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Abstract

We consider a system coupling the Stokes equations in a two dimensional domain with
a structure equation which is a system of ordinary differential equations corresponding to
a finite dimensional approximation of equations modeling deformations of an elastic body
or vibrations of a rigid body. For that system we establish a null controllability result for
localized distributed controls acting only in the fluid equations and there is no control in the
solid part. This controllability result follows from a Carleman inequality that we prove for
the adjoint system.

1 Introduction

Controllability of fluid — structure models is a challenging problem. Very recently Imanuvilov
and Takahashi [16] and Boulakia and Osses [1] have studied the null controllability, locally about
zero, of a system coupling the Navier-Stokes equations with the motion of a rigid body. Their
analysis is based on Carleman estimates for a linearized system. In the system coupling the
Navier-Stokes equations with a rigid body, the domain occupied by the fluid depends on the
position of the solid and therefore depends on the time variable. The linearized system may be
stated either in a time dependent domain as in [1] or in a fixed domain as in [16]. In the present
paper, we are going to establish Carleman inequalities for a linearized fluid — solid structure
model, stated in a fixed domain 2. In some aspects our system is simpler than the linearized
model considered in [16] and it is more complicated in some other aspects. On the one hand the
model is simpler because we do not allow the structure to rotate, only translations are allowed.
On the other hand it is more complicated because our structure may be considered as a finite
dimensional approximation of systems modeling deformations of an elastic body or vibrations
of a rigid body (these elastic deformations and vibrations are additional sources of instabilities
in the coupled system as explained below).

For instance we could consider a structure equation of the form

q + Aq = —/ MTo(y, m)n, (1.1)
r;
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where I'; is a part of 92 and is the common boundary of the structure and the fluid, Q is the

two dimensional domain occupied by the fluid,
o(y,m)=2Dy—nn=(Vy+ (Vy)') —mn

is the Cauchy stress tensor of the fluid velocity vectorfield, ¢ € RY, A € RV*XN M € RV*2,
n is the unit normal to I'; outward Q. The term — [, M7"o(y, m)n represents the force exerted
by the fluid on the structure. The equality of the fluid velocity and the structure velocity on

I'; x (0,00) corresponds to the equation
y=Mq on T;x(0,00).

When T'; is a flat part of the boundary 052, equation (1.1) may be viewed as a finite dimensional

Galerkin approximation of a beam equation of the form
2+ Az =2 — Bagiay + 2pygipya = —0(y, )N N on I';x(0,7), (1.2)

completed by some boundary conditions (clamped boundary conditions or periodic boundary
conditions...). Indeed if ((x)ren+ is an orthonormal basis in L?(I';) constituted of eigenfunctions
of the elliptic operator A with associated boundary conditions, the Galerkin approximation of
equation (1.2) in span{{l, e C N} leads to an equation of the form (1.1) if z is approximated
by Zgzlqk Cx, and if we set

qa=(qi,- ,av)", A= (/ -ACkCZ) and M = ((in,---,(nn).
r; 1<k, (<N

Another model of the form (1.1), the simplest one, corresponds to the case when N = 2, and

when A and M are equal to the identity matrix in R?. This choice leads to the control system

Y — Ay 4+ Vr =uxyxomr) and divy=0 in Q,

y=0 on X,
y=¢ on X,
y(0) =y° in Q, (1.3)
q”+q=—/ oy, m)n in (0,7,
r;
q(0) = ¢° and q(0) = ¢ in R2

It corresponds to models introduced in [2, 3]. In this setting @ = Q x (0,7), T > 0, X, =
e x (0,7), 8, =T; x(0,T), ' =09 =T, UT}, and we also use the notation ¥ =I" x (0,7
below. The model described by (1.3) corresponds to the case when the domain S occupied by
the structure is an open set in @, O is a simply connected bounded domain in R? with a regular
boundary I'.. We suppose that S C O, and we set 2 = O\ S. Thus I' = I'. UT}; is the boundary
of Qand T, NT; = 0. In (1.3), the control u is located in w CC .



For simplicity, in this paper we shall only consider the model (1.3). But a more elaborate
model with a structure equation of the form (1.1) could also be considered (see e.g. [20] where
we consider a coupling between the heat equation and a structure equation of the form (1.1)).

The main result of the paper is the following theorem which is a null controllability result

in time 7" > 0 for system (1.3).

Theorem 1.1. For ally® € L*(Q) with divy® = 0, ¢" € R? and ¢' € R? satisfying the conditions
y0-n=q'n onT; and y®-n =0 on T, there exists a function u € L*(Q) such that the solution
of (1.3) obeys

y(T)=0, q(T)=0 and ¢(T)=0.

The proof of Theorem 1.1 is based on a Carleman estimate for the adjoint system associated
with (1.3). The adjoint system is a backward evolution equation over the time interval (0,7),
with a terminal condition at time 7. By a time reversal operation, we see that the adjoint sytem

is similar to the original one

¢ —Ap+Vp=f and divp=0 in Q,

$=0 on X,
=1 on Y,
¢(0) = ¢° in Q, (1.4)
#ar== [ oo i (0.7).
r;
7(0) = 70 and  7/(0) =7! in R2

A Carleman estimate for the above system (with f = 0) is required to prove Theorem 1.1 and is
established in section 8. In the case when the matrix A in the structure equation (1.1) is equal

to 0, that is to say if the structure equation in (1.4) is replaced by

r" = —/F. o(p,p)n in (0,7),

3

then the Carleman inequalities established in [16] and [1] may be used to prove Theorem 1.1.
The case A = 0 corresponds to a non-vibrating rigid body. Considering a model as in (1.1),
where A is a positive definite symmetric matrix allows us to take into account finite dimensional
approximations of elastic deformations and vibrations of the structure.

When A = 0, the method used in [16] consists in proving a Carleman inequality for the Stokes
equation by adapting to the case when the boundary condition is nonhomogeneous (¢ = r’) the
strategy developped in [9]. Let us briefly recall the different steps used in [16, 1, 19] to establish
Carleman inequalities. The first step consists in using the Carleman estimates already proved
for the heat equation in [5]. But new terms appear because the boundary conditions in the fluid

equation are nonhomogeneous. Next in the method introduced in [15, 9] a gradient estimate of



the fluid pressure deduced from [15] is used, later trace estimates of the pressure are derived,
and finally the local term of the pressure, appearing in the RHS of the Carleman inequality
when we estimate the gradient of the pressure, is removed.

In the case when A = 0, the above program can be followed as in [16]. When A = A* > 0
some new difficulties appear. Firstly new terms of the form fOT 6*25ﬂ|pi|r\2 appear in the RHS
of the Carleman inequality. We are going to see that, contrary to what happens in the case
of the heat—solid structure model studied in [19], this term cannot be estimated by an energy
identity (because the energy estimate introduces again pressure terms, see section 6.1). The
second difficulty comes from the fact that, when A = A* > 0, the trace estimate of the pressure
cannot be simply obtained as in [16] or [1]. Actually in [16, 1] the trace estimate of the pressure
is similar to the one derived in [9]. In our case, because of the presence of 7 in the structure
equation, we have to follow a completely new way. The method consists in decoupling the
pressure term into two parts and in estimating them separately. One part corresponds to the
pressure p. associated with P¢ (where P is the Leray projector) and the other part corresponds
to the pressure ps associated with (I — P)¢. This is carried out in sections 4 and 5.

The contribution of the structure in the RHS of the Carleman inequality is eliminated in
sections 6 and 7 via a combination of monotonicity and compactness arguments. The upshot
of all these estimates is the Carleman inequality stated in Theorem 8.1 in which we have the
presence of a local term of the pressure in the RHS. By duality, the above term gives rise to
an additional (fictitious control) in the incompressibility equation as in [14]. To remove it, we
require a regularity result stated and proved in section 9. The proof of Theorem 1.1 is completed
in section 10.2.

The first version of our Carleman inequality, stated in Theorem 3.1, is very similar to the
ones obtained in [1, Inequality (2.12)] and [16, Inequality (3.34)]. The difference comes from
the fact that we obtain an estimate of fOT ’ fFi D1 n‘2 (where 9 is related to ¢ by some weight
function, see section 2). This is a new term which is not present in [16, 1]. It could have been
dominated by the term involving the normal derivative of 1) because the tangential derivative
of 1) vanishes on I';. However we do not use this and proceed differently. Our treatment could
be useful even in cases of [1, 16] in which rotation of rigid body is considered. That is why we
have given a detailed proof of boundary estimates.

Throughout the paper, we use the usual summation convention with respect to repeated
indices. Various constants independent of parameters (s, ) and the solution are generically

denoted by C, unless otherwise indicated.



2 Preliminaries
2.1 Well posedness of system (1.4)
Let V be the space defined by
V= {¢ € HY(Q;R?) | dive =0, ¢=0on re},

and denote by V' the topological dual of V. The space V will be equipped with the norm

1/2
— 2 .
6 (jQIV¢\dm)

The norm V will be denoted by || - ||y>. The same kind of notation will be used for other
Banach spaces. Let us remark that this norm is equivalent to the usual H'(2;R?) norm on V.
For simplicity, we shall write H*(Q) for H}(Q;R?), L*(Q) for L*(Q;R?), and the same abuse
of notation will be done for other spaces like H~1(2;R?) for example. This does not lead to
confusion even if L2(Q) is used for L2(Q;R?) for velocity vectorfields while it can be used for
L?(€) itself for the pressure.

