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Abstract

We consider a system coupling the Stokes equations in a two dimensional domain with
a structure equation which is a system of ordinary differential equations corresponding to
a finite dimensional approximation of equations modeling deformations of an elastic body
or vibrations of a rigid body. For that system we establish a null controllability result for
localized distributed controls acting only in the fluid equations and there is no control in the
solid part. This controllability result follows from a Carleman inequality that we prove for
the adjoint system.

1 Introduction

Controllability of fluid – structure models is a challenging problem. Very recently Imanuvilov

and Takahashi [16] and Boulakia and Osses [1] have studied the null controllability, locally about

zero, of a system coupling the Navier-Stokes equations with the motion of a rigid body. Their

analysis is based on Carleman estimates for a linearized system. In the system coupling the

Navier-Stokes equations with a rigid body, the domain occupied by the fluid depends on the

position of the solid and therefore depends on the time variable. The linearized system may be

stated either in a time dependent domain as in [1] or in a fixed domain as in [16]. In the present

paper, we are going to establish Carleman inequalities for a linearized fluid – solid structure

model, stated in a fixed domain Ω. In some aspects our system is simpler than the linearized

model considered in [16] and it is more complicated in some other aspects. On the one hand the

model is simpler because we do not allow the structure to rotate, only translations are allowed.

On the other hand it is more complicated because our structure may be considered as a finite

dimensional approximation of systems modeling deformations of an elastic body or vibrations

of a rigid body (these elastic deformations and vibrations are additional sources of instabilities

in the coupled system as explained below).

For instance we could consider a structure equation of the form

q′′ +Aq = −
∫

Γi

MTσ(y, π)n, (1.1)
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where Γi is a part of ∂Ω and is the common boundary of the structure and the fluid, Ω is the

two dimensional domain occupied by the fluid,

σ(y, π) = 2Dy − π n =
(
∇y + (∇y)T

)
− π n

is the Cauchy stress tensor of the fluid velocity vectorfield, q ∈ RN , A ∈ RN×N , M ∈ RN×2,

n is the unit normal to Γi outward Ω. The term −
∫

Γi
MTσ(y, π)n represents the force exerted

by the fluid on the structure. The equality of the fluid velocity and the structure velocity on

Γi × (0,∞) corresponds to the equation

y = Mq′ on Γi × (0,∞).

When Γi is a flat part of the boundary ∂Ω, equation (1.1) may be viewed as a finite dimensional

Galerkin approximation of a beam equation of the form

z′′ +Az := z′′ − βzx1x1 + αzx1x1x1x1 = −σ(y, π)n · n on Γi × (0, T ), (1.2)

completed by some boundary conditions (clamped boundary conditions or periodic boundary

conditions...). Indeed if (ζk)k∈N∗ is an orthonormal basis in L2(Γi) constituted of eigenfunctions

of the elliptic operator A with associated boundary conditions, the Galerkin approximation of

equation (1.2) in span
{
ζ1, · · · , ζN

}
leads to an equation of the form (1.1) if z is approximated

by ΣN
k=1qk ζk, and if we set

q = (q1, · · · , qN )T , A =
(∫

Γi

Aζk ζ`
)

1≤k, `≤N
and M = (ζ1 n, · · · , ζN n) .

Another model of the form (1.1), the simplest one, corresponds to the case when N = 2, and

when A and M are equal to the identity matrix in R2. This choice leads to the control system

y′ −∆y +∇π = uχω×(0,T ) and div y = 0 in Q,

y = 0 on Σe,

y = q′ on Σi,

y(0) = y0 in Ω,

q′′ + q = −
∫

Γi

σ(y, π)n in (0, T ),

q(0) = q0 and q′(0) = q1 in R2.

(1.3)

It corresponds to models introduced in [2, 3]. In this setting Q = Ω × (0, T ), T > 0, Σe =

Γe × (0, T ), Σi = Γi × (0, T ), Γ = ∂Ω = Γe ∪ Γi, and we also use the notation Σ = Γ × (0, T )

below. The model described by (1.3) corresponds to the case when the domain S occupied by

the structure is an open set in O, O is a simply connected bounded domain in R2 with a regular

boundary Γe. We suppose that S̄ ⊂ O, and we set Ω = O\ S̄. Thus Γ = Γe∪Γi is the boundary

of Ω and Γe ∩ Γi = ∅. In (1.3), the control u is located in ω ⊂⊂ Ω.
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For simplicity, in this paper we shall only consider the model (1.3). But a more elaborate

model with a structure equation of the form (1.1) could also be considered (see e.g. [20] where

we consider a coupling between the heat equation and a structure equation of the form (1.1)).

The main result of the paper is the following theorem which is a null controllability result

in time T > 0 for system (1.3).

Theorem 1.1. For all y0 ∈ L2(Ω) with div y0 = 0, q0 ∈ R2 and q1 ∈ R2 satisfying the conditions

y0 ·n = q1 ·n on Γi and y0 ·n = 0 on Γe, there exists a function u ∈ L2(Q) such that the solution

of (1.3) obeys

y(T ) = 0, q(T ) = 0 and q′(T ) = 0.

The proof of Theorem 1.1 is based on a Carleman estimate for the adjoint system associated

with (1.3). The adjoint system is a backward evolution equation over the time interval (0, T ),

with a terminal condition at time T . By a time reversal operation, we see that the adjoint sytem

is similar to the original one

φ′ −∆φ+∇p = f and divφ = 0 in Q,

φ = 0 on Σe,

φ = r′ on Σi,

φ(0) = φ0 in Ω,

r′′ + r = −
∫

Γi

σ(φ, p)n in (0, T ),

r(0) = r0 and r′(0) = r1 in R2.

(1.4)

A Carleman estimate for the above system (with f = 0) is required to prove Theorem 1.1 and is

established in section 8. In the case when the matrix A in the structure equation (1.1) is equal

to 0, that is to say if the structure equation in (1.4) is replaced by

r′′ = −
∫

Γi

σ(φ, p)n in (0, T ),

then the Carleman inequalities established in [16] and [1] may be used to prove Theorem 1.1.

The case A ≡ 0 corresponds to a non-vibrating rigid body. Considering a model as in (1.1),

where A is a positive definite symmetric matrix allows us to take into account finite dimensional

approximations of elastic deformations and vibrations of the structure.

When A ≡ 0, the method used in [16] consists in proving a Carleman inequality for the Stokes

equation by adapting to the case when the boundary condition is nonhomogeneous (φ = r′) the

strategy developped in [9]. Let us briefly recall the different steps used in [16, 1, 19] to establish

Carleman inequalities. The first step consists in using the Carleman estimates already proved

for the heat equation in [5]. But new terms appear because the boundary conditions in the fluid

equation are nonhomogeneous. Next in the method introduced in [15, 9] a gradient estimate of
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the fluid pressure deduced from [15] is used, later trace estimates of the pressure are derived,

and finally the local term of the pressure, appearing in the RHS of the Carleman inequality

when we estimate the gradient of the pressure, is removed.

In the case when A ≡ 0, the above program can be followed as in [16]. When A = A∗ > 0

some new difficulties appear. Firstly new terms of the form
∫ T

0 e−2sβ|Γi |r|2 appear in the RHS

of the Carleman inequality. We are going to see that, contrary to what happens in the case

of the heat–solid structure model studied in [19], this term cannot be estimated by an energy

identity (because the energy estimate introduces again pressure terms, see section 6.1). The

second difficulty comes from the fact that, when A = A∗ > 0, the trace estimate of the pressure

cannot be simply obtained as in [16] or [1]. Actually in [16, 1] the trace estimate of the pressure

is similar to the one derived in [9]. In our case, because of the presence of r in the structure

equation, we have to follow a completely new way. The method consists in decoupling the

pressure term into two parts and in estimating them separately. One part corresponds to the

pressure pe associated with Pφ (where P is the Leray projector) and the other part corresponds

to the pressure ps associated with (I − P )φ. This is carried out in sections 4 and 5.

The contribution of the structure in the RHS of the Carleman inequality is eliminated in

sections 6 and 7 via a combination of monotonicity and compactness arguments. The upshot

of all these estimates is the Carleman inequality stated in Theorem 8.1 in which we have the

presence of a local term of the pressure in the RHS. By duality, the above term gives rise to

an additional (fictitious control) in the incompressibility equation as in [14]. To remove it, we

require a regularity result stated and proved in section 9. The proof of Theorem 1.1 is completed

in section 10.2.

The first version of our Carleman inequality, stated in Theorem 3.1, is very similar to the

ones obtained in [1, Inequality (2.12)] and [16, Inequality (3.34)]. The difference comes from

the fact that we obtain an estimate of
∫ T

0

∣∣∣∫Γi
Dψ n

∣∣∣2 (where ψ is related to φ by some weight

function, see section 2). This is a new term which is not present in [16, 1]. It could have been

dominated by the term involving the normal derivative of ψ because the tangential derivative

of ψ vanishes on Γi. However we do not use this and proceed differently. Our treatment could

be useful even in cases of [1, 16] in which rotation of rigid body is considered. That is why we

have given a detailed proof of boundary estimates.

Throughout the paper, we use the usual summation convention with respect to repeated

indices. Various constants independent of parameters (s, λ) and the solution are generically

denoted by C, unless otherwise indicated.
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2 Preliminaries

2.1 Well posedness of system (1.4)

Let V be the space defined by

V =
{
φ ∈ H1(Ω; R2) | divφ = 0, φ = 0 on Γe

}
,

and denote by V ′ the topological dual of V. The space V will be equipped with the norm

φ 7→
(∫

Ω
|∇φ|2dx

)1/2

.

The norm V will be denoted by ‖ · ‖V . The same kind of notation will be used for other

Banach spaces. Let us remark that this norm is equivalent to the usual H1(Ω; R2) norm on V .

For simplicity, we shall write H1(Ω) for H1(Ω; R2), L2(Ω) for L2(Ω; R2), and the same abuse

of notation will be done for other spaces like H−1(Ω; R2) for example. This does not lead to

confusion even if L2(Ω) is used for L2(Ω; R2) for velocity vectorfields while it can be used for

L2(Ω) itself for the pressure.

The norm in R2 will be simply denoted by | · |. The inner product of q ∈ R2 and r ∈ R2 is

denoted by q · r.
We have to introduce the spaces

V 0(Ω) =
{
y ∈ L2(Ω) | div y = 0

}
, V 0

n (Ω) =
{
y ∈ V 0(Ω) | y · n = 0 on Γ

}
,

V 1
0 (Ω) = H1

0 (Ω) ∩ V 0
n (Ω), V 0(Γ) =

{
y ∈ L2(Γ) |

∫
Γ
y · n = 0

}
.

Let us recall that L2(Ω; R2) is the orthogonal sum of V 0
n (Ω) and∇(H1(Ω)) (the space of functions

which are gradients of functions belonging to H1(Ω)). The Leray projector P is the orthogonal

projector in L2(Ω; R2) onto V 0
n (Ω).

Well-posedness of the system (1.4) is straightforward and it can be established using energy

estimates, for instance. Indeed, if (φ, r) is a regular solution of system (1.4), multiplying (1.4)

by (φ, r′), we get the energy identity:

‖φ(t)‖2L2(Ω) + |r(t)|2 + |r′(t)|2 + 2
∫ t

0

∫
Ω
|∇φ|2 = 2

∫ t

0

∫
Ω
fφ+ ‖φ(0)‖2L2(Ω) + |r0|2 + |r1|2.

Existence of regular solutions to system (1.4) may be deduced from results in [21]. Using this,

we can prove the following theorem.

