA(0)EkE > el > eyl since [¢] >y >0.

As regards b7, we still have |b°(£)] < c[¢]2€]g(€)| and so the second integral also converges to zero.
In the third integral, we use the bounds

1
I (MO + 5DRn 0088 ) 3]
€ 2> X(O) + 5 DM 08

Thus the third integral is estimated from above by
[ o
[€]>de 1

Obviously, this tends to zero as € — 0 since g € L(RY).

6.2 Corrector result in RV

This section is devoted to the proof of Theorem 1.8 concerning the Bloch approximation 6°. The
proof consists of several steps which correspond to estimations of the required energy in different
regions in the Fourier space (in a neighbourhood of the origin |n| < §, and in its complement
inl > 9).
Step 1. We decompose u° as follows:

u® =0 + Pjuf,
where v* and P;u® are defined in (1.21) and (1.27) respectively. Thanks to Proposition 3.1, it is
enough to prove

(6.7) I1Pfu — 67|
(6.8) |Pfus — 6°|

L2@M) — 0,
<

H(RN) Cg“fHL2(RN)'

Step 2. We estimate the energies in the region |¢| > de~!. To this end, we introduce the
quantities

(6.9 00@) = [ @ Qe e

tee—ly!
|&|>6e—1

(6.10) Pwe) = [ Biw (@ silmi g

§€5—1Y’
|g]>8e—1

We will obtain the estimates

(6.11) L I P
(6.12) 0 ey < el oy
(6.13) 1P ey < el

(6.14) P |y <l



We start with (6.14). Using Lemma 2.3 with p = ¢; and the inequalities (2.5), we get

76 € g,,€ €
P S0 [ B O .
§€5—1Y’

[gl>8e—1

Now (6.14) easily follows if we use (1.22) and (1.24). Next, we prove (6.12). Following the above
procedure, we get

(6.15) AN B NGINERES
cee—1y’
‘§‘>55_1

If f € L2(RY), then it is well-known that u* € H2(RY) and

(6.16) [l ©Fde < e [ 1F©)Ra

Combining (6.15) and (6.16), we get easily (6.12). We now show (6.11). By Parseval identity, we
have

0y = OPdE e [ PIOPE

cee—1y’ cce—1y!
|g]>8e—1 [€]>8e—1

since u* and f are related by the homogenized equation A*u* = f in R™. This clearly implies

000 oy S [ L+ IED RO = IS
gee—ly’
lg|>6e1

The proof of (6.13) is completely analogous.

Step 3. Now, we consider the energies in |¢| < de~!. To this end, let us define
(6.17) w(x) = / (Biu® (&) — T*(€))e™ i (w; €)dé
[€|<de—!

and show that

(6.18) leo | 0,

L2(RN)

IN L

(619) |wg|H1(RN) cg||f||L2(RN)'

To prove (6.18), we decompose the integrand as follows:
Biu® —u* = Bj(u® —u*) + (Bju* —u*).

By Parseval equality, the first term in L?-norm is bounded above by [|u® — u*||z2(z~) which, by
our hypothesis, converges to zero. That the second term converges to zero in L?(RY) is proved in
Proposition 5.1.
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Next, we turn are attention to the proof of (6.19). By Lemma 2.1, we have
(6.20) wBnem <e [ NOIBE© - (@)
[€|<de—!

To estimate the above integral, we write the integrand as

Biu () — () = X(©) (BiF(©) — Fl) + [0~ (D20 &) 7@

Thus we get, using (1.24), that

c12
o | d
6.21 <o L
+oe [ epie - (Goanoas) [If©PE
|¢|<de—t

To estimate the first term on the right hand side of (6.21), we represent the integrand as

Bif(©) = F©) _ [ ¢y omive @136 — $i(:0)
G R a

Applying Lemma 2.5, and using [[¢1 (1) — ¢1(0)|lz2(r) < ln| for [n] < 6, we get

1B £(€) — f(&)]
€2

2
< o221 £112 ‘
d¢ < ce ||f||L2(RN)
|¢|<de—t

The second term on the right side of (6.21) can be rewritten, using homogenized equation as

A7 (&) — D2, A1 (0)&x&0|? @
AL(€)

(&)2dé.

