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§ 1. The object of this note is to announce some of the results obtained
by the author on the Spherical Summation of Multiple Fourier Series, with an
indication of the method of proof. A complete account of these results will
appear elsewhere, in due course.

§2. Notations and Definitons. Let f(x)= Sf(x1....x;) be a function of
the Lebesgue class L, which is periodic in each of the k-variables, with period
27.
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is called the Multiple Fourier Series of the function f(x).
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denote the  spherical * partial sum of the Series (2-1); that is, we shall con-
sider (2-1) as a simple series
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where R? is the sequence of all integers that can be represented as sums of

k-squares.
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so that S} is the Riesz mean of the Series (2-1), of type »2 and order 8.

If It S% exists and is finite, then the Series (2-1) will be summabie
R->co

(v, 8). If S% (x) is of bounded variation in 0< R < oo, the Series (2-1)
will be absolutely summable (%, 8), or summable | v2, § |.
229




230 " K. Chandrasekharan |
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where dy is the k-dimensional volume element, 5 (y;— x,)% - s t¥, and ¢ is
1
a suitable constant. If p=0, we write /; (x, )= £, (2). [ (1) may be called
the  spherical mean ’ of order p of the function f().

We prove theorems connecting the behaviour of the spherical mean of a
function at a point, with the summability of the corresponding Fourier Series

at the point.
§3. Theorems on Summability.
Theorem 1. I fy(t)~>last >0, then It S} (x)= L, for & > p-t- X

P k R > 00
—9 2 .
and L=2 F(z)
Theorem 2. If (i) f;, , (H— 1 =0 (1), t -0,
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leerorem 3. If.j;, @O—=1=0 (9 as ¢ —>0, O0<a< 1, then, for
3=p+ igl+ﬁ,0 <8,
lr OR-%,ifB8 > aq,
S (x)—L = { OR-= log R), if B= g,

{ O(R-B), fB <a.
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Theorem 5. If St (x) >sas R = oo, then £, (y) —>s/2%2-1 p(é‘)

as y —>0, provided p > max (1, y— If_é_;)

Theorem 6. Tf S§ (x)— 5= 0 (R-%) as R —>o0, 0<a< 2, then,

LR
HO)=s2 " I(5)=00M,

for P >max [l,y—- I—{—z':—3+a].

Combining Theorems 1 and 5, we can state the following.

Theorem 1. A necessary and sufficient condition that the Multiple
Fourier Series of a function f (x) should be summable (spherically) at a point
is that the meanlimit, of some order, of the function exists at that point.

Combining Theorems 2 and 6, we can state the following.

t
Theorem 8. If =%-2 [gK+%-1|f ()| ds =0 () as t -0, or in
0
particular, if £, ()= O (1), then the Multiple Fourier Series of f(x) is either

summable (»2, 8) for every 8 > p+ lc—g-i or for no &; anecessary and suffi-

cient condition for it to be summable is that f, () —/as ¢t >0, for g>p+ L.

Theorem 9. If f; () is of bounded variation in 0 < ¢ < oo, then the
Series (2-1) is summable | 2, & |, for > p+ @—E—l

Theorem 10, If S (x) is of bounded variation in 0 <R <eo, then

e k-3
f3(2) is of bounded variation in 0< ¢ < oo, for p >max ( 1, 8— T)
Theorem 11. If £, () is of bounded variation in 0<t<oo, andp > 1,

then the Series (2-1) is summable (+2 8) for § > p— 1+ lf-_zll

Theorem 12. Summability | »% 8|, for & > If—;—l of the Multiple
Fourier Series of f(x) at any point depends only on the behaviour of the
function in the neighbourhood of that point.

The proof of the above Theorems is essentially based on the following
fundamental formula of *Boqhner:

* S, Bochner : “ Summation of Multiple Fourier Series by Spherical Means,” Trans, American
Math. Soc., 40 (1936), 175-207.
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for 3 > k _2- 1, where V; (X)=J;(x)/x’ and J, denotes the Bessel function of
order I

By partial integration, we can generalize the formula (3+1) and prove its
reciprocal. We accordingly obtain, on the one hand,
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ifé> h+ ZC———Z"—I, where £ is the greatest integer less than p; and on the other,
k
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32
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ifp>1 and3>lc——~2———1.
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Formule (3-2) and (3-3) enable us, on the application of appropriate
arguments, to connect the behaviour of It S38 with that of It f; (£) and

R oo >0
deduce all the results cited above. '