Theorem 2.1. Let f ∈ L2(0, T ;L2(Ω)), φ0 ∈ V 0(Ω), r0 ∈ R2 and r1 ∈ R2 satisfying the

compatibility conditions φ0 · n = r1 · n on Γi and φ0 · n = 0 on Γe. Then there is a unique

solution (φ, r) ∈ C([0, T ];L2(Ω))∩L2(0, T ;V )×C1([0, T ]; R2) to the system (1.4) satisfying the

energy inequality

‖φ‖C([0,T ];L2(Ω)) + ‖φ‖L2(0,T ;V ) + ‖φ′‖L2(0,T ;H−1(Ω)) + ‖r‖C1([0,T ];R2) + ‖r′′‖L2(0,T ;R2)

≤ C
{
‖f‖L2(0,T ;L2(Ω)) + ‖φ0‖L2(Ω) + |r0|+ |r1|

}
.
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2.2 Transformed system

From now on we assume that f = 0 in (1.4). Carleman inequalities for the system (1.4) are

stated in Theorems 8.1 and 9.1. Their proofs consist of several steps. In this section, we

transform the system (1.4) to a new system satisfied by (ψ, r) = (e−sβφ, r), where β is a weight

function depending on a parameter λ. The Carleman inequalities are obtained for large values

of parameters λ and s. In the next section we obtain a first Carleman inequality in Theorem 3.1.

The goals of sections 4–8 is to eliminate the pressure p and the displacement of the structure r

from the RHS of the inequality stated in Theorem 3.1. This is done only partially since a local

term of the pressure is still remaining in Theorem 8.1. As explained in the introduction, we

overcome this difficulty by using an additional control in the divergence condition, as in [14],

which is subsequently removed in section 10.2 by using regularity results of section 9.

We begin by listing the properties of the test function η which is used in defining the change

of variables. These properties are used at various stages of our computations below.

Lemma 2.1. Suppose that Ω ⊂ R2 is a nonempty open bounded set of annular type as defined

in Section 1, and that ω0 and ω are open subsets of Ω such that ω0 ⊂⊂ ω ⊂⊂ Ω. Then there

exist a function η ∈ C4(Ω) and positive constants CΓe and CΓi such that

• η(x) = CΓi > 0, ∂nη = −1, and ∆η(x) = 0, for all x ∈ Γi,

• η(x) ≥ CΓi for all x ∈ Ω,

• η(x) = CΓe and ∂nη ≤ 0 for all x ∈ Γe,

• |∇η(x)| > 0 for all x ∈ Ω \ ω0.

Proof. See [19, Lemma 3.1].

With a large parameter λ ≥ 1, we introduce the functions

ξ(x, t) =
eλ(η+m‖η‖∞)

tk(T − t)k
, m > 1,

α(x) = eλmK1 − eλ(η(x)+m‖η‖∞) ∀x ∈ Ω,

(2.1)

where K1 > 0 is a constant, with K1 ≥ 2‖η‖∞ and η is the function obeying the conditions in

Lemma 2.1. We set

β(x, t) =
α(x)

tk(T − t)k
, ρ(x, t) = eβ(x,t),

where the constant k is chosen such that k ≥ 2. In section 9, we shall have to set k = 4. Since

η is constant on Γe and on Γi, the functions β(·, t) and ρ(·, t) are also constants there. In the

following, we set

ρΓi(t) = ρ(·, t)|Γi .

With another large parameter s ≥ 1, we also define the functions

fs(x, t) = −ρ−s(x, t)∇p(x, t), gs = fs + s(∆β)ψ and ψ = ρ−s φ. (2.2)
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Notice that (since β → ∞ as t → 0+ or as t → T−) ψ(·, 0) = ψ(·, T ) = 0 in Ω. With the

definition

(ψ ⊗ φ)ij = ψi φj ,

an easy calculation shows that

∇φ = ∇
(
esβψ

)
= esβ

(
∇ψ + sψ ⊗∇β

)
,

(∇φ)T = esβ
(
(∇ψ)T + s∇β ⊗ ψ

)
,

Dφ =
1
2

(∇φ+ (∇φ)T ) = esβ
(
Dψ +

s

2
(∇β ⊗ ψ + ψ ⊗∇β)

)
σ(φ, p)n = 2Dφn− pn = esβ

(
2Dψ n+ s(∇β ⊗ ψ + ψ ⊗∇β)n

)
− pn

= 2ρsΓiDψ n+ s (∇β ⊗ r′ + r′ ⊗∇β)n− pn on Σi,

since ψ = ρ−sΓi
r′ on Σi.

We set

M1ψ = ψ′ − 2s∇ψ∇β and M2ψ = sβ′ψ −∆ψ − s2|∇β|2ψ. (2.3)

Thus the coupled system (1.4) can be rewritten in terms of (ψ, r) as follows:

M1ψ +M2ψ = fs + s(∆β)ψ, divψ = −s∇β · ψ in Q,

ψ = 0 on Σe,

ψ = ρ−sΓi
r′ on Σi,

ψ(0) = ψ(T ) = 0 in Ω,

r′′ + r = −2ρsΓi

∫
Γi

Dψ n− s
∫

Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n+

∫
Γi

pn in (0, T ),

r(0) = r0 and r′(0) = r1.

(2.4)

3 Carleman inequality I

In this section, we prove the first version of the Carleman inequality for the transformed system

(2.4). This is stated in Theorem 3.1. Writing the equation satisfied by ψ in the form M1ψ +

M2ψ = fs + s(∆β)ψ is a crucial aspect of the proof. From the first equation of the system (2.4)

it follows that

‖M1ψ‖2L2(Q) + ‖M2ψ‖2L2(Q) + 2(M1ψ,M2ψ)L2(Q) = ‖fs + s(∆β)ψ‖2L2(Q). (3.1)

We begin by rewriting the cross term as follows

2(M1ψ,M2ψ)L2(Q) = I1 + I2 + I3,

where
I1 = 2

∫
Q

(
sβ′ψ −∆ψ − s2|∇β|2ψ

)
· ψ′, I2 = 4s

∫
Q

(∇ψ∇β) ·∆ψ,

I3 = 4s
∫
Q

(
s2|∇β|2ψ − sβ′ψ

)
(∇ψ∇β).

(3.2)
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With calculations very similar to those in [19], we can transform I1, I2 and I3 to arrive at the

following identity

2(M1ψ,M2ψ)L2(Q) = J1 + J2 + J3 + J4 + J5 + 2J6, (3.3)

where

J1 = −4s3

∫
Q
∂2
i,jβ ∂jβ ∂iβ |ψ|2, J2 = 2s

∫
Σ
∂nβ |∂nψ|2,

J3 = 2s2

∫
Q
β′∆β |ψ|2 − s

∫
Q
β′′ |ψ|2 + 4s2

∫
Q
∇β′ · ∇β|ψ|2,

J4 = 8
∫ T

0

∣∣∣ ∫
Γi

Dψ n
∣∣∣2 + 4

∫ T

0

((
s β′ r′ + s

∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n−

∫
Γi

pn+ r

)
ρ−sΓi
·
∫

Γi

Dψ n

)
+2s3

∫
Σi

(
∂nβ

)3 |ψ|2 − 2s2

∫
Σi

β′ ∂nβ|ψ|2 − 2s
∫

Σi

(∇β · ψ)(ψ′ · n),

J5 = −4s
∫
Q
∂2
i,jβ ∂jψk ∂iψk , J6 =

∫
Q

(
s∆β |∇ψ|2 − s3∆β |∇β|2 |ψ|2

)
.

The estimates of J1, J2, J3 and J5 can be performed as in [19]. With obvious minor adap-

tations we obtain

J1 + J3 ≥
1
2
C1s

3λ4

∫
Ω×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 − Cs3λ4

∫
ω0×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2,

J2 = 2s
∫

Σ
∂nβ |∂nψ|2 ≥ 2s

∫
Σi

λ eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2,

J5 ≥ −
1
2
‖M2 ψ‖2L2(Q) − Cs

2λ2

∫
Q

e2λ(η+m‖η‖∞)

t2k (T − t)2k
|ψ|2 − Cs2λ

∫
Q

eλmK1

t2k+1 (T − t)2k+1
|ψ|2

−Cs3λ3

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|∇η|2 |ψ|2 − Csλ

∫ T

0

eλ(η+m‖η‖∞)|Γi
tk(T − t)k

ρ−sΓi
r′ ·
∫

Γi

∂nψ,

for λ large and s large (depending on λ).

For J6, following the calculations in [19], we can write that

J6 ≥ −Csλ4

∫
Q

eλ(η+m‖η‖∞)

tk(T − t)k
|ψ|2 − Cs2λ2

∫
Q

eλmK1

t2k+1(T − t)2k+1
|ψ|2 − Cs2λ4

∫
Q

e2λ(η+m‖η‖∞)

t2k(T − t)2k
|ψ|2

−1
4

∫
Q
|fs|2 −

1
4

∫
Q
|M1ψ|2 + T1 + T2,

with

T1 = s

∫ T

0

(
ρ−sΓi

∆β|Γi
(∫

Γi

∂nψ

)
· r′
)

and T2 = −s
2

∫
Σi

∂n(∆β) |ψ|2.
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Using the above estimates in (3.1), we obtain

‖M1 ψ‖2L2(Q) + ‖M2 ψ‖2L2(Q) +
1
2
C1s

3λ4

∫
(Ω\ω0)×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2

−Cs3λ4

∫
ω0×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 − Csλ4

∫
Q

eλ(η+m‖η‖∞)

tk(T − t)k
|ψ|2 − C s2λ2

∫
Q

eλ(K1+η)

t2k+1(T − t)2k+1
|ψ|2

−C s2 λ4

∫
Q

e2λη

t2k(T − t)2k
|ψ|2 − 1

2
‖fs‖2L2(Q) −

1
2
‖M1ψ‖2L2(Q)

+2T1 + 2T2 −
1
2
‖M2ψ‖2L2(Q) − C s2 λ2

∫
Q

e2λη

t2k(T − t)2k
|ψ|2

−C sλ
∫ T

0

eλ(η+m‖η‖∞)
∣∣
Γi

tk(T − t)k
ρ−sΓi

r′ ·
∫

Γi

(∂nψ)n− C sλ3

∫
Q

eλ(η+m‖η‖∞)

tk(T − t)k
|∇η|2 |ψ|2

−C s2 λ

∫
Q

eλ(K1+η)

t2k+1(T − t)2k+1
|ψ|2 − C s3 λ3

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|∇η|2 |ψ|2 + J4

≤ 2‖fs‖2L2(Q) + C s2 λ4

∫
Q

e2λη

t2k(T − t)2k
|ψ|2.

We decompose the integral s2 λ4
∫
Q

e2λη

t2k(T−t)2k |ψ|2 into two parts, one part over (Ω\ω0)× (0, T )

and another one over ω0× (0, T ). The integral over (Ω\ω0)× (0, T ) can be absorbed in the most

dominating term, namely

1
2
C1s

3λ4

∫
(Ω\ω0)×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2,

by choosing s large (depending on λ). The integral over ω0 × (0, T ) can be pushed to RHS and

estimated from above by

Cs3λ4

∫
ω0×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2.

At the end of this process, we get the following estimate:

‖M1 ψ‖2L2(Q) + ‖M2 ψ‖2L2(Q) + s3λ4

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + T1 + T2 + J4

≤ C
{
‖fs‖2L2(Q) + s3λ4

∫
ω0×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + sλ

∫ T

0

eλ(η+m‖η‖∞)
∣∣
Γi

tk(T − t)k
ρ−sΓi

r′ ·
∫

Γi

∂n ψ
}
.

3.1 Treatment of boundary terms

The effect of the fluid-solid interaction in our model is felt in the treatment of boundary terms

which are different from the ones in other classical models. We will estimate these boundary

terms in this section. This will make appear various quantities associated with the solid part

(so far, we have been working in the fluid region). Let us begin by naming the different terms

9



in J4 as follows:

T3 = 8
∫ T

0

∣∣∣ ∫
Γi

Dψ n
∣∣∣2 , T4 = 2s3

∫
Σi

(
∂nβ

)3 |ψ|2,
T5 = 4

∫ T

0

((
s β′ r′ + s

∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n−

∫
Γi

pn+ r

)
ρ−sΓi
·
∫

Γi

Dψ n

)
,

T6 = −2 s2

∫
Σi

β′ ∂nβ|ψ|2,

T7 = −2s
∫

Σi

(∇β · ψ)(ψ′ · n).

Estimate of T4. First let us consider T4 which can be expressed as (since ψ = ρ−sΓi
r′ on Σi)

T4 = 2s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi

∫
Γi

|r′|2 = 2s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|Γi| |r′|2.