The norm in R? will be simply denoted by | - |. The inner product of ¢ € R? and r € R? is
denoted by ¢ - r.

We have to introduce the spaces

Vo(Q) = {y € L2(Q) | divy = o}, V() = {y eVOQ) |y -n=0on r},

VH®) = H@) NV, vor) = {ye I2D) /Fy n=0}.

Let us recall that L?(£2; R?) is the orthogonal sum of V,2(Q) and V(H!(Q2)) (the space of functions
which are gradients of functions belonging to H'(Q2)). The Leray projector P is the orthogonal
projector in L?(; R?) onto V.9(Q).

Well-posedness of the system (1.4) is straightforward and it can be established using energy
estimates, for instance. Indeed, if (¢, r) is a regular solution of system (1.4), multiplying (1.4)

by (¢, "), we get the energy identity:

t t
162y + IO + I ()2 +2 /O /Q Vo =2 /0 /Q 16+ 1600) 2200y + IO + I 2

Existence of regular solutions to system (1.4) may be deduced from results in [21]. Using this,
we can prove the following theorem.

Theorem 2.1. Let f € L*(0,T;L*(Q)), ¢° € VO(Q), ¥ € R? and r' € R? satisfying the
compatibility conditions ¢° -n = r'-n on T; and ¢° -n = 0 on T'.. Then there is a unique
solution (¢,r) € C([0,T]; L*(Q)) N L3(0,T; V) x C([0, T); R?) to the system (1.4) satisfying the

energy inequality

9llcom;200) + 19l 220,75y + ”(Zs/HL?(O,T;H*l(Q)) + 17l (fo,msm2) + HV“HHL‘Z(O,T;R%

< {1 Iz + 1162 + 101+ 11} .



2.2 Transformed system

From now on we assume that f = 0 in (1.4). Carleman inequalities for the system (1.4) are
stated in Theorems 8.1 and 9.1. Their proofs consist of several steps. In this section, we
transform the system (1.4) to a new system satisfied by (1,7) = (e~*%¢, ), where 3 is a weight
function depending on a parameter A. The Carleman inequalities are obtained for large values
of parameters A and s. In the next section we obtain a first Carleman inequality in Theorem 3.1.
The goals of sections 4-8 is to eliminate the pressure p and the displacement of the structure r
from the RHS of the inequality stated in Theorem 3.1. This is done only partially since a local
term of the pressure is still remaining in Theorem 8.1. As explained in the introduction, we
overcome this difficulty by using an additional control in the divergence condition, as in [14],
which is subsequently removed in section 10.2 by using regularity results of section 9.

We begin by listing the properties of the test function 7 which is used in defining the change

of variables. These properties are used at various stages of our computations below.

Lemma 2.1. Suppose that Q C R? is a nonempty open bounded set of annular type as defined
in Section 1, and that wg and w are open subsets of Q0 such that wy CC w CC Q. Then there
exist a function n € C*(Q) and positive constants Cr, and Cr, such that

e n(x)=Cr, >0, Oyn=-1, and An(zr)=0, foralzel;,
e n(z)>Cr, foral x €,
e n(z)=Cpr, and 0O, <0 for all x €T,

e |[Vn(z)| >0 for all z € Q\ wp.

Proof. See [19, Lemma 3.1]. ]
With a large parameter A > 1, we introduce the functions
erntmlinlle)
0= e et )
afz) = ermEr _ (@) +m|[nlle) Vr € Q,

where K > 0 is a constant, with K7 > 2||7||cc and 7 is the function obeying the conditions in
Lemma 2.1. We set

Blz,t) = tk(;i(i)t)k’ plz,t) = eP@:t)

where the constant k is chosen such that £ > 2. In section 9, we shall have to set kK = 4. Since
7 is constant on I'e and on I';, the functions (-, t) and p(-,t) are also constants there. In the

following, we set
pFi(t) = p('vt)|ri'

With another large parameter s > 1, we also define the functions

fs(@,t) = =p~*(z,1)Vp(a,t), gs=fs+s(AB)Y and ¢ =p~°¢. (2.2)



Notice that (since 8 — oo ast — 0T or ast — T7) ¥(-,0) = ¥(-,7) = 0 in Q. With the
definition
(Y @ @)ij = i ¢j,
an easy calculation shows that
Vo =V (ePp) = e (Vi + s1p @ V),
(Vo) = e (V)T +sVB @ Y),
Do = 5(Vo+ (Vo)) = (D + S(VA © v+ 9 V)
o (6, p)n = 2Dpn — pn = P (2D + s(VA@ v + ¥ © VB)n) — pn
= prltin—i—s(Vﬁ@r’%—r’@Vﬁ)n —pn on Y,
since ¢ = pp° 7' on %;.
We set
My =o' —2sVVB and Moy = sf'h — Ay — s2|V 3|1, (2.3)

Thus the coupled system (1.4) can be rewritten in terms of (i, 7) as follows:

My + Moy = fs + s(AB)yY, divyy=—sV3 -1 in @,

=0 on X,

Y= ,01?; r on X,

P(0) =y(T) =0 in Q, (2.4)
r//_|_r:—2pls—‘i/1;iD¢n—S/Fi(ﬂ@Vﬁ—}—Vﬂ@r,)n—{—/Fipn in (O,T),

r(0) = 7% and +/(0) = r’.
3 Carleman inequality I

In this section, we prove the first version of the Carleman inequality for the transformed system
(2.4). This is stated in Theorem 3.1. Writing the equation satisfied by 1 in the form Mj1) +
My = fs+ s(AB)y is a crucial aspect of the proof. From the first equation of the system (2.4)
it follows that

1M1 720 + 1Mot |72y + 2(Mitp, Mah) o) = || fs + s(AB)Y (172 (- (3.1)
We begin by rewriting the cross term as follows
2(Mytp, Moy)) 2y = 11 + 2 + I3,

where
L = 2/ (s8'Y — A — SP|VBPY) -, I = 45/ (VyVp) - Ay,
Q Q (3.2)
I = 4s /Q (S2IVBP0 — s6'0) (VVB).

7



With calculations very similar to those in [19], we can transform I;, I and I3 to arrive at the

following identity
2(Mip, Mo) 2y = J1+J2+ Jz+ Ja+ J5 + 2, (3.3)
where

Ji = —4s° /Q R,00500 W0 =25 [ 0,9 10n0P,

Ty = 24 /Q 8 MBI - s /Q B 62 + 45 /Q VA VB,

J4:8/0T‘/Fipwn‘2+4/:<<sﬁ’r’+s/n (W@Vﬁ—i—Vﬂ@r’)n—/Fipn—l—T) pff‘/nlen>

+25° /E (0nB)* [ — 257 /Eﬂ’anmwﬁ s / (VB-9)(¥" - n),

3

Js = —43/Qagjﬁaj¢kaiwk, Jo _/Q(SM\W\?—s%ﬁyvm?w?).

The estimates of Ji, Ja, J3 and J5 can be performed as in [19]. With obvious minor adap-
tations we obtain
1 e3Am+m|Inll) . e3Am+m|Inllec)
J1+J3 > 0183)\4/ 1/}2—035/\4/ e YIRS
2 ax(o,r) (T —1)3k i wox (0,7) t3F(T — )3 i
2\ e Mtmiinlleo)
by =25 [ ouplowlt 2 2s [ A ol

1 , yy [ Dmlile) M )
Js > =2 | M2 ¥l|72q) — Cs*A /QtZk(T_t)Zk Y7 = Cs™A /Q et (7 = gyt |V

BA(+mn]|oc) T Antmilnloc)
_3\3 [ € 20,12 _ € Ir s r
CsA /thk(T_t)gk [Vnl* ¢ CS)\/O AT P /anw,

for A large and s large (depending on ).

For Jg, following the calculations in [19], we can write that

A(m+mnlle) AmKq 2X(n+mlnllec)
4 [ € 2 242 e 2 24 [ € 2
Jo = —CsA /Q th(T — 1)k %17 = Cs™A /QtQkJrl(Tt)Qk+1 Y17 = Cs™A /Q 12k (T — )2k [

1 1
—4/ \fs|2—4/ M2 + Ty + T,
Q Q

T
ti=s [ (sezaste ([ o)) ad =5 [ aanup

with



Using the above estimates in (3.1), we obtain

1M1 )72y + 1M 9172 + Lo 33)\4/ 63)‘(n+m”77”oo)‘w|2
1 ; Lo A lrmlal )
L2(Q) L2(Q) 2 (@\wo) % (0,T) tSkJ(T _ t)3k

3A(n+m||n]leo) eAm+mlin]o) MNE1+n)
—Cs?’)\‘l/ 6102—05)\4/1/)2—052)\2/ o2
wo % (0,T") | | Q | | t2k+1(T _ t)2k+1 ’ ‘

£3k(T — )3k th(T — t)k
e 1
05X | g 9 5 Wil — 5 Mgy
1 o2
+2T + 2T — 5 ||M27J)H%2(Q) —C s* )\ /Q PRT — )2k |y
T Mrtminle)| - [ otmlnle)
—C’s/\/O tk:(T—_t)k‘lpFir -/i(an@/})n—C's/\ /th(T)‘ n|= ¥
_052)\/ A cs3A3/ ﬂw I + Ty
o 1FHL(T — 1)+ o (T —t)3k

