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Abstract
We consider the homogenization of a system of second-order equa-

tions with a large potential in a periodic medium. Denoting by ε the
period, the potential is scaled as ε−2. Under a generic assumption
on the spectral properties of the associated cell problem, we prove
that the solution can be approximately factorized as the product of a
fast oscillating cell eigenfunction and of a slowly varying solution of a
scalar second-order equation. This result applies to various types of
equations such as parabolic, hyperbolic or eigenvalue problems, as well
as fourth-order plate equation. We also prove that for well-prepared
initial data concentrating at the bottom of a Bloch band the resulting
homogenized tensor depends on the chosen Bloch band. Our method
is based on a combination of classical homogenization techniques (two-
scale convergence and suitable oscillating test functions) and of Bloch
waves decomposition.
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1 Introduction

We study the homogenization of evolution problems for a singularly per-
turbed second order elliptic system with periodically oscillating coefficients.
To fix ideas, let us consider the following parabolic problem





∂uε

∂t
− div

(
A

(x

ε

)
∇uε

)
+

(
ε−2c

(x

ε

)
+ d

(
x,

x

ε

))
uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω,

(1)
where Ω ⊂ RN is an open set and T > 0 a final time. The unknown uε(t, x) is
a vector-valued function from Ω× (0, T ) into RK . The coefficients A(y), c(y)
and d(x, y) are real and bounded functions defined for x ∈ Ω and y ∈ TN (the
unit torus). Furthermore, the tensor A(y) is symmetric, uniformly positive
definite, while c(y) and d(x, y) are symmetric with no positivity assumption.
The parabolic equation (1) is just an example: other evolution problems of
interest covered by this paper are the wave equation, parabolic fourth-order
equations, or spectral problems. A generalization to the Schrödinger equation
is the topic of another work [10]. The scalar case of (1) (i.e. K = 1 and uε

is a real-valued function) is well understood (see e.g. [5], [8], [9], [23], [31])
and the goal of this paper is to solve the case of systems of several coupled
equations. However, the method, as well as some results, are very different in
the system case. In order to convince the reader, we first describe the main
results and ideas of proof in the scalar case.

For K = 1 introduce the first eigencouple of the spectral cell problem

−divy (A(y)∇yψ1) + c(y)ψ1 = λ1ψ1 in TN , (2)

which, by the Krein-Rutman theorem, is simple and satisfies ψ1(y) > 0 in
TN . One can interpret physically the first eigenvalue λ1 as a measure of the
balance between the diffusion and potential terms. Since ψ1 does not vanish,
the unknown can be changed by writing a so-called factorization principle

vε(t, x) = e
λ1t

ε2
uε(t, x)

ψ1

(
x
ε

) , (3)

and one check easily after some algebra that the new unknown vε is a solution
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of a simpler equation




ψ2
1

(x

ε

) ∂vε

∂t
− div

(
(ψ2

1A)
(x

ε

)
∇vε

)
+ (ψ2

1d)
(
x,

x

ε

)
vε = 0 in Ω× (0, T ),

vε = 0 on ∂Ω× (0, T ),

vε(t = 0, x) = u0
ε (x)

ψ1(x
ε )

in Ω.

(4)
The new parabolic equation (4) is simple to homogenize since it does not
contain any singularly perturbed term, and we thus obtain the following
result.

Theorem 1.1 Assume that (1) is a scalar problem (K = 1). Then, vε,
defined by (3), converges weakly in L2 ((0, T ); H1

0 (Ω)) to the solution v of the
following homogenized problem





∂v

∂t
− div (A∗∇v) + d∗(x) v = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = v0(x) in Ω,

(5)

where A∗ is a constant homogenized tensor and d∗(x) a homogenized coeffi-
cient.

It is clear from the above brief summary of the scalar case that the main
idea, namely the factorization principle (3), does not usually work in the case
of systems, i.e. K > 1. Indeed, in general there is no maximum principle,
and therefore no Krein-Rutman theorem, for systems. Thus, ψ1 may change
sign and the change of unknowns (3) is meaningless because vε blows up at
some points (see however [5] for a special system for which the maximum
principle holds true). Even if we perform a formal computation by assuming
that (3) is valid, the system satisfied by vε has not a simple structure and
it is not clear that it admits a homogenized limit, and even so, there is no
reason why the homogenized tensor should be coercive.

In order to homogenize (1) in the system case, our main new idea is
to use Bloch wave theory. Under a generic simplicity assumption for the
first eigenvalue and a non-degenerate quadratic behavior near its minimum
(see (9)) we obtain a result similar to Theorem 1.1 (see Theorem 3.2 for
details). The two main features are that the homogenized equation is always
scalar and that the cell problem must sometimes be shifted, namely the
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usual periodicity condition in (2) has to be replaced by a Bloch periodicity
condition. Technically, the Bloch wave theory allows us to prove a new
compactness result (Lemma 4.3) which shows that sequences satisfying some
weak a priori estimates can be written approximately as the product of a
periodically oscillating sequence and another compact sequence. Our analysis
applies not only to the parabolic problem (1) but also to the corresponding
spectral problem and hyperbolic system. In the latter case different limit
regimes are obtained according to the sign of the minimal cell eigenvalue λ1.
Section 2 contains our notations, a brief review of Bloch wave theory and our
main assumption. Our main results are stated in Section 3 while the proofs
are distributed in Sections 4, 5 and 6.