Estimate of T5. Next, we can estimate T5 in the following way:

|T5| ≤
∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 + 4
∫ T

0

∣∣∣∣s β′ r′ + s

∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n−

∫
Γi

pn+ r

∣∣∣∣2 ρ−2s
Γi

≤ 1
8
T3 + 16s2e2λmK1T 2

∫ T

0

k2

t2k+2(T − t)2k+2
ρ−2s

Γi
|r′|2

+16s2λ2

∫ T

0

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

ρ−2s
Γi
|Γi|2|r′|2 + 16

∫ T

0
ρ−2s

Γi
|r|2 + 16

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2.
By choosing s large enough (depending on λ, s ≥ s0(λ) = λ−3e2mK1) and choosing k ≥ 2, we

have

|T5| ≤
1
8
T3 +

1
8
T4 + 16

∫ T

0
ρ−2s

Γi
|r|2 + 16

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 .
Estimate of T1. Next, we can estimate T1 as follows :

|T1| = s

∣∣∣∣∫ T

0
ρ−sΓi

r′∆β|Γi ·
∫

Γi

∂nψ

∣∣∣∣ ≤ 1
4

∫ T

0

∣∣∣∣∫
Γi

∂nψ

∣∣∣∣2 + s2

∫ T

0
ρ−2s

Γi
|∆β|Γi |2|r′|2

≤ 1
8
J2 + Cs2λ4

∫ T

0

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

ρ−2s
Γi
|r′|2.

Once again we see that for large s (depending on λ, s ≥ 8λ) we have |T1| ≤ 1
8 J2 + 1

8T4 .

Estimate of T2. To estimate T2, we express it as

T2 = −s
2

∫
Σi

∂n(∆β)ρ−2s
Γi
|r′|2

in which we use the estimate (for λ large)

|∂n(∆β)| ≤ Cλ3 e
λ(η+m‖η‖∞)|Γi
tk(T − t)k

on Σi.
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This easily leads to |T2| ≤ 1
8T4 for s large (depending on λ).

Estimate of T6. Analogous arguments establish that

|T6| ≤ Cs2λeλmK1

∫ T

0

eλ(η+m‖η‖∞)|Γi
t2k+1(T − t)2k+1

ρ−2s
Γi

∫
Γi

|r′|2 ≤ 1
8
T4.

for s large (depending on λ, s ≥ λ−3eλmK1).

Assembling these estimates together, we obtain

|T5|+ |T6|+ |T1|+ |T2| ≤
1
8
T3 +

1
2
T4 + C

∫ T

0
ρ−2s

Γi
|r|2 + C

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 +
1
8
J2.

Hence

T1+T2+J2+J4 ≥
3
4
T3+

1
2
T4+

7s
4

∫
Σi

λ eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2−C

∫ T

0
ρ−2s

Γi
|r|2−C

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2+T7.

Our next task is to estimate T3 from below. To this end, we use (2.4) and write∫
Γi

Dψ n = −1
2
ρ−sΓi

(r′′ + r)− s

2
ρ−sΓi

∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n+

1
2
ρ−sΓi

∫
Γi

pn.

Hence∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 ≥ 1
8
ρ−2s

Γi
|r′′|2 − 3

4
ρ−2s

Γi
|r|2 − 3

4
s2λ2ρ−2s

Γi

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

|Γi|2 |r′|2 −
3
4
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 ,
using the elementary inequality |a+ b|2 ≥ 1

2 |a|
2 − |b|2. It follows then, for s, λ large, that

T3

8
≥ 1

2

∫ T

0
ρ−2s

Γi
(|r′′|2 + |r|2)− 1

4
T4 − C

∫ T

0
ρ−2s

Γi
|r|2 − C

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 .
As a consequence, we have

3
4
T3 +

1
2
T4 ≥

5
8
T3 +

1
4
T4 +

1
2

∫ T

0
ρ−2s

Γi
(|r′′|2 + |r|2)− C

∫ T

0
ρ−2s

Γi
|r|2 − C

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 .
Thus the final estimate of the boundary terms is as follows:

T1 + T2 + J2 + J4 ≥ 5
∫ T

0
|
∫

Γi

Dψ n|2 +
1
2
s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2

+
1
2

∫ T

0
ρ−2s

Γi
(|r′′|2 + |r|2) + s

∫
Σi

λ eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2

−C
∫ T

0
ρ−2s

Γi
|r|2 − C

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 + T7.

Estimate of T7. We have

ψ′ · n|Γi = ρ−sΓi
r′′ · n− sρ−sΓi

β′ r′ · n

= −2
(∫

Γi

Dψ n

)
· n− sρ−sΓi

(∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n

)
· n

+ρ−sΓi

(∫
Γi

pn

)
· n− ρ−sΓi

r · n− sρ−sΓi
β′ r′ · n,

11



and

T7 = −2s
∫

Σi

(∇β · ψ)(ψ′ · n)

= 4s
∫

Σi

(∇β · ρ−sΓi
r′)
(∫

Γi

Dψ n

)
· n+ 2s2

∫
Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

(∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n

)
· n

−2s
∫

Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

(∫
Γi

pn

)
· n+ 2s

∫
Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

r · n+ 2s2

∫
Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

β′ r′ · n.

We set

T a7 = 4s
∫

Σi

(∇β · ρ−sΓi
r′)
(∫

Γi

Dψ n

)
· n,

T b7 = 2s2

∫
Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

(∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n

)
· n,

T c7 = −2s
∫

Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

(∫
Γi

pn

)
· n,

T d7 = 2s
∫

Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

r · n,

T e7 = 2s2

∫
Σi

(∇β · ρ−sΓi
r′)ρ−sΓi

β′ r′ · n.

We have

|T a7 | ≤ 4s
∫

Σi

λeλ(η+m‖η‖∞)

tk(T − t)k
ρ−sΓi
|r′|
∣∣∣∣∫

Γi

Dψ n

∣∣∣∣
≤ 8s2λ2|Γi|

∫ T

0

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

ρ−2s
Γi
|r′|2 +

1
2

∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 ,
∣∣∣T b7 ∣∣∣ ≤ 4s2

∫
Σi

λeλ(η+m‖η‖∞)

tk(T − t)k
ρ−2s

Γi
|r′|
∫

Γi

|r′|λe
λ(η+m‖η‖∞)

tk(T − t)k

≤ 4s2λ2|Γi|
∫ T

0

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

ρ−2s
Γi
|r′|2,

|T c7 | ≤ 2s
∫

Σi

λeλ(η+m‖η‖∞)

tk(T − t)k
ρ−2s

Γi
|r′|
∣∣∣∣∫

Γi

pn

∣∣∣∣
≤ 2s2λ2

∫
Σi

e2λ(η+m‖η‖∞)

t2k(T − t)2k
ρ−2s

Γi
|r′|2 +

|Γi|
2

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 ,
∣∣∣T d7 ∣∣∣ ≤ 2s

∫
Σi

λeλ(η+m‖η‖∞)

tk(T − t)k
ρ−2s

Γi
|r′| |r| ≤ 2s2λ2

∫
Σi

e2λ(η+m‖η‖∞)

t2k(T − t)2k
ρ−2s

Γi
|r′|2 +

|Γi|
2

∫ T

0
ρ−2s

Γi
|r|2,

and

|T e7 | ≤ 2s2λ

∫
Σi

eλ(η+m‖η‖∞)

tk(T − t)k
ρ−2s

Γi
|r′|2 CeλmK1

tk+1(T − t)k+1

≤ 2Cs2λeλmK1

∫ T

0

eλ(η+m‖η‖∞)|Γi
t2k+1(T − t)2k+1

ρ−2s
Γi
|r′|2.
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Grouping together various estimates obtained, we can summarize the main inequality of section 3

‖M1ψ‖2L2(Q) + ‖M2ψ‖2L2(Q) + s3λ4

∫
Q

e3λη

t3k(T − t)3k
|ψ|2 +

∫ T

0

∣∣∣∣ ∫
Γi

Dψ n

∣∣∣∣2
+sλ

∫
Σi

eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2 +

∫ T

0
ρ−2s

Γi
(|r′′|2 + |r|2) + s3λ3

∫ T

0

e3λ(η+m‖η‖∞)
∣∣
Γi

t3k(T − t)3k
ρ−2s

Γi
|r′|2

≤ C

{
‖fs‖2L2(Q) + s3λ4

∫
ω0×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 +

∫ T

0
ρ−2s

Γi
|r|2 +

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2
}
.

With calculations as in [19], we can also estimate ∇ψ, ψ′ and ∆ψ and we obtain the following

theorem.

Theorem 3.1. (Carleman inequality I) For λ sufficiently large, there is s0(λ) > 0 such that for

s ≥ s0(λ) and for all solution (ψ, r) of system (2.4), we have

s−1

∫
Q
ξ−1(|ψ′|2 + |∆ψ|2) +

∫
Q
|M1ψ|2 +

∫
Q
|M2ψ|2 + sλ2

∫
Q

eλ(η+m‖η‖∞)

tk(T − t)k
|∇ψ|2

+
∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 + s3λ4

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + sλ

∫
Σi

eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2

+
∫ T

0
ρ−2s

Γi
(|r′′|2 + |r|2) + s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2 +

∫
Q
ρ−2s|∇p|2

≤ C

{∫
Q
ρ−2s|∇p|2 + s3λ4

∫
ω1×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2

+
∫ T

0
ρ−2s

Γi
|r|2 +

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2
}
,

(3.4)

where ω0 ⊂⊂ ω1 ⊂⊂ ω.

At this stage the pressure p is determined up to an additive constant. From now on, we

choose the pressure p in the space of functions satisfying the condition∫
ω
e−2sβ̂(t) |ξ(x, t)|2 ζ(x) p(x, t) dx = 0 for a.e. t ∈ (0, T ), (3.5)

where

β̂(t) = minx∈Ω β(x, t) =
eλmK1 − eλ(1+m)‖η‖∞

tk(T − t)k
,

ζ ∈ C∞0 (Ω) is a nonnegative function, suppζ ⊂ ω3, ω1 ⊂⊂ ω2 ⊂⊂ ω3 ⊂⊂ ω, and ζ|ω2 = 1. (The

open set ω2 is introduced in the next section.) Condition (3.5) will be used in an essential way

in the proof of Theorem 10.1 .

Let us notice that

e−2sβ̂(t) ≥ e−2sβ(x,t) = ρ−2s(x, t) for all (x, t) ∈ Q.

Moreover we can notice that condition (3.5) is equivalent to∫
ω
e2λ(η(x)+m‖η‖∞) ζ(x) p(x, t) dx = 0 for a.e. t ∈ (0, T ),
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and the weight function e2λ(η(x)+m‖η‖∞) ζ(x) does not depend on t. We are going to use this

property by observing that the mapping

p 7−→
(∫

ω
e2λ(η(x)+m‖η‖∞) ζ(x) p(x) dx+

∫
Ω
|∇p|2dx

)1/2

is a norm on H1(Ω) equivalent to the usual one.

4 Carleman inequality for the pressure

In this section we recall some results obtained by O. Yu. Imanuvilov, J.-P. Puel in [15]. Using

the fact that the pressure p(t) ∈ H1(Ω) is the solution of the following elliptic problem

−∆p(t) = 0 in Ω and p(t) = p(t) on Γ ,

it follows that∫
Ω
e2τeλη |∇p(t)|2 + τ2 λ2

∫
Ω
e2τeλη e2λη |p(t)|2

≤ C
∫
ω1

e2τeλη |∇p(t)|2 + Cτ2 λ2

∫
ω1

e2τeλη e2λη |p(t)|2 + Cτ1/2 e2τ ‖p(t)‖2
H1/2(Γ)

.

(4.1)

Using a localisation argument as in [15], [9], we can eliminate the term ∇p(t) in the right hand

side, and we obtain∫
Ω
e2τeλη |∇p(t)|2 + τ2 λ2

∫
Ω
e2τeλη e2λη |p(t)|2

≤ Cτ2 λ2

∫
ω2

e2τeλη e2λη |p(t)|2 + Cτ1/2 e2τ ‖p(t)‖2
H1/2(Γ)

,

(4.2)

with ω1 ⊂⊂ ω2 ⊂⊂ ω.