2 2 44 e 2
We decompose the integral s \* fQ % 1|2 into two parts, one part over (2\ wg) x (0,T)
and another one over wg x (0,7T). The integral over (€ \ wg) x (0,T) can be absorbed in the most

dominating term, namely

) AAr+mllnlloc)
*C183A4 / - 1/) 2’
2 (@\wo)x(0,7) (T —1)3k i

by choosing s large (depending on A). The integral over wy x (0,7") can be pushed to RHS and

estimated from above by
e3Am+m|inlleo)

3)\4/ 2‘
cs wox(0,1) P3F(T —t)3k i

At the end of this process, we get the following estimate:

e3Am+m|lnlle)

IVl + 1Ml + X' | Sy 167+ T+ T4

e3Am+mlnlls) /T ernt+mnlleo)

< 2 3 4/ e T 2 - T s './ ) b
_C{”fSHL2(Q)+8 A wox (0.7) t3k(T )Sk 917 + A tk(T—t)k Pr; " r; % ¢}

3.1 Treatment of boundary terms

The effect of the fluid-solid interaction in our model is felt in the treatment of boundary terms
which are different from the ones in other classical models. We will estimate these boundary
terms in this section. This will make appear various quantities associated with the solid part

(so far, we have been working in the fluid region). Let us begin by naming the different terms



in Jy as follows:
T 2 3 3 9
T3:8/ ‘/Dwn : T4=2s/(8nﬁ) ||%,
0 Fi Ei

T5:4/OT(<35'7“'+5/F' (r’®Vﬁ+Vﬁ®r')n—/Fpn+r> pff-/ Dzbn),

i i T

Ty — —252/E 8 duBlu,

7= 25 [ (V9-0)(&' n).
3
Estimate of T). First let us consider Ty which can be expressed as (since 1) = plifr’ on ¥;)

T e3Am+miinleo)| T e3Amtmiinleo)|
_2 Iy -2 2
T, = 253)\3/0 (T s/ 1|2 = 253/\3/0 7 ez pr, Tl |7]°.

Estimate of T5. Next, we can estimate Ty in the following way:

T 2 T
1< [ | [ Dun| +1 ]
0 I; 0

T
2 _22mKy 2
T3 + 165%™ 1T/O Y

36'7"—1—3/ (r’®V6+Vﬂ®r’)n—/pn+r
Fi Fi

]{}2

—2
< T _ t)2k+2pf °Ir'?

oo =

2

16y /T e2A(n+m||nHoo),Fi _QS\F ’2| 2416 /T L ]r|2 . 16/ s
s |7 |r
o 2RI — 2k P i , r ,

By choosing s large enough (depending on A, s > sg(A) = A™3e?™1) and choosing k > 2, we
have

o
F.

3

2
pn

i

1 1 T —25|,.12 T —2s
T5| < §T3 t3 Ty + 16 pr.”rl"+16 | pr,
0 0

Estimate of 77. Next, we can estimate 77 as follows :

T 1 T 2
| erv o [ o <[] o
0 T; 0 Ty

§§J2+CS A /0 tQk‘(T*t)Qk pFi5|7“| .

Once again we see that for large s (depending on A, s > 8)\) we have [T} < £ .Jo + £7}.

|T1’:8

T
52 /0 or 2 A8l 212

Estimate of T5. To estimate T5, we express it as

S — 4S8
7= [ oy f
X

in which we use the estimate (for A large)

Al |

3
0u(AB) = OXN —grr

on Zz

10



This easily leads to |T5| < %T4 for s large (depending on \).

Estimate of T;. Analogous arguments establish that

2\ mK, T (77+mH77||oc o 1
|Ts| < Cs*Xe /0 t%“(T—t%HpF /|r| Sg 1.

for s large (depending on X, s > A73e K1),

Assembling these estimates together, we obtain

2
1
—Jo.

+82

e

1 1 T 3 T B

pn
T

Hence
2

5 75 [ X Mtmililleo)
Th+To+Jo+Jy > T3+ T4 / —| On|? C/ Pr28|7"’2 C/ Pr +T7.
pIF

4 th(T — t)k

Our next task is to estimate 73 from below. To this end, we use (2.4) and write

1 1
/Dwn:—p;?(r”Jrr)—sp;?/ (T'®V6+V6®7”)n+pf,§/ pn.
T 20 277 Jr, 20 Jr,

Hence

/Fimm /Fipn

using the elementary inequality |a + b|? > 3|a|* — \b|2. It follows then, for s, A large, that

13 1 4 —25 "2 - 23 2 —2s
= > (|7~y+!r|)— T4—C “lrf = C
8 2 Jo

As a consequence, we have

3 S
*Tg—i— T4 T3—|— T4—|— / 723(’r1/|2+|r‘ C/ 28|T|2 C/ 728
4 8704 0

2 2
1 | //|2 3

2X(n+m||n]lso)
25 € |F
> SpF ~<Pr;

3
2S‘T|2 | Z|2 ‘ 1‘2 —2s

2Pr

9

3 9.9 _
R Ty e

2

2

Thus the final estimate of the boundary terms is as follows:

T T 3A(+ml[nleo)
1 ,
Ty +To+ Jy+ Jy > 5/0 | /F D1 n|2 + 253/\3/0 € Ir, p1:i28|rl|2

t3k(T*t)3k
LT ep Ammlle)
w3 | o+ >+s/&w|anw|
—C/ 25]r|2 C/ pF pn +T7.
0

Estimate of 17. We have

77[), . n|1‘i _ Pl:f?"” on— Spl:fﬁ/ r!

:—2(/ Dq/)n)-n—sprj(/ (T’@Vﬁ—l—Vﬂ@T’)n).n
Fz‘ Fi
+pr; </ pn)-n—pffr~n—spffﬂ’r’
r;

11



and

7r = =25 [ (V8- 6)(W' n)

= /EZ(Vﬁ p_s /) (/FZDIZJn) -n—l—282/2i(Vﬁ'p1?fT/)pis </FZ (TI®VB+V5®T/) n> ‘n

_23/ (Vﬂ . pI:is T/)pis (/ pn> -n 4+ 23/ (Vﬁ . pis r/)PiS r-n-4+ 282/ (Vﬂ . pI:is T’)pffﬂ’ r
Ei Fi Ei Ei

We set
17 =5 [ 5570 ([ Do) n
El‘ ' Fi
TS = 232/ (V- pr; r’)pff </ (r' ®@VE+VE® r’) n) -n,
Ei Fi
TS = —23/ (VB-pp’r)pp? </ pn> -,
Ei Fi
T = 23/ (VB-pr; r')plff remn,
DI
17 = 252/ (VB pr; r/)plifﬁ/ .
3
We have

78] < 4 / Aerm+mlnlleo) o) | / Dy
<4s | —Y———— r n
= s, tR(T —t)k Pr T

T o2X(n+m|nlleo ‘ 1 (T
242 ry —2 2
<83)\|I‘\/ 72 (T — 1) o+ 2/0 /Dwn

Aerm+mlinlloo) An+mllnlleo)
mi| <as [ e [ e
‘ 7 o tk( k’ r )

T 2>\n+m||77|\ p _
<a20n [ St

Aermtmlnlles)
< | Sy o QS"“'/W

<252/\2/ e2A(m+m|nlleo )p 0 Z| 723
- s, t2k(T t)Qk Ly

U

A +mlnlloo) A mlinlloo) | (7
d —2 242 —251,./12 ? -2 2
’T7’ S 2s /2‘:Z tk(T _ t) pI‘ ° ‘T ‘ ’T‘ < 257X /2‘]1 tQk(T _ t)Qk pFi °|r ’ + 9 /(; sz‘ ° ‘T’ )

and
eMn+mllnlleo) C K

2 —2s (.12
‘T;‘ 323 )\/2 tk(T )k pI‘ ‘ ‘ tk+1(T_t)k+1

Al |,
F2RHL(T — ¢)2k+1 PT

T
SQCSQ)\Q)\mKI/ —2s ‘T, ‘2
0

12



Grouping together various estimates obtained, we can summarize the main inequality of section 3

/F¢D¢n

Aotmlale) o S|
o [ S 0P+ [ or (0 )+ N [ gt

T =)

2 - Btmlnle) o T T
< CQ £l ) + 5°A LOX(O,T)W|w| +/0 pr, || +/0 Pr,

With calculations as in [19], we can also estimate Vi), ¢ and Ay and we obtain the following

2

Mo + Ml ay + 53 [ = s [
(@) 2¥IIL2(Q) o B3F(T — 1)3 0

theorem.

Theorem 3.1. (Carleman inequality 1) For X\ sufficiently large, there is so(A\) > 0 such that for
s > s0(A) and for all solution (¢, r) of system (2.4), we have

eAmt+mlinllec)

Mo+ [ e+ [ R+ axt [ S v
v 2 Dl i
n+m|nlleo eMntmi|n]leo
D 3)\4/6 g A/anQ
# L 2o o S [ S 109
T T Anmlle)
—2s 2 2 343 € 0 —2s 112 —2s 2
+/O pr, (I 4 1r") + 57X /0 BT T 7] +/Qp V| (3.4)
3A(n+m|[nloo)
Y
{ oV xtoiry BT~ 0 Y]

T T 2
+/ ppfslrl2+/ pr2® / pn| ¢,
0 0 I

where wg CC w1 CC w.
At this stage the pressure p is determined up to an additive constant. From now on, we

choose the pressure p in the space of functions satisfying the condition
/ 2590 |¢(2. ) C(2) pla, ) dw = 0 for ave. £ € (0,T), (3.5)
w

where

~

. e)\mK1 _ e>\(1+m)H77||<X>
B(t) = min,-q Bz, t) =

th(T — t)k ’
¢ € C§°() is a nonnegative function, supp¢ C w3, w1 CC we CC w3 CC w, and |y, = 1. (The

open set wy is introduced in the next section.) Condition (3.5) will be used in an essential way
in the proof of Theorem 10.1 .