§|<de—t
Using (6.6) and (1.24), we see that the above integral is estimated from above by
et [l ©OPd < ISR,
lg|<oe—t

This establishes (6.19) and hence the result. =

6.3 Asymptotic expansion of the Bloch approximation
In this concluding paragraph, we prove Theorem 1.11.

Proof of (i) We have the following decomposition:

(6.22) 0° (z) — u*(x) = 2°(2) + 0°°(z) + u™ (x),
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where

(6.23) Z*(z) = / T (£)e™E (¢ (w: ) — ¢i(;0))d,
el
% 1 ~% ix-
>de—1

and 0% is defined in (6.9).
The second term has already been estimated in L2norm (see (6.11)). The same proof shows
that the third term admits a bound

0
(6.25) 161 ey < €My < el

To estimate the first term on the right side of (6.22), we must proceed differently. In fact, it is
essential to use Lemma 2.3. We see then that

112 _ ~k 2 (.. e 2

170 s = [ T ORIS(56) — G002, de.
§€€‘1Y’
lg|<se—t

Using the Lipschitz continuity of the map n ~ ¢1(-;n) € L?(Y), for || < §, we see that the above
integral can be majorized, and we obtain

(6.26) 12502y S [ 1T @PIEPAE <l
€] <de—1

This finishes the proof of (i). We note that we cannot, in general, assert that
4y < €1,
as we are working on the entire space RV .

Proof of (ii) Because of (i), it suffices to prove

(6.27)

HI(RN) S Cg||f||L2(RN)'

To this end, we use once again the decomposition (6.22) for (#° — u*) in terms of 2%, #°°, and u*°.
For 0%, we have the estimate (6.12). For u*9, we can easily derive the estimate

(6.28) Wy S € [€P @ @) Pdg < eI,

|€]>6e—1

Thus, we are reduced to obtain the estimate

*

(6.29) 2 —ex’ ¢ 9z — A1z gy
To this end, we use the representation
ou* 1

() =

oxy,

G [ i€ O,
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and combine it with the representation (6.23) for z°. We get

zg(x)—sxi(x)gz;(x) - [ @@ <¢i(x;f) $1(w;0) — ()e&) dg —
lg]<de~!
(6:30) = O @) O e,
[§]>0e—1

To estimate the first term on the right side of (6.30), we appeal to Lemma 2.3. Further, we use
) — b (:0) — i@y (. 2
(6:31) [16im) = 61500 = in x|y, < el for Jnl <

The estimate on the second term on the right side of (6.30) is more straightforward. We get finally
. Ou* 2
) S 2 /Ifl @ () Pde.

kQxy,
This completes the proof of (6.29) and hence (ii).

Proof of (iii) Consider again the decomposition (6.22). Thanks to (6.9) and (6.15), we have the
estimates

Z5—ext

(6:32) 16 iy < 1
(6.33) 1057, @y S 052|f|H1(RN).
Similar techniques imply

(6.34) e LAy

(6.35) u®

H1(RN) S 062|f|H1(RN)'

On the other hand, it is clear from the representation (6.30) that

. ou*

k Oxy,

(6.36)

#—ext < el o

L2(RN) — Ny

Thus, it is enough to obtain the estimate

. ou* (2) ?u*

2(. ¢ 2

(6.37) kaxk +e (sz + By )8xk8xg H1RN) <ce |f|H1(RN)'
Thanks to (6.33) and (6.35), we are reduced to showing that

€ e du* 2/, € (2) 82“’* 2
(6.38) 2 —ex; D +e (XM + Bie )axkaxg ‘Hl(RN) <ce |f|H1(RN)'
We can write

ou* 0%u*

€ o € 2¢. ¢ (2) —

Aa) = (o) @)+ E0C,@) + A g

- / i (¢)e Lbi(x;&)—¢i(:c;0)—ip(U)XZ(x)6€k+p(0)( (2) + B )e26re | d€ -

k[
€] <ot
[€]>de—1 |§|>5g—1
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The analysis of the right hand side of (6.39) is similar to that of (6.30). The new information
needed is the following:

(6.40)[1(5m) = 61(50) = in o, i +5 (0 ) + B Y, ., < lnl® for [n] < 5.

which is a simple consequence of Proposition 1.10. The proof is concluded via a simple application
of Lemma, 2.3. .
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