To deduce space-time integral estimates from (4.2), we have to choose τ as a function of time

in an appropriate way, and we have to choose a multiplier for the estimate (4.2) and integrate

with respect to time. We choose

τ =
s

tk(T − t)k
eλm‖η‖∞ .

Taking

e
−2s

tk(T−t)k
eλmK1

,

as multiplier, we can check that:

e2τeλη e
−2s

tk(T−t)k
eλmK1

= e
−2s

tk(T−t)k
(eλmK1−eλ(η+m‖η‖∞))

= e−2sβ .

Thus, from estimate (4.2), we deduce∫
Q
e−2sβ |∇p(t)|2dt+ λ2 s2

∫
Q
e−2sβ |p(t)|2dt

≤ Cλ2

∫
ω2×(0,T )

τ2 e−2sβ e2λη |p(t)|2dt+ C

∫ T

0
τ1/2 e

−2s

tk(T−t)k
eλmK1

e2τ ‖p(t)‖2
H1/2(Γ)

dt .

(4.3)
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We introduce the constant

η∗ = minx∈Ω η(x),

and the functions

β∗(t) = maxx∈Ω β(x, t) =
eλmK1 − eλ(η∗+m‖η‖∞)

tk(T − t)k
,

ξ∗(t) = minx∈Ω ξ(x, t) =
eλ(η∗+m‖η‖∞)

tk(T − t)k
,

ξ̂(t) = maxx∈Ω ξ(x, t) =
eλ(m+1)‖η‖∞

tk(T − t)k
.

Let us verify that

τ1/2 e
−2s

tk(T−t)k
eλmK1

e2τ ≤ s1/2 e−2sβ∗ (ξ∗)1/2 . (4.4)

We have:

τ1/2 e
−2s

tk(T−t)k
eλmK1

e2τ =
s1/2

tk/2(T − t)k/2
eλm‖η‖∞/2 e

−2s

tk(T−t)k
eλmK1

e
2s

tk(T−t)k
eλm‖η‖∞

,

and

s1/2 e−2sβ∗ (ξ∗)1/2 = s1/2 e
−2s

tk(T−t)k
(eλmK1−eλ(η∗+m‖η‖∞)) eλ/2(η∗+m‖η‖∞)

tk/2(T − t)k/2
.

Thus inequality (4.4) is satisfied and we have∫
Q
e−2sβ |∇p(t)|2dt

≤ Cλ2 s2

∫
ω2×(0,T )

ξ2 e−2sβ |p(t)|2dt+ C s1/2

∫ T

0
(ξ∗)1/2 e−2sβ∗ ‖p(t)‖2

H1/2(Γ)
dt .

(4.5)

Let us notice that η|Γi ≤ η, and therefore β|Γi ≥ β and e−2sβ|Γi ≤ e−2sβ. Thus from (4.3) it

follows that∫ T

0
e−2sβ|Γi ‖p(t)‖2L2(Γi)

dt

≤ Cλ2 s2

∫
ω2×(0,T )

ξ2 e−2sβ |p(t)|2dt+ C s1/2

∫ T

0
(ξ∗)1/2 e−2sβ∗ ‖p(t)‖2

H1/2(Γ)
dt .

(4.6)

5 Trace estimate of the pressure

The objective of this section is to estimate the term∫ T

0
(ξ∗)1/2 e−2sβ∗ ‖p(t)‖2

H1/2(Γ)
dt

appearing in (4.5) and (4.6) and to prove Theorem 5.1 stated at the end of this section. For

that, we introduce the functions

µ(t) = e−sβ
∗(t)(ξ∗(t))1/4, φ∗ = µφ and p∗ = µ p.
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By an easy calculation we can check that (φ∗, p∗, r) is the solution to the system

φ∗′ −∆φ∗ +∇p∗ = µ′ φ and divφ∗ = 0 in Q,

φ∗ = 0 on Σe,

φ∗ = µ r′ on Σi,

φ∗(0) = 0 in Ω,

r′′ + r = −
∫

Γi

σ(φ, p)n in (0, T ),

r(0) = r0 and r′(0) = r1 .

(5.1)

Step 1. Rewriting system (5.1) in terms of Pφ∗ and (I − P )φ∗. We set

m(φ, p) = −
∫

Γi

σ(φ, p)n, m(φ∗, p∗) = −µ
∫

Γi

σ(φ, p)n = −
∫

Γi

σ(φ∗, p∗)n,

φe = Pφ, φs = (I − P )φ, p = pe + ps,

and

φ∗e = µφe, φ∗s = µφs, p∗e = µ pe, p∗s = µ ps,

where pe is the pressure appearing in the equation satisfied by φe and ps is the pressure associated

with φs (see [21]). More precisely, we denote by q(t) = N(r′ · n) ∈ H1(Ω), the solution to the

Neumann boundary value problem∫
ω
e2λ(η+m‖η‖∞) ζ q(t) dx = 0, ∆q(t) = 0 in Ω,

∂q

∂n
= 0 on Γe,

∂q

∂n
= r′ · n on Γi.

From [21], it follows that ps = −qt. Therefore,
∫
ω
e2λ(η+m‖η‖∞) ζ ps(t) dx = 0. The pressure

p∗e = µ pe is determined by

φ∗e
′ −∆φ∗e +∇pe∗ = µ′ φ in Q and

∫
Ω
e2λ(η+m‖η‖∞) ζ p∗e dx = 0 for a.e. t ∈ (0, T ).

Denoting by γi the trace operator on Γi, we have

ps|Γi = −γiN(r′′ · n).

Now we introduce the operator K ∈ L(R2) defined by

Kr =
∫

Γi

γiN(r · n)n.

We can easily verify that K = K∗ ≥ 0 and that I +K is an automorphism in R2.

Let us denote by A = P∆ the Stokes operator (as an unbounded operator in V 0
n (Ω)). To

rewrite system (1.4) in terms of φe and φs, we introduce the operator L ∈ L(V 0(Γ), V 0(Ω))

defined by Lg = w, where

−∆w +∇π = 0 and divw = 0 in Ω, w = g on Γ.
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Following [21], we rewrite system (1.4) (with f = 0) as follows

φ′e −Aφe = (−A)PL(r′χΓi), φe(0) = Pφ0,

φs = (I − P )L(r′χΓi),

r′′ + r = −
∫

Γi

σ(φe, pe)n−
∫

Γi

Dφs n−
∫

Γi

γiN(r′′ · n)n, in (0, T ),

r(0) = r0 and r′(0) = r1 .

(5.2)

The equation satisfied by r can be rewritten in the form

(I +K)r′′ + r = −
∫

Γi

σ(φe, pe)n−
∫

Γi

Dφs n.

The equation for φ∗e is

φ∗e
′ −Aφ∗e = (−A)PL(µ r′χΓi) + µ′ φe, φ∗e(0) = 0,

and φ∗s obeys

φ∗s = (I − P )L(µ r′χΓi).

From [21, Proposition 2.2], it follows that

‖φ∗e‖H2,1(Q) + ‖p∗e‖L2(0,T ;H1(Ω)) + ‖φ∗s‖L2(0,T ;H2(Ω)) ≤ C
(
‖µ′ φe‖L2(Q) + ‖µ r′‖H3/4(0,T )

)
.

Since φe = Pφ, we have

‖µ′ φe‖L2(Q) ≤ ‖µ′ φ‖L2(Q).

Step 2. Estimate of ‖p∗s‖L2(0,T ;H1(Ω)). Since ps(t) = −N(r′′ · n), we have

‖p∗s(t)‖H1(Ω) ≤ Cµ(t)|r′′(t)| ≤ C(|µ(t)r(t)|+ ‖φ∗e(t)‖H2(Ω) + ‖∇p∗e(t)‖L2(Ω) + ‖φ∗s(t)‖H2(Ω)).

Thus, we obtain

‖p∗s‖L2(0,T ;H1(Ω)) ≤ C(‖µ r‖L2(0,T ) + ‖φ∗e‖H2,1(Q) + ‖∇p∗e‖L2(0,T ;L2(Ω)) + ‖φ∗s‖L2(0,T ;H2(Ω)))

≤ C
(
‖µ′ φe‖L2(Q) + ‖µ r′‖H3/4(0,T ) + ‖µ r‖L2(0,T )

)
.

Step 3. Estimate of ‖µ r′‖H3/4(0,T ). Now, we want to eliminate the term ‖µ r′‖H3/4(0,T ) from the

previous estimates. For that, we are going to use the interpolation inequality

‖µ r′‖H3/4(0,T ) ≤ C‖µ r
′‖1/4
L2(0,T )

‖µ r′‖3/4
H1(0,T )

.

Let us now calculate ‖µ r′‖H1(0,T ). We have

(µ r′)′ = µ′ r′ + µr′′.

For the term µr′′ we use the equation satisfied by r:

µr′′ = −µ(I +K)−1r + (I +K)−1m(φ∗e, p
∗
e) + (I +K)−1

∫
Γi

Dφ∗s n.
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With classical majorations we have:

‖µ r′‖H3/4(0,T ) ≤ C‖µ r
′‖1/4
L2(0,T )

‖µ r′‖3/4
H1(0,T )

≤ C‖µ r′‖1/4
L2(0,T )

(
‖µ r′‖3/4

L2(0,T )
+ ‖µ′ r′‖3/4

L2(0,T )
+ ‖µ r‖3/4

L2(0,T )

+‖m(φ∗e, p
∗
e)‖

3/4
L2(0,T )

+
∥∥∥∥∫

Γi

Dφ∗s n

∥∥∥∥3/4

L2(0,T )

)
≤ C‖µ r′‖L2(0,T ) + C‖µ r‖L2(0,T ) + C‖µ′ r′‖L2(0,T ) +

C

ε3
‖µ r′‖L2(0,T ) + Cε‖m(φ∗e, p

∗
e)‖L2(0,T )

+Cε
∥∥∥∥∫

Γi

Dφ∗s n

∥∥∥∥
L2(0,T )

.

Thus
‖φ∗e‖H2,1(Q) + ‖p∗e‖L2(0,T ;H1(Ω)) + ‖φ∗s‖L2(0,T ;H2(Ω)) + ‖p∗s‖L2(0,T ;H1(Ω))

≤ C
(
‖µ′ φ‖L2(Q) + ‖µ r′‖L2(0,T ) + ‖µ r‖L2(0,T ) + ‖µ′ r′‖L2(0,T )

+
1
ε3
‖µ r′‖L2(0,T ) + ε‖m(φ∗e, p

∗
e)‖L2(0,T ) + Cε

∥∥∥∥∫
Γi

Dφ∗s n

∥∥∥∥
L2(0,T )

)
.

We can choose ε > 0 to have
‖φ∗e‖H2,1(Q) + ‖p∗e‖L2(0,T ;H1(Ω)) + ‖φ∗s‖L2(0,T ;H2(Ω)) + ‖p∗s‖L2(0,T ;H1(Ω))

≤ C
(
‖µ′ φ‖L2(Q) + ‖µ r′‖L2(0,T ) + ‖µ r‖L2(0,T ) + ‖µ′ r′‖L2(0,T )

)
.

Step 4. Estimate of ‖p∗‖L2(0,T ;H1/2(Γ)). We have

µ′(t) = −se−sβ∗(t)(ξ∗(t))1/4 (β∗)′(t) +
1
4
e−sβ

∗(t)(ξ∗(t))−3/4(ξ∗)′(t)

= −se−sβ∗(t)(ξ∗(t))1/4 k(2t− T )
eλmK1 − eλ(η∗+m‖η‖∞)

tk+1(T − t)k+1

+
1
4
e−sβ

∗(t)(ξ∗(t))−3/4k(2t− T )
eλ(η∗+m‖η‖∞)

tk+1(T − t)k+1
.

|µ′(t)|2 ≤ Cs2e−2sβ∗(t)|ξ∗(t)|1/2 (eλmK1 − eλ(η∗+m‖η‖∞))2

t2k+2(T − t)2k+2
+ Ce−2sβ∗(t)|ξ∗(t)|−3/2 e2λ(η∗+m‖η‖∞)

t2k+2(T − t)2k+2

≤ Cs2e−2sβ∗(t) e
λ(η∗+m‖η‖∞)/2+2λmK1

t
5k
2

+2(T − t)
5k
2

+2

+Ce−2sβ∗(t) eλ(η∗+m‖η‖∞)/2

t2k+ 1
2 (T − t)2k+ 1

2

≤ Cs2e−2sβ∗(t) e
3λ(η∗+m‖η‖∞)

t3k(T − t)3k
.