Let us notice that
e 20 > =28l — ;=251 ¢) for all (z,t) € Q.
Moreover we can notice that condition (3.5) is equivalent to

/ M@ +mInl) ¢ (1) p(z, £ dz = 0 for ae. t € (0,T),

13



and the weight function e2*(@)+mlull) ¢(z) does not depend on t. We are going to use this

property by observing that the mapping

1/2
b (/ eP@+minloe) ¢ (2 p(x) da:+/ IVp\zdv’U)
" Q

is a norm on H'(Q) equivalent to the usual one.

4 Carleman inequality for the pressure

In this section we recall some results obtained by O. Yu. Imanuvilov, J.-P. Puel in [15]. Using

the fact that the pressure p(t) € H'() is the solution of the following elliptic problem
—Ap(t) =0 in Q and p(t) =p(t) on I,
it follows that
IR et [ e e

(4.1)
< C/ 62T6>‘77 |Vp(7f)’2 + 07_2 )\2/ 627'e>\71 62)\7] |p(t)|2 + CT1/2 627 ||p(t)‘|%]1/2(1") ]
w1 w1

Using a localisation argument as in [15], [9], we can eliminate the term Vp(t) in the right hand

side, and we obtain

/ 627’6)‘77 ]Vp(t)\z + 7_2 )\2/ e27’e>‘" 62>\77 ‘p(t)‘Q
Q Q
(4.2)
< C7'2 )\2/ 627—6/\71 62)\77 \p(t)|2 + 071/2 62T Hp(t)H?—[lﬂ(F)a
wa

with wi CCwy CC w.
To deduce space-time integral estimates from (4.2), we have to choose 7 as a function of time
in an appropriate way, and we have to choose a multiplier for the estimate (4.2) and integrate

with respect to time. We choose

S
— Am||n]leo
T=—F———¢€ .
th(T — t)k
Taking
—2s eAmKl
etk (T—t)k ,
as multiplier, we can check that:
—2s AmK —2s AmKq _  A(n+mn|lco)
eQTeAnetk(T—t)ke 1 — etk(T*t)k (6 1—ent7 1 ) — e—QSﬁ'

Thus, from estimate (4.2), we deduce

/ e 20 |Vp(t)|2dt + N\ 82/ e~ 250 p(t) 2dt
Q Q
(4.3)
T —2s eAmKl
< C)\Z/ 72 o288 g2Mn ]p(t)\2dt + C/ 7_1/2 e tF(T—t)k e27 Hp(t)H?_Il/z(F)dt )
wax(0,T) 0

14



We introduce the constant
Ns = min g n(z),

and the functions
eAmEL _ A tmInlleo)

ﬁ*(t) = maxgcgﬁ ﬁ(l‘,t) =

th(T —t)k ’
i ) eMmxtm|Inllo)

£ (t) = min, g &(z,t) = TRT D

~ eMmA1)||n]lo

g(t) = maXxeﬁg(l',t) = w
Let us verify that

—2s aAm
T1/2 g R T -oF € - 2T < gl/2 g= 256" (f*)l/2 ) (4.4)
We have:
— 48 m 1 2 —zS m S mi|m
212 gegEe " 2 s'/ Amlnllos/2 g doirogE € wagEe I
tk/2(T*t)k/2 ’

and

(AMEL _eAmstmlinlioo)) @ 2(netmlInlloo)

—2s
sl/2 g7 250" (f*)l/Q = 5!/2 eFT-0F M—t)k/Q ‘

Thus inequality (4.4) is satisfied and we have

/ =250 |Wp(t) Pdt
Q
. (4.5)
cOoNs? / €2 =2 (1) 2dt 4+ C 52 / (€12 25" |lp(t) |20 gyt
ng(O,T) 0

Let us notice that n|p, < 7, and therefore B|p, > 3 and e=2?|p, < e72%%. Thus from (4.3) it
follows that

T
| e e o) eyt
(4.6)

T
<ons [ @+ s [ ) ey
wax(0,T") 0
5 'Trace estimate of the pressure
The objective of this section is to estimate the term
T 1/2 2s3* 2
G IR

appearing in (4.5) and (4.6) and to prove Theorem 5.1 stated at the end of this section. For

that, we introduce the functions
p(t) = e 7O @), ¢*=p¢ and p*=pp.

15



By an easy calculation we can check that (¢*, p*,r) is the solution to the system

¢ — A +Vp* =4/ and diveg* =0 in Q,

¢o* =0 on X,
¢* = pr' on X,
#(0) = 0 n 0 (5.1)
4= —/ a(p,p)n in (0,7),
T

r(0) = r° and r'(0) = rt.

Step 1. Rewriting system (5.1) in terms of P¢* and (I — P)¢*. We set

m@) == [ olon. w6 =—n [ o@pn=— [ o)
¢e =Po, ¢s=(1—P)p, p=pe+Dps,
and

Gp = e, G5 =pnds, Do =[De, Dy = [Ds,

where p. is the pressure appearing in the equation satisfied by ¢. and ps is the pressure associated
with ¢ (see [21]). More precisely, we denote by ¢(t) = N(r'-n) € H'(Q2), the solution to the

Neumann boundary value problem

dq

0
1 —=7"-n onl;.

/ e2Amtminllee) ¢ gty de =0, Aqg(t) =0 in €, I 0 onT,,
w n

From [21], it follows that ps = —¢. Therefore, / e2Antminllec) (ps(t)dr = 0. The pressure

w

D = e is determined by
¥ AGE+VpF=p'¢ in Q and /Q 2Aotmlinlle) ¢ p* g = 0 for a.e. ¢ € (0,T).
Denoting by ~; the trace operator on I';, we have
pslr, = —%N (" - n).
Now we introduce the operator K € £(R?) defined by
Kr = /1‘ YN (r - n)n.

We can easily verify that K = K* > 0 and that I + K is an automorphism in R?.

Let us denote by A = PA the Stokes operator (as an unbounded operator in V,2(Q2)). To
rewrite system (1.4) in terms of ¢. and ¢s, we introduce the operator L € L(VO(T),V%(Q))
defined by Lg = w, where

—Aw+Vr=0 and divw=0 in{, w=g onl.

16



Following [21], we rewrite system (1.4) (with f = 0) as follows
¢ — Age = (A)PL(r'xr,),  e(0) = Pg’,
¢s = (I = P)L(r'xr,),
= —/ (e, pe) 1 —/ Dosn —/ YN (" - n)n, in (0,7),
r; r; r;
r(0) = r° and r'(0) = rt.

The equation satisfied by r can be rewritten in the form

(I—i—K)r”%—r——/

r;

#(Gepn= [ Docn
The equation for ¢} is

— A¢Z = (=A)PL(pur'xr,) + 1 ¢, 62(0) =0,
and ¢} obeys
¢z = (I — P)L(pr'xr,).
From [21, Proposition 2.2], it follows that
9120 @) + IPEll 20,7511 (@)) + 951l 20,112 (02)) < C <H// Pellz2(q) + 7“’”113/4(0,71)) :
Since ¢, = P¢, we have
11 Gellrzo) < Il dllr2(g)
Step 2. Estimate of ||p;||12(0,7;m1(q))- Since ps(t) = —N(r" - n), we have
P51y < Cu@)r" ()] < C(u@)r®)] + 6e Ol 2@ + Vel 22() + 1650 | 2(0)-
Thus, we obtain
P51l 20, () < CUlerll2o) + 108 21 Q) + VP 20,102 (0)) + 195 200,752 (02)))
< C (I Gellzag) + vl ooy + lerl o)) -

Step 3. Estimate of ||p1'|| yysa(g ) Now, we want to eliminate the term || 7’| ys/a(o 7 from the

previous estimates. For that, we are going to use the interpolation inequality
3/4
I lzarsoiry < Clliur’ll ooyl 130 o
Let us now calculate 7|l g1(o,r)- We have
(/I/T,)/ — ILL/,',_/ +,LLT‘”.

For the term pr” we use the equation satisfied by 7:

ur"=—u(I+K)1r+<I+K)1m(¢:,p:)+(I+K>1/ D¢in
r;

17



With classical majorations we have:

1/4 3/4

larlggsrsory < Cllr’ 1ok e I

1/4 3/4 3/4 3/4
< Cllr' st my (v oty + 12 7 W3t oy + e ot

3/4

(@ I %z + H/D@

)

L2(0,T)

O * *
< Cllur' 2001y + Cllprllpzo,ry + Cli' vl 20,1y + g||HT'\|L2(o,T) + Cellm(¢g, pe)ll 2 0,1)

/ D¢in
r;

Pl 21 (@) + IPell 2o, )y + 105 220,752 (0)) + [1Ps | 220,11 (00))
< C (Il dllrz@) + vl 2my + el z2omy + e w20

Ty L2(0,7)

|pell 21 (@) + IPellL20,mm1 () + 195l 20,752 (02)) + 125 200,11 (02))

+Ce

L2(0,T)
Thus

1
+;3||/~L | z20,1) + €llm(@%, pi)ll L20m) + Ce

We can choose € > 0 to have

< C (I dllrz) + vl 2om) + lerllizzom + 16 7l 20m) -
Step 4. Estimate of |[p*[| 2o r,1/2(r))- We have

(1) = 5™ O(E () (57 (1) + 3o O€ (1) /e (1)
AmEL _ A(tml|n]|c)
thH1(T — t)k+1

1 _sB* % —3/4 e)‘(n*erHn”m)
+=e O (e (1)) 3 R (2t — ﬁﬂﬁffﬁﬁ?