Thus ∥∥µ′ φ∥∥2

L2(Q)
≤ C

∫
Q
|µ′|2 |φ|2

≤ Cs2

∫
Q
e−2sβ∗(t) e

3λ(η∗+m‖η‖∞)

t3k(T − t)3k
|φ|2 ≤ Cs2

∫
Q
e−2sβ(t) e

3λ(η+m‖η‖∞)

t3k(T − t)3k
|φ|2.
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We finally obtain

s1/2

∫ T

0
(ξ∗)1/2 e−2sβ∗ ‖p‖2

H1/2(Γ)
= s1/2‖p∗‖2

L2(0,T ;H1/2(Γ))

≤ C s5/2

∫
Q
e−2sβ e

3λ(η+m‖η‖∞)

t3k(T − t)3k
|φ|2 + Cs5/2

∫ T

0
e−2sβ∗(t) e

3λ(η∗+m‖η‖∞)

t3k(T − t)3k
|r′|2

+Cs1/2‖µ r‖2L2(0,T ).

(5.3)

Substituting in estimate (4.5), it yields:∫
Q
e−2sβ |∇p|2dt

≤ Cλ2 s2

∫
ω2×(0,T )

ξ2 e−2sβ |p|2 + C s5/2

∫
Q
e−2sβ e

3λ(η+m‖η‖∞)

t3k(T − t)3k
|φ|2

+Cs5/2

∫ T

0
e−2sβ∗(t) e

3λ(η∗+m‖η‖∞)

t3k(T − t)3k
|r′|2 + Cs1/2‖µ r‖2L2(0,T ).

(5.4)

Step 5. Last estimates. Combining this inequality with the one obtained in (3.4), we notice that

the term

C s5/2

∫
Q
e−2sβ e

3λ(η+m‖η‖∞)

t3k(T − t)3k
|φ|2

can be absorbed by the term

s3 λ4

∫
Q
ρ−2s e

3λ(η+m‖η‖∞)

t3k(T − t)3k
|φ|2 = s3 λ4

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2

in the left hand side of (3.4), and the term

Cs5/2

∫ T

0
e−2sβ∗(t) e

3λ(η∗+m‖η‖∞)

t3k(T − t)3k
|r′|2

can be absorbed by the term

s3λ3

∫ T

0
ρ−2s

Γi

e3λ(η+m‖η‖∞)
∣∣
Γi

t3k(T − t)3k
|r′|2.

We finally arrive at

s−1

∫
Q
ξ−1(|ψ′|2 + |∆ψ|2) +

∫
Q
|M1ψ|2 +

∫
Q
|M2ψ|2 + sλ2

∫
Q

eλ(η+m‖η‖∞)

tk(T − t)k
|∇ψ|2

+
∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 + s3λ4

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + sλ

∫
Σi

eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2

+
∫ T

0
ρ−2s

Γi
(|r′′|2 + |r|2) + s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2 +

∫
Q
ρ−2s|∇p|2

≤ C

{
s3λ4

∫
ω×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2

+s2λ2

∫
ω2×(0,T )

ρ−2s ξ2|p|2 + s1/2‖µ r‖2L2(0,T ) +
∫ T

0
ρ−2s

Γi
|r|2
}
.

(5.5)
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Since

µ(t) ≤ |ξ∗|1/4ρ−sΓi
(t),

the two last terms can be estimated by 2s1/2
∫ T

0 |ξ
∗|1/2ρ−2s

Γi
|r|2. But we are going to face a new

difficulty in section 9. We shall have to estimate the term∫ T

0
|ξ̂|3 e−2sβ∗ |r|2.

A priori this term cannot be easily estimated by the terms in the LHS of (5.5). However, we

are going to see that such an estimate is possible via a compactness argument. For that we first

add the term s1/2
∫ T

0 |ξ̂|
3 ρ−2s

Γi
|r|2 in both sides of (5.5), and we obtain the following theorem.

Theorem 5.1. Consider the coupled system (1.4). Then there exist positive constants λ0, s0(λ)

such that the following inequality holds for all λ ≥ λ0, s ≥ s0(λ) and for all solutions (φ, r) of

the system (1.4):

s−1

∫
Q
ξ−1(|ψ′|2 + |∆ψ|2) +

∫
Q
|M1ψ|2 +

∫
Q
|M2ψ|2 + sλ2

∫
Q

eλ(η+m‖η‖∞)

tk(T − t)k
|∇ψ|2

+
∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 + s3λ4

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + sλ

∫
Σi

eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2

+
∫ T

0
ρ−2s

Γi
|r′′|2 + s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2 +

∫
Q
ρ−2s|∇p|2

+s1/2

∫ T

0
|ξ̂|3 ρ−2s

Γi
|r|2

≤ C

{
s3λ4

∫
ω×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + s2λ2

∫
ω2×(0,T )

ρ−2s ξ2|p|2 + s1/2

∫ T

0
|ξ̂|3 ρ−2s

Γi
|r|2
}
.

(5.6)

If we compare the above estimate with the one of Theorem 3.1, we can observe that the

gradient and the trace of the pressure have been removed from the RHS of the inequality, only

a local term of the pressure is still remaining. But for that it has been necessary to modify the

weight in the term involving r.

6 Estimate of r

Our goal in the next two sections is to strengthen the above inequality (5.6) by removing the

term
∫ T

0 θ2|r|2 from the RHS, where θ = |ξ̂|3/2 ρ−sΓi
. This signifies that the observability of the

whole system is possible without making any observation on the solid. A priori this is not

obvious.

In [19], we have used the analogue of equation (2.4) to obtain an estimate of the term∫ T
0 ρ−2s

Γi
|r|2 in the right hand side of (5.5). Due to the presence of the pressure term, such an

idea does not seem to work, as shown below. To overcome this difficulty, we present arguments

based on a combination of monotonicity and compacteness in this section and the next one.
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6.1 First estimate of r

If we multiply the equation satisfied by r in (2.4) by ρ−2s
Γi

r we obtain∫ T

0
ρ−2s

Γi
|r|2 = −

∫ T

0
r′′ ρ−2s

Γi
r − 2

∫ T

0
rρ−sΓi

∫
Γi

Dψ n

−s
∫ T

0
rρ−2s

Γi

∫
Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n+

∫ T

0
rρ−2s

Γi

∫
Γi

pn.

With an integration by parts and Cauchy-Schwarz and Young inequalities we have∫ T

0
ρ−2s

Γi
|r|2

≤
∫ T

0
ρ−2s

Γi
|r′|2 − 2s

∫ T

0
ρ−2s

Γi
β′|Γir′ · r + ε

∫ T

0
ρ−2s

Γi
|r|2 +

1
ε

∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2
+ε
∫ T

0
ρ−2s

Γi
|r|2 +

2s2λ2

ε

∫ T

0
ρ−2s

Γi

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

|Γi||r′|2 +
ε

2

∫ T

0
ρ−2s

Γi
|r|2 +

1
2ε

∫ T

0

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2
≤
∫ T

0
ρ−2s

Γi
|r′|2 +

7ε
2

∫ T

0
ρ−2s

Γi
|r|2 +

s2

2ε

∫ T

0
ρ−2s

Γi
|r′|2|β′|Γi |2 +

1
ε

∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2
+

2s2λ2

2ε

∫ T

0
ρ−2s

Γi

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

|Γi||r′|2 +
1
2ε

∫ T

0

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 .
Since |β′|Γi | ≤ eλmK1

tk(T−t)k , by choosing ε = 1/7, it follows that

∫ T

0
ρ−2s

Γi
|r|2 ≤ 2

∫ T

0
ρ−2s

Γi
|r′|2 + Cs e2λmK1

∫ T

0
ρ−2s

Γi

1
t2k(T − t)2k

|r′|2

+Cs2λ2

∫ T

0
ρ−2s

Γi

e2λ(η+m‖η‖∞)|Γi
t2k(T − t)2k

|r′|2 + C

∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 + C

∫ T

0
ρ−2s

Γi

∣∣∣∣∫
Γi

pn

∣∣∣∣2 .
The first three terms of the RHS are dominated by s3λ3

∫ T
0

e3λ(η+m‖η‖∞)|Γi
t3k(T−t)3k ρ−2s

Γi
|r′|2, the fourth

term is dominated by sλ
∫

Σi
eλ(η+m‖η‖∞)

tk(T−t)k |∂nψ|
2. But the term C

∫ T
0 ρ−2s

Γi

∣∣∣∫Γi
pn
∣∣∣2 cannot be

estimated by
∫
Q ρ
−2s|∇p|2 because there is no parameter s or λ multiplying it. Therefore the

above estimate cannot be helpful because we find again a term involving the trace of the pressure.

6.2 Second estimate of r

Now, we exploit the fact that the state space of the ’solid part’ of the model is of finite dimension.

Our goal will be achieved in two steps. As a first step, we prove in this section an intermediate

inequality (6.1) written down below. The final inequality will be established in the next section

(see (7.1)).

Let us recall that we have set θ(t) = |ξ̂|3/2e−sβi , where βi = β|Γi . A direct calculation leads

21



to

θ′(t) = e−sβi |ξ̂|3/2
(
−sβ′i +

3
2
|ξ̂|−1ξ̂′

)
= e−sβi |ξ̂|3/2

(
−s(eλmK1 − eλ(ηi+m‖η‖∞))(

−k
tk+1(T − t)k

k

tk(T − t)k+1
)− 3

2
k

t
+

3
2

k

T − t

)
= e−sβi |ξ̂|3/2 k

tk+1(T − t)k+1
R(t),

with ηi = η|Γi and

R(t) = −s(eλmK1 − eλ(ηi+m‖η‖∞))(−kT + 2kt)− 3
2
ktk(T − t)k+1 +

3
2
ktk+1(T − t)k.

The roots of θ′ are the roots of the polynomial R. Let us denote by

T1 < T2 < · · · < T`

the roots of R lying in the interval (0, T ). Necessarily, θ is monotone in the sub-intervals

(Tj , Tj+1) for 0 ≤ j ≤ `, with T0 = 0 and T`+1 = T . Let E be the vector space of solutions to

system (2.4) obtained by varying (r0, r1). We introduce the following subspace of E :

Ei =
{

(ψ, p, r) ∈ E | r(Tj) = 0 for all 1 ≤ j ≤ `
}
.

We see that Ei is of infinite dimension and is of codimension ≤ 2`. In the following arguments,

we will suppose that Ei is of codimension = 2` (other cases can be treated in a similar manner).

In such a case, there exist (ψ̂1
j , p̂

1
j , r̂

1
j ) ∈ E and (ψ̂2

j , p̂
2
j , r̂

2
j ) ∈ E such that

r̂1
j (Tj) = (1, 0) and r̂2

j (Tj) = (0, 1).

Let E0 be the space spanned by {r̂1
j , r̂

2
j | j = 1, · · · , `}, and Ef be the subspace spanned by

(ψ̂1
j , p̂

1
j , r̂

1
j )j=1,··· ,` and (ψ̂2

j , p̂
2
j , r̂

2
j )j=1,··· ,` so that we have

E = Ei ⊕ Ef .

Let us denote by πf : E → Ef the mapping defined by

πf (ψ, p, r) =
∑̀
j=1

((
r(Tj) · (1, 0)

)
(ψ̂1

j , p̂
1
j , r̂

1
j ) +

(
r(Tj) · (0, 1)

)
(ψ̂2

j , p̂
2
j , r̂

2
j )
)
.

Observe that (ψ, p, r) − πf (ψ, p, r) ∈ Ei for all (ψ, p, r) ∈ E. Further we set π0(ψ, p, r) = r for

all (ψ, p, r) ∈ E, and we define π : E → E0 by π = π0 ◦ πf . We have then

π(ψ, p, r) =
∑̀
j=1

((
r(Tj) · (1, 0)

)
r̂1
j +

(
r(Tj) · (0, 1)

)
r̂2
j

)
.

Lemma 6.1. If (ψ, p, r) ∈ Ei, then∫ T

0
θ2 |r|2 ≤ C

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2.
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Proof. Indeed, we establish similar inequalities over the intervals (Tj , Tj+1), with j =

0, · · · , `, on which θ is monotone.

If θ is nondecreasing over (Tj , Tj+1), we write

r(t) = −
∫ Tj+1

t
r′(τ)dτ,

and we have

θ(t)|r(t)| ≤ θ(t)
∫ Tj+1

t
|r′(τ)|dτ ≤

∫ Tj+1

t
θ(τ)|r′(τ)|dτ ≤ (Tj+1−t)1/2

(∫ Tj+1

t
|θ(τ)|2|r′(τ)|2dτ

)1/2

,

for all Tj ≤ t ≤ Tj+1. Therefore we have∫ Tj+1

Tj

|θ(t)|2|r(t)|2dt ≤ (Tj+1 − Tj)2

∫ Tj+1

Tj

|θ(τ)|2|r′(τ)|2dτ.

By summing them up, we obtain the required estimate.

If θ is nonincreasing over (Tj , Tj+1), we write

r(t) =
∫ t

Tj

r′(τ)dτ,

and we have

θ(t)|r(t)| ≤ θ(t)
∫ t

Tj

|r′(τ)|dτ ≤
∫ t

Tj

θ(τ)|r′(τ)|dτ ≤ (t− Tj)1/2

(∫ t

Tj

|θ(τ)|2|r′(τ)|2dτ

)1/2

,

for all Tj ≤ t ≤ Tj+1. Therefore we have∫ Tj+1

Tj

|θ(t)|2|r(t)|2dt ≤ (Tj+1 − Tj)2

∫ Tj+1

Tj

|θ(τ)|2|r′(τ)|2dτ.

Taking into account all these inequalities, it yields∫ T

0
|θ(t)|2|r(t)|2dt =

∑̀
j=0

∫ Tj+1

Tj

|θ(t)|2|r(t)|2dt ≤
∑̀
j=0

(Tj+1 − Tj)2

∫ Tj+1

Tj

|θ(τ)|2|r′(τ)|2dτ

≤ T 2

∫ T

0
|θ(τ)|2|r′(τ)|2dτ ≤ T 2

∫ T

0
|ξ|Γi |3ρ

−2s
Γi
|r′(τ)|2dτ.

With these preparations, we can now consider the inequality (5.6) and estimate the last term

of the right hand side of the inequality as follows. Writing r = r − π(ψ, p, r) + π(ψ, p, r) and

noting that r − π(ψ, p, r) ∈ Ei, we have by Lemma 6.1

s1/2

∫ T

0
θ2|r|2 ≤ Cs1/2

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2 + CJ(ψ, p, r),
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where

J(ψ, p, r) = s1/2

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|π(ψ, p, r)′|2 + s1/2

∫ T

0
θ2|π(ψ, p, r)|2.

Note that the first term can be absorbed in the left hand side of (5.6) by choosing λ large. More

precisely, we have

C

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2 ≤ 1

2
s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2,

for λ large. Thus the estimate (5.6) gives

I(ψ, p, r) ≤ C (K(ψ, p, r) + J(ψ, p, r)), (6.1)

with

I(ψ, p, r) = s−1

∫
Q
ξ−1(|ψ′|2 + |∆ψ|2) +

∫
Q
|M1ψ|2 +

∫
Q
|M2ψ|2 + sλ2

∫
Q

eλ(η+m‖η‖∞)

tk(T − t)k
|∇ψ|2

+
∫ T

0

∣∣∣∣∫
Γi

Dψ n

∣∣∣∣2 + s3λ4

∫
Q

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + sλ

∫
Σi

eλ(η+m‖η‖∞)

tk(T − t)k
|∂nψ|2

+
∫ T

0
(ρ−2s

Γi
|r′′|2 + s1/2θ2|r|2) + s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2 +

∫
Q
ρ−2s|∇p|2

and

K(ψ, p, r) = s3λ4

∫
ω×(0,T )

e3λ(η+m‖η‖∞)

t3k(T − t)3k
|ψ|2 + s2λ2

∫
ω2×(0,T )

ρ−2s ξ2|p|2.

7 Compactness argument and Carleman inequality II

From now on, we do not vary the parameters (s, λ) and fix them so that inequality (6.1) holds.

The aim in this section is to show that we can strengthen the inequality (6.1) by proving that

there exists a constant C(λ, s) > 0 such that

I(ψ, p, r) ≤ C(λ, s)K(ψ, p, r) . (7.1)

This is the Carleman inequality II that we have for system (2.4). We will translate it to the

original system (1.4) in the next section. To prove inequality (7.1), we argue by contradiction.

We suppose that there exists a sequence (ψj , pj , rj)j associated with the data (r0
j , r

1
j ) such that

I(ψj , pj , rj) = 1 and limj→∞K(ψj , pj , rj) = 0 .

We can assume that there exists (ψ, p, r) ∈ L2
loc(Q) × L2

loc(0, T ) and that – after extraction

of a subsequence – the sequence (ψj , pj , rj)j enjoys the following convergence properties in the
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indicated weighted spaces:

ψ′j ⇀ ψ′ for the weak topology of L2(ξ−1;Q) ,

∆ψj ⇀ ∆ψ for the weak topology of L2(ξ−1;Q) ,

∇ψj ⇀ ∇ψ for the weak topology of L2(eλ(η+m‖η‖∞)t−k(T − t)−k;Q) ,

ψj ⇀ ψ for the weak topology of L2(e3λ(η+m‖η‖∞)t−3k(T − t)−3k;Q) ,

r′′j ⇀ r′′ for the weak topology of L2(ρ−2s
Γi

; (0, T )) ,

rj ⇀ r for the weak topology of L2(|ξ̂|3ρ−2s
Γi

; (0, T )) ,

r′j ⇀ r′ for the weak topology of L2(|ξ|Γi |3ρ
−2s
Γi

t−3k(T − t)−3k; (0, T )) .

∇pj ⇀ ∇p for the weak topology of L2(ρ−2s;Q)∫
Γi

Dψj n ⇀

∫
Γi

Dψ n for the weak topology of L2(0, T ).

Notice that these weights act only with respect to the time variable and not in space variables.

In the next two subsections, we will deduce that ψ ≡ 0, r ≡ 0, and that∫ T

0
θ2|π(ψj , pj , rj)|2 + s3λ3

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|π(ψj , pj , rj)′|2 → 0. (7.2)

From (6.1), we conclude that I(ψj , pj , rj) → 0. This is in contradiction with I(ψj , pj , rj) = 1,

which proves (7.1).

7.1 Passage to the limit in problem (2.4)

To prove that ψ ≡ 0, p ≡ 0 and r ≡ 0, we first show that we can pass to the limit in problem

(2.4). To pass to the limit in the equation

M1ψj +M2ψj = −ρ−s∇pj + s(∆)ψj = f js + s(∆)ψj ,

we use the L2-estimate on {M1ψj} and {M2ψj}. Hence the subsequences {M1ψj} and {M2ψj}
weakly converge in L2(Q). To identify their limits, it is enough to take test functions in D(Q)

and to pass to the limit. Thanks to the above convergence we get

M1ψj
L2(Q)
⇀ M1ψ, M2ψj

L2(Q)
⇀ M2ψ,

s(∆β)ψj ⇀ s(∆β)ψ weakly in L2(e3λ(η+m‖η‖∞)t−3k(T − t)−3k;Q),

∇pj ⇀ ∇p weakly in L2(ρ−2s;Q).

Next we use K(ψj , pj , rj)→ 0. This shows that f js → 0 in L2(Q) and ψ = 0 in ω× (0, T ). With

this information, we see that

M1ψ +M2ψ = s(∆β)ψ in Q, and ψ = 0 in ω × (0, T ) .

To pass to the limit in the equation satisfied by rj , we notice that∫
Γi

Dψj n ⇀

∫
Γi

Dψj n for the weak topology of L2(0, T ),
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and

pj |Γi ⇀ p|Γi for the weak topology of L2(ρ−2s
Γi

; 0, T ;L2(Γi)).

We can also pass to the limit in the boundary conditions on Σ, in particular we can prove that

ψ = ρ−sΓi
r′ on Σi.

This proves that (ψ, p, r) satisfies the system

M1ψ +M2ψ = −ρ−s∇π + s(∆β)ψ, divψ = −s∇β · ψ in Q,

ψ = 0 on Σe,

ψ = ρ−sΓi
r′ on Σi,

r′′ + r = −2ρsΓi

∫
Γi

Dψ n− s
∫

Γi

(
r′ ⊗∇β +∇β ⊗ r′

)
n+

∫
Γi

πn in (0, T ).

To deduce that ψ ≡ 0, p ≡ 0 and r ≡ 0, we pass from ψ to φ = ρsψ. We see that (φ, p, r)

satisfies the system (1.4) with f = 0. In addition, we have φ ≡ 0 in ω × (0, T ). Applying the

unique continuation principle for the Stokes equation [6, 7], we obtain φ = 0 and ∇p = 0 in Q,

and hence ψ = 0 and p = 0 in Q (p = 0 because of (3.5)). Going back to the system satisfied

by (ψ, p, r), we deduce successively that r′ = 0, r′′ = 0 and r = 0. In particular, we have

rj ⇀ 0 for the weak topology of L2(|ξ̂|3ρ−2s
Γi

; (0, T ))

r′j ⇀ 0 for the weak topology of L2(ρ−2s
Γi

; (0, T )).
(7.3)

7.2 Proof of (7.2)

We equip the space

H =
{
r ∈ H1

loc(0, T ; R2) | ‖r′‖L2(ρ−2s
Γi

t−3k(T−t)−3k;(0,T )) + ‖r‖
L2(|ξ̂|3ρ−2s

Γi
;(0,T ))

<∞
}

with the norm

‖r‖H = ‖r′‖L2(ρ−2s
Γi

t−3k(T−t)−3k;(0,T )) + ‖r‖
L2(|ξ̂|3ρ−2s

Γi
;(0,T ))

.

The mapping

r 7−→ (r(Tn))1≤n≤`

is continuous from H into R` since

|r (Tn) | ≤ C
{
‖r′‖L2(ρ−2s

Γi
t−3k(T−t)−3k;(0,T )) + ‖r‖

L2(|ξ̂|3ρ−2s
Γi

;(0,T ))

}
.

Therefore it is also compact. Due to (7.3), |rj (Tn) | −→ 0 for all n = 1, · · · , `. The proof of

(7.2) is complete.
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8 Carleman inequality III

The purpose here is to merely translate the Carleman inequality (7.1) from the transformed

system (2.4) to original system (1.4). Recalling that φ = esβ ψ, we have

φ′ = esβ
(
s β′ ψ + ψ′

)
, ∇φ = esβ (∇ψ + sψ∇β) ,

∆φ = esβ
(
∆ψ + s(∆β)ψ + 2s∇β · ∇ψ + s2|∇β|2ψ

)
.

As in [19, Section 11], we can prove the following theorem.

Theorem 8.1. Consider the coupled system (1.4) with f = 0. Then there exist positive constants

λ0, s0(λ) such that the following inequality holds for all λ ≥ λ0, s ≥ s0(λ) and for all solutions

(φ, r) of the system (1.4):∫
Q
ρ−2s ξ−1

(∣∣φ′∣∣2 + |∆φ|2
)

+
∫
Q
ρ−2s e

λ(η+m‖η‖∞)

t(T − t)
|∇φ|2 +

∫
Q
ρ−2s e

3λ(η+m‖η‖∞)

t3k(T − t)3k
|φ|2

+
∫ T

0
ρ−2s

Γi
|r′′|2 +

∫ T

0
|ξ̂|3 ρ−2s

Γi
|r|2 +

∫ T

0

e3λ(η+m‖η‖∞)|Γi
t3k(T − t)3k

ρ−2s
Γi
|r′|2 +

∫
Q
ρ−2s|∇p|2

≤ C(λ, s)

{∫
ω×(0,T )

ρ−2s e
3λ(η+m‖η‖∞)

t3k(T − t)3k
|φ|2 +

∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
.