= —se*8 O (1) k(26— T)

4

AmKy _ e/\(m+mllnlloo))2 e2A (s +mInlloo)

’M/<t)‘2 < 0826725ﬁ*(t)‘§*(t)‘1/2 (6 + CefQSﬂ*(t)lg*(t)rS/Q

$2k+2 (T _ t)2k:+2 t2k+2 (T _ t)2k+2

eAmetmlinllec)/2+2Am Ky
5k 5k
t7+2 (T _ t) 7"!‘2
eMmtmlinlles)/2

£2k+35 (T - t)2k+%

+Ce 2070

e3A M t+m|Inlloc)

2 _—2sp*
< (Cs’e s ()—t?’k(T—t)% .

Thus
2
I ol < € f 168
e3A (s +m|ln]l o 3A(m+m|Inlloo)

)
<ol [ 2 me 82 < / —2sp(1) € 2
<Cs /Qe (T — )5 |9|? < Cs? ; PR — 1) |o]
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We finally obtain

T
§1/2 /0 (€2 20 Dl ey = 52 10" 20,1 m01/20y)

3A(n+ml|nlje)

T
S085/2/ o 258¢ - |¢|2+C'55/2/ o287 (1) €
Q 0

BA(Amlnll) (5.3)

2

+C 2| 3200

Substituting in estimate (4.5), it yields:

/ e~ 20 |Vp|2dt
Q

3X(n+m 0o
< ON? 2 S e Il (N S— o) 6] (5.4)
N w2 x(0,T) Q t3R(T — t)3F '

T 3A(M«+m|Inlleo)

5/2 —258*(t) € 2 1/2 2

+C8 [ e I+ Ol

Step 5. Last estimates. Combining this inequality with the one obtained in (3.4), we notice that

the term
3A(m+m|Inlle)

5/2 —2s8€ 2
Cs / /Qe o tBk(T_t)Sk ‘(b‘

can be absorbed by the term
3A(n+m|Inlloo) 3A(n+m|Inlleo)
I [ o G lof = N [ S
Q t3k(T — t) o (T —1)
in the left hand side of (3.4), and the term
C's5/2 T6—2s5*(t) eI tmlnlles) Ik
0 3k (T _ t)Sk

can be absorbed by the term

43 T e3Am+mnlleo) - ,
5°A a8 VLS
/0 Pr, 3k (T _ t)3k ‘ ‘

We finally arrive at

A+l so)

—1 —1 12 2 2 2 2 2
R A R Ly R ey el

T 2 3A(m+m|Inlec) An+mllnlles)
+/ / Diyn +33)\4/ G%WHA/ |0
0 I; Q
T 3A(n+mlnlle

t35(T —t) s, tF(T —t)*
T )|
—25 (.2 2 343 Ly 25,712 —2s 2
A \Y%
T A e R e T LA Wl (55)
3A(m+mlnlleo)
< C S3A4/ 67 ¢2
{ wx (o) F(T —t)3k i

T
+82>\2/ p—2s £2|p|2 + SI/QHMT”%Q(O,T) _|_/ pFi2S’r|2} )
ng(O,T) 0

19



Since
pu(t) < €V ppo (),

the two last terms can be estimated by 2s!/2 fOT |§*\1/2p1?i2$]r\2. But we are going to face a new

difficulty in section 9. We shall have to estimate the term

T o *
| e

A priori this term cannot be easily estimated by the terms in the LHS of (5.5). However, we
are going to see that such an estimate is possible via a compactness argument. For that we first
add the term s'/2 fOT |£A\3 p5i23|r]2 in both sides of (5.5), and we obtain the following theorem.

Theorem 5.1. Consider the coupled system (1.4). Then there exist positive constants N, So(\)
such that the following inequality holds for all X > Ao, s > so(N\) and for all solutions (¢, 1) of
the system (1.4):

eMntm|nlleo)

-1 —1 /12 2 2 2 2 2
R R Ny R ey el

T 2 BA(m+mln]l0) A(m+ml[nlloo)
+/ /DM —1—33)\4/ egklw2+sA/ E— e
0 T, Q Z

t3k(T —t) s, tR(T —t)*
T T 3A(n+m||77Hoo)|
_ € Iy —2s1,.712 —2s 2
+/ p .25\7’”|2+83A3/ pr 20| +/ p~ |Vl 5.6
0 r; 0 3k (T _ t)3k r; 0 ( )

T
+31/2/0 ’5‘3pi25‘7a’2

<C 33)\4/ 63)\(77+m||77H00) ’w‘? n 82)\2 / p—Qs €2‘p’2 N 81/2 /T ‘as p_QSIT‘Z
- wx(0,T) t3k (T - t>3k wa x(0,T) 0 i '

If we compare the above estimate with the one of Theorem 3.1, we can observe that the
gradient and the trace of the pressure have been removed from the RHS of the inequality, only
a local term of the pressure is still remaining. But for that it has been necessary to modify the

weight in the term involving r.

6 Estimate of r

Our goal in the next two sections is to strengthen the above inequality (5.6) by removing the
term fOT 62|r|? from the RHS, where 0 = |g]3/ 2 pr. . This signifies that the observability of the
whole system is possible without making any observation on the solid. A priori this is not
obvious.

In [19], we have used the analogue of equation (2.4) to obtain an estimate of the term
fOT pizst in the right hand side of (5.5). Due to the presence of the pressure term, such an
idea does not seem to work, as shown below. To overcome this difficulty, we present arguments

based on a combination of monotonicity and compacteness in this section and the next one.
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6.1 First estimate of r

If we multiply the equation satisfied by r in (2.4) by pffs r we obtain

T T
/0 —28|,r,|2 _/ TIIPEQST_ / TPF /Dl/)ﬂ
—5/ rpr / reVB3+VEer n—l—/ /pn
With an integration by parts and Cauchy-Schwarz and Young inequalities we have
T
/pffs\rl2
0
T T T 1 (T
T R s R A =
0 ‘ 0 ‘ 0 ‘ €Jo |Jry
T 232 T e2A(m+mnlleo)
_ 25°\ _9s |F N2 4 —2s1..12
ve [ ot 2 [ gt T SH+/ NG
o e Jo T BRI )k 0 o
T T 2
_ Te _ S 1
</ pr38|r'\2+2/ pp.28|r|2+2/ p#srmmr |2 / /Dwn
0 0 € Jo € Ty
% 0 Fi tQk(T )Qk L

2

1

Since |B'|r,| < )k, by choosing ¢ = 1/7, it follows that
T a2 g 25,112 O 1 2
—zS S m —zS8 /
/0 pr. || §2/0 ”'|°+Cse 1/ Pr; m|r|
T 2A(n+mnlloo) | 2
—2s€ _2
+C’32)\2/ Pr, T — ]2+C'/ Dwn +C’/ s / pn
0
313 T 63>‘("+m”nH°°)|[‘ 725 /12
The first three terms of the RHS are dominated by s°A 0 BRI P, |r’|%, the fourth
n+m oo —_ 2
term is dominated by s\ fz %\&ﬂﬂ? But the term CfOT prf‘s fFi pn‘ cannot be

estimated by fQ p~2%|Vp|? because there is no parameter s or A multiplying it. Therefore the

above estimate cannot be helpful because we find again a term involving the trace of the pressure.

6.2 Second estimate of r

Now, we exploit the fact that the state space of the ’solid part’ of the model is of finite dimension.
Our goal will be achieved in two steps. As a first step, we prove in this section an intermediate
inequality (6.1) written down below. The final inequality will be established in the next section
(see (7.1)).

Let us recall that we have set 6(t) = |a3/26_56i, where ; = [|r,. A direct calculation leads
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to
- 3
o(0) = 5 62 (o + 51E1€)

_ —k k 3k 3 k
— o8B 1213/2 [ _g(pAmEL _ JAmitm|nlles) _ 2 2 M
e el ( s(e ¢ )(tk+1(T—t)k t’f(T—t)kH) 2t " 2T—t)

k

_ —sBi|£]3/2 S
=€ ¥ |£| tk+1(T—t)k+1

with n; = n|r, and
R(t) = —s(eM™K1 — Aoctmlnloe) )T 4 2kt) — ;k:tk(T _ gkt %ktk“(T s
The roots of #" are the roots of the polynomial R. Let us denote by
Th<Ty<---<Tp

the roots of R lying in the interval (0,7"). Necessarily, 6 is monotone in the sub-intervals
(T}, Tj41) for 0 < j < ¢, with Top = 0 and T4 = T. Let E be the vector space of solutions to
system (2.4) obtained by varying (r",r!). We introduce the following subspace of E :

E; = {(1/172777") €EE|r(T;)=0 forall1<j gé},

We see that Ej; is of infinite dimension and is of codimension < 2¢. In the following arguments,
we will suppose that E; is of codimension = 2¢ (other cases can be treated in a similar manner).

In such a case, there exist (@/Jyl,ﬁjl,Ajl) € F and (@b?,ﬁ?,?) € FE such that

Pi(Ty) = (1,0) and  73(T5) = (0,1).

Let Ey be the space spanned by {rjl,A]z

( ]7@7Aj1)g 1,0 and (wj,p],?)j 1, ¢ SO that we have

| 7 =1,---,¢}, and Ey be the subspace spanned by

E=E; & E.

Let us denote by ¢ : E — Ey the mapping defined by
¢
1) =3 (T - L)LY + (T - 0. D)7 7))
j=1
Observe that (¢, p,r) — (¢, p,7) € E; for all (¢, p,r) € E. Further we set mo(¢, p,r) = r for
all (¢,p,r) € E, and we define 7 : E — Ey by m = mp o my. We have then

ﬂ(vaa 7’) - 0))?} + (T(TJ) ’ (07 1))?32) :

—
—
3

J=1

Lemma 6.1. If (¢,p,r) € E;, then
T e3A(n+mlinlle) |F
[ evpso[ e

22




Proof. Indeed, we establish similar inequalities over the intervals (7},7Tj11), with j =

0,---,¢, on which 6 is monotone.

If 6 is nondecreasing over (T3, Tj41), we write

and we have

Tjq1 Tj1
0(t)[r(t)| < 0(t) |r'(7)|dr < O(r)|r' (7)]dr < (Tj1—t)"/?
t t t

for all T; <t < Tjy1. Therefore we have

Tj41

1/2
6(r) 1+ (7)) df) ,

Tjt1 T+
/ 0)Plr()[Pdt < (Tj1 — 7})2/ 6() 217" (7)Pdr.

j T;
By summing them up, we obtain the required estimate.
If 6 is nonincreasing over (7}, Tj11), we write
t
r(t) = / o (r)dr,
T;
and we have

t t t 1/2
ool <o) [ 1rlar < [ o (lar < (¢~ T,) ( /| |9<T>|2|r’<r>|2dr) ,

for all T; <t < Tjy1. Therefore we have

Ti11 Tj41
/ 00t) 2 (t) Pt < (Ty41 — T)?/ 16(r) 211" (7) P

j T

Taking into account all these inequalities, it yields

Tj+1
[ i pa = Z / OFIrOFde < 3 (T2 =137 [ 7 0PI ()P

T
<712 /0 6(r) 21" () [2dr < T2 / e P () P

With these preparations, we can now consider the inequality (5.6) and estimate the last term
of the right hand side of the inequality as follows. Writing r = r — 7w(¢, p,r) + 7(¢, p,r) and
noting that r — w(¢, p,r) € E;, we have by Lemma 6.1

T T o3A(m+mnllec) |
81/2/ 92|’F|2 < 081/2/ € — 3ILFZPE.2S‘T/‘2+CJ(1/}7P’T)7
0 o BRT—1) ‘
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where

T e3A(n+mlinlleo) T
_ /2 € Ir, _as /2 1/2/ 2 2
J(¢>p7’r) § /O tgk(T . t)gk sz’ |7T(¢7p> ’l“) | +s 0 9 |’7T(¢,p,’l“)| .

Note that the first term can be absorbed in the left hand side of (5.6) by choosing A large. More

precisely, we have

; t3k(T _ t)gk r; =

| T Al |,
53A3/ g L2,
PR(T — )

for A large. Thus the estimate (5.6) gives
I(,p,r) < C(K(¢,p,7) + J (¥, p,7)), (6.1)

with
-1 —1102 2 2 2 2 eArtminllec) 2
1) =57 [ WP+ 80P) + [ o+ [ e+ [ S vl
@ Q Q Q tH(T'—1)
T SA(+m]n]]o0) Amlnlloo)
| o] o [T [T
0 T,

o tF(T —1) s, tF(T —t)k O
T )|
—251,.112 1/2p2),.12 343 i 251,712 —2 2
A e R R e el Wl

T 3A(n+mnlleo

and
e3Am+mlnlloo)

Kw’p’r :SS)\4/ w2+82)\2/ —2s 2p2.
( ) wx(0,T) t%(T—t)?’k‘ | ng(O,T)p <lel

7 Compactness argument and Carleman inequality II

From now on, we do not vary the parameters (s, A) and fix them so that inequality (6.1) holds.
The aim in this section is to show that we can strengthen the inequality (6.1) by proving that
there exists a constant C'(A, s) > 0 such that

I(Y,p,r) < C(\,s) K(¢,p,r). (7.1)

This is the Carleman inequality II that we have for system (2.4). We will translate it to the
original system (1.4) in the next section. To prove inequality (7.1), we argue by contradiction.

We suppose that there exists a sequence (1)}, pj,7;); associated with the data (r?, 'rjl) such that
I(lﬁj,pj,rj) =1 and limj_,ooK(wj,pj,Tj) =0.

We can assume that there exists (v,p,r) € L2 (Q) x L?

loc loc

of a subsequence — the sequence (1j,pj,7;); enjoys the following convergence properties in the

(0,7) and that — after extraction
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indicated weighted spaces:
P — for the weak topology of L2(¢71:Q),
Ayj — Ay for the weak topology of L*(¢71:Q),
V; = Vo for the weak topology of L?(Xnmlnllee)y=k(p — )=k, Q) |
Yy — for the weak topology of L?(e3Xntmlnllee)y=3k(p _ 4)=3k. )
7“;' — " for the weak topology of L? (pffs; (0,7)),
ri =T for the weak topology of L2(|§|3p1:i23; (0,7)),
7"; — for the weak topology of L2(|§]pi\3p1?i2st_3k(T —1)73*:(0,7)).
Vp; = Vp for the weak topology of L%(p~%%; Q)

/ Dypjn — / Diyn for the weak topology of L?(0, T).
r; T,

Notice that these weights act only with respect to the time variable and not in space variables.
In the next two subsections, we will deduce that ¢ =0, » = 0, and that

! 2 2 3313 Te3>\(n+m\|n||oo)|ri —2s 12
J R T e R e S L CORORM[LE L N (Y

From (6.1), we conclude that I(v;,p;,7;) — 0. This is in contradiction with I(z;,pj,7;) = 1,
which proves (7.1).

7.1 Passage to the limit in problem (2.4)

To prove that ¢» = 0, p = 0 and r = 0, we first show that we can pass to the limit in problem

(2.4). To pass to the limit in the equation

My + Map; = —p~* Vpj + s(A)hj = f1 + s(A)yy,

we use the L%-estimate on {M;1;} and {Mat);}. Hence the subsequences {Mj4);} and {Mat);}
weakly converge in L?(Q). To identify their limits, it is enough to take test functions in D(Q)

and to pass to the limit. Thanks to the above convergence we get

L
Mﬂl}] : M1¢7 M2¢j ) MQ”I,ZJ’
s(AB)Y; — s(AB)Y  weakly in L2(e3>‘(’7+m\\77||oo)t—3k(T _ t)—Sk; Q),
Vp; — Vp weakly in L2(p_25; Q).

Next we use K (¢j,pj, ;) — 0. This shows that 7 5 0in L?(Q) and ¢ = 0 in w x (0, 7). With

this information, we see that
My + Mayp = s(AB)Y in Q, and ¥ =0 inwx (0,T).

To pass to the limit in the equation satisfied by r;, we notice that

/ Dijn — / Dijn  for the weak topology of L*0,7),
T r;
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and

pjlr; = plr, for the weak topology of L2(p1?i25; 0,T; L*(T;)).

We can also pass to the limit in the boundary conditions on Y, in particular we can prove that
Y =pp’ ' on %;.

This proves that (¢, p,r) satisfies the system

My + Moy = —p° Vrr + s(AB)yY, divyy = —sVB-¢ in @,

Y =0 on g,

w — pI:’LS ,r,/ on 27/,
r”—i—r——2p§i/ Dwn—s/ (r’®Vﬁ+Vﬂ®r’)n+/ ™m in (0,7).

To deduce that ¥ = 0, p = 0 and r = 0, we pass from ¥ to ¢ = p*. We see that (¢, p, )
satisfies the system (1.4) with f = 0. In addition, we have ¢ = 0 in w x (0,7). Applying the
unique continuation principle for the Stokes equation [6, 7], we obtain ¢ = 0 and Vp = 0 in Q,
and hence ¥ = 0 and p = 0 in @ (p = 0 because of (3.5)). Going back to the system satisfied

by (¥, p,r), we deduce successively that ' =0, r”” =0 and r = 0. In particular, we have

r; = 0 for the weak topology of LQ(]‘§|3pE_2S; (0,7)) (73)
! 3
r; — 0 for the weak topology of L2(pi2s; 0,7)).

7.2 Proof of (7.2)

We equip the space

H = {r € HL (0, T5R) | ]| pagpp2s-sn -0, + 17 2@ 20y < 20}

with the norm
il = 1l e 2138 ey -sws0m) + 1l z2qgie 0y
The mapping
r— (r(Th))1<n<e

is continuous from H into RY since

Ir(Tn) | < C{”7"/”L?@Ef%*%(T—t)*%;w,T)) + ||7””L2<\E|3p;fs;(o,T>>}'

Therefore it is also compact. Due to (7.3), |r; (T5,) | — 0 for all n = 1,--- ,£. The proof of
(7.2) is complete.
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8 Carleman inequality III

The purpose here is to merely translate the Carleman inequality (7.1) from the transformed

system (2.4) to original system (1.4). Recalling that ¢ = %% 1), we have

¢ =P (sfyv+v), Vo=e? (Vi+svVp),
A¢p = e (AY + s(AB)Y + 25V - Vi + 2| VB[*Y) .

As in [19, Section 11], we can prove the following theorem.