9 Regularity of solutions to system (1.4)

One way to prove Theorem 1.1 is to improve the Carleman inequality of Theorem 8.1 by removing

the local term of the pressure in the RHS of Carleman estimate in Theorem 8.1 as in [9]. This

leads to lengthy calculations. Another way consists in using a fictitious control as in [14]. We

follow this method in the following section. It consists in using an additional control in the

divergence condition (see system (10.1)). Next this control is eliminated in section 10.2 by using

the regularity results obtained in Theorem 9.1 below. Let us first state a regularity result for

the system
φ′ −∆φ+∇p = f and divφ = 0 in Q,

φ1 = 0 on Σe,

φ = rb on Σi,

φ(0) = 0 in Ω,

r′a − rb = g in (0, T ),

r′b + ra = h−
∫

Γi

σ(φ, p)n in (0, T ),

ra(0) = 0 and rb(0) = 0.

(9.1)
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Lemma 9.1. The solution to system (9.1) obeys

‖φ‖H2,1(Q) + ‖p‖L2(0,T ;H1(Ω)) + ‖ra‖H1(0,T ;R2) + ‖rb‖H1(0,T ;R2)

≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖g‖L2(0,T ;R2) + ‖h‖L2(0,T ;R2)).
(9.2)

Proof. Let us first notice that, using an energy identity as in section 1, we can verify that the

solution to system (9.1) obeys

‖φ‖L2(0,T ;H1(Ω)) + ‖ra‖L2(0,T ;R2) + ‖rb‖L2(0,T ;R2)

≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖g‖L2(0,T ;R2) + ‖h‖L2(0,T ;R2)).
(9.3)

As in section 5, system (9.1) can be rewritten in terms of Pφ = φe and (I −P )φ = φs as follows

φ′e −Aφe = (−A)PL(rbχΓi) + Pf, φe(0) = 0,

φs = (I − P )L(rbχΓi),

r′a − rb = g in (0, T ),

(I +K)r′b + ra = h−
∫

Γi

σ(φe, pe)n−
∫

Γi

Dφs n+
∫

Γi

pf n in (0, T ),

ra(0) = 0 and rb(0) = 0,

(9.4)

where pe is the pressure appearing in the equation satisfied by φe, ps = −qt where q(t) = N(rb ·
n) ∈ H1(Ω) (N is the operator introduced in section 5), pf is determined by ∇pf = ∇p1 +∇p2,

p1 and p2 are the solutions to

p1 ∈ H1
0 (Ω), ∆p1 = div f in Ω,

p2 ∈ H1(Ω), ∆p2 = 0 in Ω,
∂p2

∂n
= (f −∇p1) · n on Γ.

As in section 5, we can choose all the pressure terms obeying the condition (3.5). Estimate (9.2)

can be proved with (9.3) and with calculations similar as the ones in section 5.

Let (φ, p, r) be the solution to (1.4) corresponding to f = 0 and to (φ0, r0, r1) ∈ H. It

will be advantageous to rewrite the structure equation as a first order evolution system. Let us

introduce

(φ1, p1, ra,1, rb,1) = (s ξ̂)−δe−sβ
∗
(φ, p, r, r′) and ρ1 =

d

dt

(
(s ξ̂)−δe−sβ

∗
)
.

We can check that (φ1, p1, ra,1, rb,1) is the solution to system (9.1) with f = ρ1φ = f1, g = ρ1r =

g1 and h = ρ1r
′ = h1.

Theorem 9.1. There exist positive constants λ0, s0(λ) such that the following inequality holds

for all λ ≥ λ0, s ≥ s0(λ) and for all solutions (φ, p, r) of system (1.4) with f = 0, the quadruplet

(φ1, p1, ra,1, rb,1) = (s ξ̂)−δe−sβ
∗
(φ, p, r, r′) satisfies the estimate:

‖φ1‖2H4,2(Q) + ‖∇p1‖2H1(0,T ;L2(Ω)) + ‖ra,1‖2H2(0,T ;R2) + ‖rb,1‖2H2(0,T ;R2)

≤ C(λ, s)

{∫
ω×(0,T )

ρ−2s ξ3 |φ|2 +
∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
.

(9.5)
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Proof. From Lemma 9.1, it follows that

‖φ1‖H2,1(Q) + ‖∇p1‖L2(0,T ;L2(Ω)) + ‖ra,1‖H1(0,T ;R2) + ‖rb,1‖H1(0,T ;R2)

≤ C(‖ρ1φ‖L2(Q) + ‖ρ1ra‖L2(0,T ;R2) + ‖ρ1rb‖L2(0,T ;R2)).
(9.6)

To improve the regularity of the solution to system (9.1), we write the equation satisfied by

φ2 = φ′1, p2 = p′1, ra,2 = r′a,1, rb,2 = r′b,1.

We observe that

φ′2 −∆φ2 +∇p2 = f ′1 = (ρ1φ)′ and divφ2 = 0 in Q,

φ2 = 0 on Σe,

φ2 = rb,2 on Σi,

φ2(0) = 0 in Ω,

r′a,2 − rb,2 = g′1 = (ρ1ra,1)′ in (0, T ),

r′b,2 + ra,2 = h′1 −
∫

Γi

σ(φ2, p2)n = (ρ1rb,1)′ −
∫

Γi

σ(φ2, p2)n in (0, T ),

ra,2(0) = 0 and rb,2(0) = 0.

From Lemma 9.1, it follows that

‖φ2‖H2,1(Q) + ‖∇p2‖L2(0,T ;L2(Ω)) + ‖ra,2‖H1(0,T ;R2) + ‖rb,2‖H1(0,T ;R2)

≤ C(‖f ′1‖L2(Q) + ‖g′1‖L2(0,T ;R2) + ‖h′1‖L2(0,T ;R2)).
(9.7)

Let us estimate f1 in H2,1(Q). We have

∆f1 = ρ1 ∆φ, f ′1 = ρ′1 φ+ ρ1 φ
′, |ρ1| ≤ Cs−δ+1 (ξ̂)−δ+

k+1
k e−sβ

∗
,

|ρ′1| ≤ Cs−δ+2 (ξ̂)−δ+
2(k+1)
k e−sβ

∗
.

Therefore, with Theorem 8.1, we have

‖∆f1‖2L2(Q) + ‖f ′1‖2L2(Q)

≤ C(s, λ)
(∫

Q
|ξ̂|−2δ+

4(k+1)
k e−2sβ∗ |φ|2 +

∫
Q
|ξ̂|−2δ+

2(k+1)
k e−2sβ∗(|φ′|2 + |∆φ|2)

)

≤ C(s, λ)
(∫

Q
ξ3 e−2sβ∗ |φ|2 +

∫
Q
ξ̂−1e−2sβ∗(|φ′|2 + |∆φ|2)

)

≤ C(s, λ)

{∫
ω×(0,T )

ρ−2s ξ3 |φ|2 +
∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
,

provided that

−2δ +
2(k + 1)

k
≤ −1,
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which is satisfied if

k = 4 and 7 ≤ 4δ.

Now, let us estimate g′1 and h′1 in L2(0, T ; R2). We have

g′1 = ρ′1 r + ρ1 r
′, h′1 = ρ′1 r

′ + ρ1 r
′′.

Therefore, still with Theorem 8.1, we obtain

‖g′1‖2L2(0,T ;R2)

≤ C(s, λ)
(∫ T

0
|ξ̂|−2δ+

4(k+1)
k e−2sβ∗ |r|2 +

∫ T

0
|ξ̂|−2δ+

2(k+1)
k e−2sβ∗ |r′|2

)

≤ C(s, λ)
(∫ T

0
|ξ|Γi |3 e−2sβ∗ |r|2 +

∫ T

0
ξ̂−1e−2sβ∗ |r′|2

)

≤ C(s, λ)

{∫
ω×(0,T )

ρ−2s ξ3 |φ|2 +
∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
,

and
‖h′1‖L2(0,T ;R2)

≤ C(s, λ)
(∫ T

0
|ξ̂|−2δ+

4(k+1)
k e−2sβ∗ |r′|2 +

∫ T

0
|ξ̂|−2δ+

2(k+1)
k e−2sβ∗ |r′′|2

)

≤ C(s, λ)
(∫ T

0
|ξ|Γi |3 e−2sβ∗ |r′|2 +

∫ T

0
ξ̂−1e−2sβ∗ |r′′|2

)

≤ C(s, λ)

{∫
ω×(0,T )

ρ−2s ξ3 |φ|2 +
∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
.

In these estimates we have used that |ξ̂| ≤ C(λ)|ξ|Γi |. Thus, from (9.7) it follows that

‖φ2‖H2,1(Q) + ‖∇p2‖L2(0,T ;L2(Ω)) + ‖ra,2‖H1(0,T ;R2) + ‖rb,2‖H1(0,T ;R2)

C(s, λ)

{∫
ω×(0,T )

ρ−2s ξ3 |φ|2 +
∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
,

(9.8)

from which we deduce

‖φ1‖H1(0,T ;H2(Ω)) + ‖φ1‖H2(0,T ;L2(Ω)) + ‖∇p1‖H1(0,T ;L2(Ω)) + ‖ra,1‖H2(0,T ;R2) + ‖rb,1‖H2(0,T ;R2)

≤ C(s, λ)

{∫
ω×(0,T )

ρ−2s ξ3 |φ|2 +
∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
.

Next, using equation (9.1), we can write that φ1(t) obeys the stationary Stokes equation

−∆φ1(t) +∇p1(t) = f1 − φ′1 and divφ1(t) = 0 in Ω,

φ1(t) = 0 on Γe,

φ1(t) = rb,1(t) on Γi.

(9.9)
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Thus from elliptic regularity results it follows that

‖φ1‖L2(0,T ;H4(Ω))

≤ C
{
‖f1‖L2(0,T ;H2(Ω)) + ‖φ′1‖L2(0,T ;H2(Ω)) + ‖rb,1‖L2(0,T ;R2)

}
≤ C(s, λ)

{∫
ω×(0,T )

ρ−2s ξ3 |φ|2 +
∫
ω2×(0,T )

ρ−2s ξ2|p|2
}
.

This completes the proof of (9.5).

10 Null controllability result

In this section, we establish null controllability of our original system (1.4) as a consequence of

the Carleman inequality stated in Theorem 8.1 and of the regularity results in Theorem 9.1.

10.1 Null controllability with two controls

We first consider the system with two controls (u, v)

y′ − divσ(y, π) = uχω and div y = v ζ in Q,

y = 0 on Σe,

y = q′ on Σi,

y(0) = y0 in Ω,

q′′ + q = −
∫

Γi

σ(y, π)n in (0, T ),

q(0) = q0 and q′(0) = q1 .

(10.1)

We have to define solutions to system (10.1) in the case when v belongs to L2(0, T ;L2(Ω)).

For that, we use the transposition method. Let us consider the adjoint system, in which the

structure equation is rewritten as a first order system

−φ′ − divσ(φ, p) = f and divφ = 0 in Q,

φ = 0 on Σe,

φ = −rb on Σi,

φ(T ) = 0 in Ω,

r′a = rb + g,

r′b + ra = h−
∫

Γi

σ(φ, p)n in (0, T ),

ra(T ) = 0 and rb(T ) = 0.

(10.2)
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We shall say that (y, π, q) ∈ L2(0, T ;L2(Ω)) × C1([0, T ]; R2) is a solution to system (10.1), in

the sense of transposition, when∫ T

0

∫
Ω
y f +

∫ T

0
q g +

∫ T

0
q′ h =

∫ T

0

∫
ω
uφ+

∫ T

0

∫
Ω
v ζ p+

∫
Ω
y0 φ(0) + q0 · ra(0) + q1 · rb(0),

for all (f, g, h) ∈ L2(0, T ;L2(Ω))×L2(0, T ; R2)×L2(0, T ; R2), where (φ, p, ra, rb) is the solution

to system (10.2). By this way, we can show that system (10.1) admits a unique solution, in the

sense of transposition, and this solution obeys the estimate

‖y‖L2(0,T ;L2(Ω)) +‖q‖C1([0,T ];R2) ≤ C(‖y0‖L2(Ω) + |q0|+ |q1|+‖ζ v‖L2(0,T ;L2(Ω)) +‖u‖L2(0,T ;L2(Ω))).