Theorem 8.1. Consider the coupled system (1.4) with f = 0. Then there exist positive constants
Aos So(A) such that the following inequality holds for all A > Xo, s > so(X) and for all solutions
(¢,7) of the system (1.4):

3Amtmlinlo)

A(m+m||nlleo)
—2s ¢—1 712 2 —25 € 2 —2s 2
A - 7
Lot (0 1m0R) + [ o2 Sarmmver [ ot

+/Tp_25‘7’,/|2—i—/T‘agp_%’T‘Q—i-/T e3>\(n+mn”oc)|Fip—25’r/’2+/ p—2s‘vp’2
0 T; 0 Ty 0 tSk(T_t)Sk Ty 0

3A(n+ml|nlleo)
<O\ s / —2s€ ¢2+/ —2s 2p2 '
( ){ wx(O,T)p t3R(T — t)3k i ng(O,T)p &lrl

9 Regularity of solutions to system (1.4)

One way to prove Theorem 1.1 is to improve the Carleman inequality of Theorem 8.1 by removing
the local term of the pressure in the RHS of Carleman estimate in Theorem 8.1 as in [9]. This
leads to lengthy calculations. Another way consists in using a fictitious control as in [14]. We
follow this method in the following section. It consists in using an additional control in the
divergence condition (see system (10.1)). Next this control is eliminated in section 10.2 by using

the regularity results obtained in Theorem 9.1 below. Let us first state a regularity result for

the system
¢ —Ap+Vp=f and dive=0 in Q,
¢1 =0 on X,
b =rp on X,
$(0) =0 in £, (9-1)
=1y =g in (0,7),
r{,+ra=h—/r a(o,p)n i (0,7),
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Lemma 9.1. The solution to system (9.1) obeys

9l 2@y + 1Pl 220,751 () + ITall 0,72y + 17l (0,772 92)

< Cfllz20,m:z2@)) + 19l 20,172y + [Pl 2 (0,75R2))-
Proof. Let us first notice that, using an energy identity as in section 1, we can verify that the

solution to system (9.1) obeys

9l 220,711 (02)) + ITallL20,75m2) + 70l £2(0,7:m2) 93

< C(fllz20,m:z2@)) + 19l 20,m:72) + [Pl L2 (0,75R2))-
As in section 5, system (9.1) can be rewritten in terms of P¢ = ¢, and (I — P)¢ = ¢5 as follows
$e — Age = (—A)PL(roxr,) + Pf,  ¢e(0) =0,
¢s = (I = P)L(ryxr,),

T, —Th =g in (0,T), (9.4)

(I—I—K)T{)—i—ra:h—/ a(¢e,pe)n—/ D¢Sn+/pfn in (0,7),
; I; I;

r;
re(0) =0 and rp(0) =0,
where p, is the pressure appearing in the equation satisfied by ¢., ps = —q; where g(t) = N(rp -
n) € H'(Q) (N is the operator introduced in section 5), py is determined by Vpy = Vp1 + Vpa,
p1 and po are the solutions to
p1 € H}(Q), Apy=divf inQ,

0
p2 € HY(Q), Ap; =0 inQ, %:(f—Vpl)-n on I

As in section 5, we can choose all the pressure terms obeying the condition (3.5). Estimate (9.2)
can be proved with (9.3) and with calculations similar as the ones in section 5. n

Let (¢,p,r) be the solution to (1.4) corresponding to f = 0 and to (¢°,7°,r!) € H. It
will be advantageous to rewrite the structure equation as a first order evolution system. Let us

introduce

N —5 * d N —s *
(¢17p17ra,lyrb,1) = (3 ) 66 p ((bapa T, T/) and P1 = a ((Sé) 66 s ) .

We can check that (¢1,p1,74,1,75,1) is the solution to system (9.1) with f = p1¢p = f1, 9 = pir =
g1 and h = p1r’ = hy.

Theorem 9.1. There exist positive constants Ao, so(A) such that the following inequality holds
for all X > Xo, s > so(A\) and for all solutions (¢, p,r) of system (1.4) with f =0, the quadruplet
(01,1, Ta1,76,1) = (8 A)*aefsﬂ* (¢, p,7, 1) satisfies the estimate:

H¢1||§{4,2(Q) + ||VP1||%{1(0’T;L2(Q)) + |’T<1,1H%12(0’T;R2) + ”Tb,luzz(o,T;Rz)

(9.5)
<C(\s) {/ p 2 9] +/ p 2 52!p|2}-
wx (0,T) w2 x(0,1)
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Proof. From Lemma 9.1, it follows that

P1ll 21y + VDLl 2200752200 06)

< C(llp1oll2@) + llerrallzo,rr2y + llp17ell L2 0,7:R2))-
To improve the regularity of the solution to system (9.1), we write the equation satisfied by
G2 =1, P2=D1, Ta2=Tu1, Th2=Th1-

We observe that

¢h — Ao+ Vpr = f{ = (p1¢)’ and divgy =0 in Q,

¢2 =10 on X,
P2 =Tp2 on ¥
$2(0) =0 in €,
a2 —Tb2 =91 = (p17a1)’ in (0,7),

Tho + Ta2 = hy — /F o(p2,p2)n = (p1ro,1) — / o(¢a,p2)n  in (0,7),

r;
74,2(0) =0 and 75,2(0) = 0.
From Lemma 9.1, it follows that
©o,7:r2) t 17v.2ll 71 0,7;R2)

< CIfillz2q) + llgill2o.rr2y + 1P 22 0,75m2))-

P2l 21y + 1IVP2llL2(0,7:22(0)

Let us estimate f; in H*(Q). We have

k+1

Afi=pmAp, fl=pio+md, |pi| <Cs™H (&) e,

Ph] < Csm02 ()0 e,
Therefore, with Theorem 8.1, we have

1AA g + 1512,

/ 2 R e g / G2 2R 28 (2 1 | AgP >)

s )\ <
( [ rior+ / E1e29" (|62 4 | Ao >)
—28 3 2 —25 2 2
{ £ 19| +/W(O’T)p ey }

provided that



which is satisfied if
k=4 and 7 <4$.

Now, let us estimate g} and h} in L%(0,T;R?). We have
gr=pir+pr, b=+t
Therefore, still with Theorem 8.1, we obtain
HgiH%Q(o’T;W)

g Al A(k+41) * T o 2(k+1) *
< C(S,)\) </ ‘§|—26+Te—2sﬂ |7“‘2 +/ |£‘—26+T€_255
0 0

T T
< C(s,\) (/ €l P e 20 |2 + /0 gl Ir’l2>
0

< C(s,\) {/ p 2 9] +/ p % £2lpl2},
wx (0,T) w2x(0,T)

1740 22 0,75m2)

T X
< (s, ) </ €]~ 20 T 28

0
T/\ *
T,2+/ 5_16_285 |T”|2>
0

SC(&A){ / R / ,o—2852|p\2}-
wx(0,T) w2 x(0,T)

In these estimates we have used that |£] < C(A)[¢ Ir,|. Thus, from (9.7) it follows that

T‘,|2>

and

T
| + / |2+ 2 28
0

7“”|2>

T
< C(s,) < [ e p e
0

P2/l 21 (@) + [IVP2llL2(0,7522(0)) + ITa2ll 1 0,7m2) + 70,21l 1 0,7:R2)

C(s,\) {/ p~ 2 & o) +/ p 2 SQIPIQ},
wx(0,T) w2 X (0,T)

from which we deduce

(9.8)

P11l 0,712 (0)) + 101l E200,752200)) + IVl E (0,752200) + 70t H200,15R2) + 170,11 H2(0,7R2)

< C(s,)) {/ p~ 2ol +/ p §2|P2} -
wx(0,T) w2x(0,T)

Next, using equation (9.1), we can write that ¢1(t) obeys the stationary Stokes equation
—A¢1(t) +Vpi(t) = fr — ¢y and divgi(t) =0 in €,
¢1(t) =0 on T, (9.9)

¢1(t) = rp1(t) on T
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Thus from elliptic regularity results it follows that

P11l 220,712 ()

< CA{lfillL20,mm2(0)) + 1811 L20,0:m2(0)) + 17011l L200,7m2) }

< C(s, ) { / P2 G2 + / 2 5%!2} -
wx(0,T) w2x(0,T)

This completes the proof of (9.5). [

10 Null controllability result

In this section, we establish null controllability of our original system (1.4) as a consequence of

the Carleman inequality stated in Theorem 8.1 and of the regularity results in Theorem 9.1.

10.1 Null controllability with two controls
We first consider the system with two controls (u,v)

y —dive(y,7) =uy, and divy=v( in Q,

y=20 on X,
y=4¢q on X,
y(0) = ¢° in Q, (10.1)
q// + q=— / U(ya 7T) n n (07 T)7
I

We have to define solutions to system (10.1) in the case when v belongs to L2(0,T;L?*(f)).
For that, we use the transposition method. Let us consider the adjoint system, in which the

structure equation is rewritten as a first order system

—¢' —divo(¢,p) =f and divg=0 in Q,

$=0 on X,

o= —rp on X,

¢(T) =0 in £, (10.2)
r=ry+g,

Tyt e =h— /1“ o(p,p)n in (0,7),
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We shall say that (y,7,q) € L*(0,T; L*(Q)) x C1([0,T];R?) is a solution to system (10.1), in

the sense of transposition, when

/[)T/nyJr/qung/qu/h:/OT/wU(Z)jL/OT/QUCer/Q?JO(ﬁ(O)JFqO'TG(O)JFql‘Tb(o)v

for all (f,9.h) € L2(0, T3 L*()) x L2(0, T: R?) x L*(0, T3 R?), where (6, p, 74, 15) is the solution
to system (10.2). By this way, we can show that system (10.1) admits a unique solution, in the
sense of transposition, and this solution obeys the estimate

Yl z20,7:2200)) + llaller (o,mm2) < C(H?JOHB(Q) +1¢° 1+ g+ 1€Vl L2(0,m:2(0)) + Ul 220,702 (02)))-
Next using the equation

y —divo(y,7) =uyx, and divy=v( in Q,

y=20 on g, 103
y=¢ on X, '
y(0) =y° in Q,

and regularity result from [22] we get

IPyllcqomv-1e) < CUL 2@ + lallrzorze) + IC vl 2012200 + lullr207r2@))-

Here V~1(Q) denotes the dual of Vi (2) with V,%(Q) as pivot space. Let us notice that this
estimate is more precise than the one stated in [8, Theorem 2.14] where it is shown that Py
belongs to C([0,T]; V~2(Q)) for less regular data (V =2(€) is the dual of H2(Q)NV(2)). Finally
with the previous estimate we have

Yl 20,702 + llallcrqo,rr2) + 1PYllcomv-1@
( () ([0,T];R?) ([o,7] () (10.4)

< C19° N2 + 1%l + 1¢' | + IS vl 20, 020)) + Null 20,7502 (2)))-
Theorem 10.1. For all y° € VO(Q) , ¢° € R?, and ¢* € R? satisfying the conditions y° -
n=q -nonT; and y° -n = 0 on T., there ewist a function u € L*(Q) and a function
Cve HY0,T; HY(R)), satisfying [ov(t)¢ =0 for all t € [0,T], Cv(0) =0 and v(T) =0, such
that the solution of (10.1) obeys

y(T)=0, ¢(T)=0 and ¢(T)=0.

Proof. Step 1. Penalized problem. We are going to prove the null controllability result by

using a penalized optimal control problem. Let us introduce the problem

(Pe) inf{Je(y,u,v) | (y,p,u,v) obeys (10.1)}

where

1

_ 1 2 B 1.y 2, 1 -3 2581, |2 —2 2381, 2
T 0,0) = S PYT gl 5l (T P+ [ o (0P e ).

2
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In J. only Py(T) is penalized and not y(T') for two convergent reasons. Firstly, we know that
t — Py(t) is continuous from [0, 7] into V~1(Q2) while there is no hope to have continuity
results for ¢t — y(t) (see [8, 21, 22]). Secondly, if Py(T) =0, ¢(T') =0, ¢'(T) =0, and u(t) =0
and v(t) = 0 for ¢ > T, then the solution to (10.1) obeys y(t) = 0, ¢(t) = 0 and ¢/(t) = 0 for
t > T (see [21]).

Problem (P.) admits a unique solution (y., 7, ue, v:) which is characterized by the optimality

System
Yyl —divo(ye,me) = ue X and divy. =v.¢ in Q,

y. =0 on X,
Ye = q:: on Ei)
y-(0) = ¢ in 0, (10.5)
Qg + g = — / U(ysa 7T€) n in (07 T)>
ry

¢(0)=¢" and  ¢.(0) = ¢,

—¢L —divo(pe,pe) =0 and divg. =0 in Q,

¢5 =0 on X,
¢£ = —T; on Ei,
6c(T) = —H(—=PA)"'Py.(T) in Q (106)
! +re = / o(pe,pe) in (0,7),
re(T) = 1¢:(T)  and  rL(T) = 1q/(T),
—2s —2s3 1 —2s3
ue = e 2P .y, and v5=—£2e2ﬂp5+“/§262ﬂpaqu. (10.7)

We choose the pressure p. (see (3.5)) such that
/ &(z,1)? =258 pe(x,t)(z)dz =0 forall t € (0,7).

Thus

Ve = _52 e 2 Pe-

With equations (10.5)—(10.7), we obtain

)

2 o5 1 1 1
/ & e g +/ &0l + [ Pye(T)§-1(0) + =la=(T)* + =|g-(T)[?
wx(0,T) wx(0,T) 3 € €

- ‘/Qyo  62(0) = ¢°  72(0) — ¢ - 7(0),
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With Young’s inequality we have

iy 9sd 1 1 1
Lo (0P 4 e ) + LIPRT) v+ e + (TP
wx (0.1 (10.8)
< T (1600 By + IreOF + 2 OF) + o (180320 + 16 + la'?)
=5 e L2(Q) € € 2n L2(Q) :

Step 2. Uniform estimates. As in [19, Lemma 12.2], applying the Carleman inequality of
Theorem 8.1 to the solution (¢, pe,re) of the adjoint system (10.6) and using that (|., = 1, we

obtain

6020y + IrO)F + £ OP < € [

e 0 |g? 4+ C / &e >0 ¢pf*, (10.9)
wx(0,T)

wx(0,T)

where C' is independent of . Since e=258 > e72%0 with (10.9) estimate (10.8) is transformed as

follows
s _9s8 1 1 1
/ (€ €102 + e C|pel?) + I PyelT)IE 1y + = lae(T + ~Id (TP
wx(0,T) € € €

< C (I8 1320 + a2 + 1a'12)
(10.10)

In particular {u.} is bounded in L?(Q) since we have

/\uaP:/ fﬁe‘*sﬂr@r?gcf €720 g |2,
Q wx(0,T) wx(0,7)

)

Step 3. Regularity of v.. Recall that
Ue = 53 e 20 GeXw and v = _52 67283\])6'

We introduce

&e = (3 A)_ée_sﬁ*¢a and p. = (SE)_ge_sﬁ*pa-
We have
(s ’\)563[3* <;~55 =¢. and (s A)‘Sesﬁ* Pe = Pe.

Thus R .-

Ue = 53 6_285 (3 )665/6 ¢E Xw

and

Ve =2 P with 7o = 752 e 2508 (s /‘)6 e

Let us calculate ¢ v and V(¢ v.). We have

Cvl=Cy Pe + (2D, V(Cve) = V(CY2) Pe + Cy2 Ve,
V(Cvl) = V(¢rs) Pe + V(C72) P+ (72 VL + (v Vie.
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Notice that the functions ¢ y2, (74, V(€ 2), and V(¢ ~4) are bounded in Q. Thus, with estimate
(9.5) we have
1€ vellFr o100y < ClNBlFrr 00101 00

<C (/ & e 2 ¢ |? +/ 625%26!1?52)
wx (0,1 wx(0,T)

<C (/ e 20 g, +/
wx (0,T) wx(0,T)

)

67253 €2¢ !%2) .

Using estimate (10.10) for (¢, p:), we finally obtain

& e g [? +/

x(0,T") wx(0,T)

HCvé‘H%{l(O,T;Hl(Q)) <C (/ e e3¢ ‘1%:\2)

< C (18" 22y + a1 + 1a'?)

(10.11)

Step 4. Passage to the limit when ¢ tends to zero. From (10.10) and (10.11), it follows that the
sequences {u.} and {Cv.} are bounded respectively in L?(0,T; L*(Q2)) and in H'(0,T; H'(Q)).
Therefore, using the estimate (10.4) and equation (10.5), we can show that {(ye, ¢, ¢.)} converges
to the solution (y,q,q’) of equation (10.1), weakly-star in L2(0,T; L%*(Q)) x L>=(0,T;R?) x
L>(0,T;R?) and {(y(T), ¢=(T), q=(T))} converges to (y(T),q(T),q (T)) weakly in V~1(Q)xR? x
R2. Since {(y-(T),q-(T),q-(T))} converges to (0,0,0), we have shown that the pair (u,(v) €
L2(0,T; L3(2)) x HY(0,T; H'(Q2)) is the solution to the null controlability problem stated in
Theorem 10.1. Finally, since the sequence {¢!/2¢-1 esP ve} is bounded in L?(0,T; L?(2)), the
sequence {¢ ¢! es? ve} is also bounded in L?(0, T'; L?(f2)), and therefore the function ¢ ¢! By
belongs to L2(0,T; L?(£2)). Since ¢ v belongs to H(0,T; H(f)), we necessarily have (v(0) = 0
and (v(T) = 0. ]

10.2 Proof of Theorem 1.1.

In this final part, we eliminate the fictitious control v of Theorem 10.1 and we prove Theorem
1.1.
Let 2 € H(0,T; H}(ws3)) be the solution to the divergence equation

divz(t) =Cov(t) inws, z(t)=0 on dws. (10.12)

Let us denote by 2(t) € HE(Q) the extension of z(¢) by 0 to Q. It is clear that Z € H(0,T; H}(2))

is the solution to the divergence equation
divz(t)=Cov(t) inQ, 2(t)=0 onTl. (10.13)
Since (v belongs to H(0,T; H}(Q)), from [13] it follows that Z belongs to H(0,T; H*(Q)).

Moreover, we have ( v|\w,)x[0,r] = 0 (indeed supp( C ws). Setting Z = y — 2, it is easy to
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check that Z(0) = yo, Z(T) = 0, and that the pair (Z, 7, q) is the solution to

Z'—dive(Z,n) = (u—Z +div(DZ))xo and divZ=0 in Q,

Z =0 on X,

Z=q on X,

y(0) = ¢° in €,

¢ +q=- [ ozmn i (0.7),
r;

q0)=¢" and ¢ (0)=4¢".

We notice that u — 2’ + div (DZ) belongs to L?(0,7T; L?(£2)). Thus u — 2’ + div (D?) is a control

solution to the null controllability problem stated in Theorem 1.1, and the proof is complete. n
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