Next using the equation

y′ − divσ(y, π) = uχω and div y = v ζ in Q,

y = 0 on Σe,

y = q′ on Σi,

y(0) = y0 in Ω,

(10.3)

and regularity result from [22] we get

‖Py‖C([0,T ];V −1(Ω)) ≤ C(‖y0‖L2(Ω) + ‖q‖L2(0,T ;R2) + ‖ζ v‖L2(0,T ;L2(Ω)) + ‖u‖L2(0,T ;L2(Ω))).

Here V −1(Ω) denotes the dual of V 1
0 (Ω) with V 0

n (Ω) as pivot space. Let us notice that this

estimate is more precise than the one stated in [8, Theorem 2.14] where it is shown that Py

belongs to C([0, T ];V −2(Ω)) for less regular data (V −2(Ω) is the dual of H2(Ω)∩V 1
0 (Ω)). Finally

with the previous estimate we have

‖y‖L2(0,T ;L2(Ω)) + ‖q‖C1([0,T ];R2) + ‖Py‖C([0,T ];V −1(Ω))

≤ C(‖y0‖L2(Ω) + |q0|+ |q1|+ ‖ζ v‖L2(0,T ;L2(Ω)) + ‖u‖L2(0,T ;L2(Ω))).
(10.4)

Theorem 10.1. For all y0 ∈ V 0(Ω) , q0 ∈ R2, and q1 ∈ R2 satisfying the conditions y0 ·
n = q1 · n on Γi and y0 · n = 0 on Γe, there exist a function u ∈ L2(Q) and a function

ζ v ∈ H1(0, T ;H1(Ω)), satisfying
∫

Ω v(t) ζ = 0 for all t ∈ [0, T ], ζ v(0) = 0 and ζ v(T ) = 0, such

that the solution of (10.1) obeys

y(T ) = 0, q(T ) = 0 and q′(T ) = 0.

Proof. Step 1. Penalized problem. We are going to prove the null controllability result by

using a penalized optimal control problem. Let us introduce the problem

(Pε) inf
{
Jε(y, u, v) | (y, p, u, v) obeys (10.1)

}
where

Jε(y, u, v) =
1
2ε
‖Py(T )‖2V −1(Ω)+

1
2ε
|q(T )|+ 1

2ε
|q′(T )|2+

1
2

∫
ω×(0,T )

(
ξ−3 e2sβ|u|2 + ζ ξ−2 e2sβ̂|v|2

)
.
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In Jε only Py(T ) is penalized and not y(T ) for two convergent reasons. Firstly, we know that

t 7−→ Py(t) is continuous from [0, T ] into V −1(Ω) while there is no hope to have continuity

results for t 7−→ y(t) (see [8, 21, 22]). Secondly, if Py(T ) = 0, q(T ) = 0, q′(T ) = 0, and u(t) = 0

and v(t) = 0 for t > T , then the solution to (10.1) obeys y(t) = 0, q(t) = 0 and q′(t) = 0 for

t > T (see [21]).

Problem (Pε) admits a unique solution (yε, πε, uε, vε) which is characterized by the optimality

system
y′ε − divσ(yε, πε) = uε χω and div yε = vε ζ in Q,

yε = 0 on Σe,

yε = q′ε on Σi,

yε(0) = y0 in Ω,

q′′ε + qε = −
∫

Γi

σ(yε, πε)n in (0, T ),

qε(0) = q0 and q′ε(0) = q1,

(10.5)

−φ′ε − divσ(φε, pε) = 0 and divφε = 0 in Q,

φε = 0 on Σe,

φε = −r′ε on Σi,

φε(T ) = −1
ε (−P∆)−1Pyε(T ) in Ω,

r′′ε + rε = −
∫

Γi

σ(φε, pε)n in (0, T ),

rε(T ) = 1
εqε(T ) and r′ε(T ) = 1

εq
′
ε(T ),

(10.6)

uε = ξ3 e−2sβ φε χω and vε = −ξ2 e−2sβ̂ pε +
1∫
ω ζ

∫
ω
ξ2 e−2sβ̂ pε ζ dx. (10.7)

We choose the pressure pε (see (3.5)) such that∫
ω
ξ(x, t)2 e−2sβ̂(t) pε(x, t) ζ(x) dx = 0 for all t ∈ (0, T ).

Thus

vε = −ξ2 e−2sβ̂ pε.

With equations (10.5)–(10.7), we obtain∫
ω×(0,T )

ξ3 e−2sβ|φε|2 +
∫
ω×(0,T )

ξ2 e−2sβ̂ ζ |pε|2 +
1
ε
‖Pyε(T )‖2V −1(Ω) +

1
ε
|qε(T )|2 +

1
ε
|q′ε(T )|2

= −
∫

Ω
y0 · φε(0)− q0 · rε(0)− q1 · r′ε(0).
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With Young’s inequality we have∫
ω×(0,T )

(
ξ3 e−2sβ|φε|2 + ξ2 e−2sβ̂ ζ |pε|2

)
+

1
ε
‖Pyε(T )‖2V −1(Ω) +

1
ε
|qε(T )|2 +

1
ε
|q′ε(T )|2

≤ η

2

(
‖φε(0)‖2L2(Ω) + |rε(0)|2 + |r′ε(0)|2

)
+

1
2η

(
‖y0‖2L2(Ω) + |q0|2 + |q1|2

)
.

(10.8)

Step 2. Uniform estimates. As in [19, Lemma 12.2], applying the Carleman inequality of

Theorem 8.1 to the solution (φε, pε, rε) of the adjoint system (10.6) and using that ζ|ω2 = 1, we

obtain

‖φε(0)‖2L2(Ω) + |rε(0)|2 + |q′ε(0)|2 ≤ C
∫
ω×(0,T )

ξ3 e−2sβ |φε|2 + C

∫
ω×(0,T )

ξ2 e−2sβ ζ |pε|2, (10.9)

where C is independent of ε. Since e−2sβ̂ ≥ e−2sβ, with (10.9) estimate (10.8) is transformed as

follows∫
ω×(0,T )

(
ξ3 e−2sβ|φε|2 + ξ2 e−2sβ̂ ζ |pε|2

)
+

1
ε
‖Pyε(T )‖2V −1(Ω) +

1
ε
|qε(T )|2 +

1
ε
|q′ε(T )|2

≤ C
(
‖y0‖2L2(Ω) + |q0|2 + |q1|2

)
.

(10.10)

In particular {uε} is bounded in L2(Q) since we have∫
Q
|uε|2 =

∫
ω×(0,T )

ξ6 e−4sβ|φε|2 ≤ C
∫
ω×(0,T )

ξ3 e−2sβ|φε|2.

Step 3. Regularity of vε. Recall that

uε = ξ3 e−2sβ φε χω and vε = −ξ2 e−2sβ̂ pε.

We introduce

φ̃ε = (s ξ̂)−δe−sβ
∗
φε and p̃ε = (s ξ̂)−δe−sβ

∗
pε.

We have

(s ξ̂)δesβ
∗
φ̃ε = φε and (s ξ̂)δesβ

∗
p̃ε = pε.

Thus
uε = ξ3 e−2sβ (s ξ̂)δesβ

∗
φ̃ε χω

and
vε = γ2 p̃ε with γ2 = −ξ2 e−2sβ̂ (s ξ̂)δ esβ

∗
.

Let us calculate ζ v′ε and ∇(ζ vε). We have

ζ v′ε = ζ γ′2 p̃ε + ζ γ2 p̃
′
ε, ∇(ζ vε) = ∇(ζ γ2) p̃ε + ζ γ2∇p̃ε,

∇(ζ v′ε) = ∇(ζ γ′2) p̃ε +∇(ζ γ2) p̃′ε + ζ γ2∇p̃′ε + ζ γ′2∇p̃ε.
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Notice that the functions ζ γ2, ζ γ′2, ∇(ζ γ2), and ∇(ζ γ′2) are bounded in Q. Thus, with estimate

(9.5) we have
‖ζ vε‖2H1(0,T ;H1(Ω)) ≤ C‖p̃ε‖

2
H1(0,T ;H1(Ω))

≤ C

(∫
ω×(0,T )

ξ3 e−2sβ |φε|2 +
∫
ω×(0,T )

e−2sβ ξ2 ζ |pε|2
)

≤ C

(∫
ω×(0,T )

ξ3 e−2sβ |φε|2 +
∫
ω×(0,T )

e−2sβ̂ ξ2 ζ |pε|2
)
.

Using estimate (10.10) for (φε, pε), we finally obtain

‖ζ vε‖2H1(0,T ;H1(Ω)) ≤ C

(∫
ω×(0,T )

ξ3 e−2sβ |φε|2 +
∫
ω×(0,T )

e−2sβ̂ ξ2 ζ |pε|2
)

≤ C
(
‖y0‖2L2(Ω) + |q0|2 + |q1|2

)
.

(10.11)

Step 4. Passage to the limit when ε tends to zero. From (10.10) and (10.11), it follows that the

sequences {uε} and {ζ vε} are bounded respectively in L2(0, T ;L2(Ω)) and in H1(0, T ;H1(Ω)).

Therefore, using the estimate (10.4) and equation (10.5), we can show that {(yε, qε, q′ε)} converges

to the solution (y, q, q′) of equation (10.1), weakly-star in L2(0, T ;L2(Ω)) × L∞(0, T ; R2) ×
L∞(0, T ; R2) and {(yε(T ), qε(T ), qε(T ))} converges to (y(T ), q(T ), q′(T )) weakly in V −1(Ω)×R2×
R2. Since {(yε(T ), qε(T ), qε(T ))} converges to (0, 0, 0), we have shown that the pair (u, ζ v) ∈
L2(0, T ;L2(Ω)) × H1(0, T ;H1(Ω)) is the solution to the null controlability problem stated in

Theorem 10.1. Finally, since the sequence {ζ1/2 ξ−1 esβ̂ vε} is bounded in L2(0, T ;L2(Ω)), the

sequence {ζ ξ−1 esβ̂ vε} is also bounded in L2(0, T ;L2(Ω)), and therefore the function ζ ξ−1 esβ̂ v

belongs to L2(0, T ;L2(Ω)). Since ζ v belongs to H1(0, T ;H1(Ω)), we necessarily have ζv(0) = 0

and ζv(T ) = 0.

10.2 Proof of Theorem 1.1.

In this final part, we eliminate the fictitious control v of Theorem 10.1 and we prove Theorem

1.1.

Let z ∈ H1(0, T ;H1
0 (ω3)) be the solution to the divergence equation

div z(t) = ζ v(t) in ω3, z(t) = 0 on ∂ω3. (10.12)

Let us denote by z̃(t) ∈ H1
0 (Ω) the extension of z(t) by 0 to Ω. It is clear that z̃ ∈ H1(0, T ;H1

0 (Ω))

is the solution to the divergence equation

div z̃(t) = ζ v(t) in Ω, z̃(t) = 0 on Γ. (10.13)

Since ζ v belongs to H1(0, T ;H1
0 (Ω)), from [13] it follows that z̃ belongs to H1(0, T ;H2(Ω)).

Moreover, we have ζ v|(Ω\ω3)×[0,T ] = 0 (indeed suppζ ⊂ ω3). Setting Z = y − z̃, it is easy to
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check that Z(0) = y0, Z(T ) = 0, and that the pair (Z, π, q) is the solution to

Z ′ − divσ(Z, π) = (u− z̃′ + div (Dz̃))χω and divZ = 0 in Q,

Z = 0 on Σe,

Z = q′ on Σi,

y(0) = y0 in Ω,

q′′ + q = −
∫

Γi

σ(Z, π)n in (0, T ),

q(0) = q0 and q′(0) = q1 .

We notice that u− z̃′ + div (Dz̃) belongs to L2(0, T ;L2(Ω)). Thus u− z̃′ + div (Dz̃) is a control

solution to the null controllability problem stated in Theorem 1.1, and the proof is complete.
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[17] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués,
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