In Section 7 we also obtain new homogenization results for some specific
well-prepared initial data (assuming that Ω = RN). More precisely, recall
that Bloch wave theory introduces the notion of Bloch bands, corresponding
to the range of cell eigenvalues or, in physical terms, to energy levels of
Fermi surfaces. Theorem 1.1 is concerned with the first Bloch band (or
ground state). If we assume that the initial data u0

ε is concentrating at the
bottom of a higher level Bloch band (see Section 7 for a precise statement),
we obtain a convergence result similar to Theorem 1.1 but with a different
homogenized tensor (depending on the level of the chosen Bloch band). Even
in the scalar case this result is new. In the context of Schrödinger equation
it is known as an effective mass theorem (see e.g. [24], [26], [27]). The fact
that the homogenized tensor depends on the initial data is very striking in
homogenization theory since usually effective properties are proved to be
intrinsic in the sense that they do not depend on the domain, the applied
forces or source terms, and the initial data.

In Section 8 we show that under a new assumption on the first Bloch
eigenvalue a different homogenized limit can be obtained for (1). Indeed, the
homogenized problem is a parabolic fourth-order equation.

Finally, Section 9 is devoted to an extension of our previous results to a
different model, namely we consider a fourth-order equation. We first obtain
homogenized limits similar to those of Section 3 but with a fourth-order
operator instead of a second-order one. Then, under a different assumption
on the first Bloch eigenvalue, we prove that a second-order homogenized limit
can also be obtained (a situation which is symmetric from that in Section
8). Our method could be generalized to other models. In particular, its
application to the Schrödinger equation is of paramount interest. However,
since much more can be deduced in the Schrödinger case, we address this
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problem in a separate work [10].
There are several motivations for studying the homogenization of the

singularly perturbed system (1). First, (1) is a model of reaction-diffusion
equations in periodic media (like a porous medium or a crystal in solid state
physics) and the large potential is classical when studying long time asymp-
totics. Second, the spectral problem for (1) is an usual model in nuclear
reactor physics, the so-called simplified transport equation. This is a set of
diffusion equations for the even moments of the neutron flux (moments with
respect to the angular velocity variable). One of the main features of this
simplified transport system is that it does not satisfy a maximum principle.
So our work is the first rigorous study of homogenization for this problem,
which is of paramount interest for fast numerical computations in the nuclear
industry (see [30] for more details and numerical applications). Third, as a
limit case of large potentials we recover perforated domains with periodic
holes supporting Dirichlet boundary conditions (take c = +∞ in the holes
and c = 0 elsewhere). In such a case the term of order ε−2 disappears from
the equation (1) although there is still a singular perturbation due to the
presence of Dirichlet holes. The scalar setting, K = 1, was studied in [31]
and we extend this result to the vector-valued case. One possible application
is the study of a composite material with fixed inclusions in the context of
linear elasticity. Fourth, even in the case when c ≡ 0 (i.e. without singular
perturbation) our homogenization result for initial data concentrating at the
bottom of high level Bloch bands is new and can be seen as a type of cor-
rector result for capturing an initial layer in time in the context of classical
homogenization [13] (see Remark 7.4).

2 Notations and Bloch decomposition

We first give our precise notations and assumptions on the real coefficients
A(y), c(y) and d(x, y) involved in equation (1). Our tensorial notations are
the following. Recall that N is the space dimension, and K is the system
dimension, i.e. all unknown functions are defined with values in RK . We
adopt the convention that Latin indices i, j belong to {1, .., N}, i.e. refer to
spatial coordinates, while Greek indices α, β vary in {1, .., K}. The K ×K
matrices c and d are symmetric, with entries cαβ, dαβ respectively, and have
no specific positivity properties. The tensor A acts on K × N matrices.
Denoting by (uα)1≤α≤K the components of a vector-valued function u, its
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gradient is the K ×N matrix ∇u defined by its entries

∇u =

(
∂uα

∂xi

)

1≤α≤K, 1≤i≤N

, (6)

and the product A∇u is also a K × N matrix defined with the Einstein
summation convention by

A∇u =

(
Aαβij

∂uα

∂xi

)

1≤β≤K, 1≤j≤N

. (7)

The tensor A is symmetric in the sense that

Aξ · ξ′ = Aξ′ · ξ for any ξ, ξ′ ∈ RK×N ,

and it is uniformly coercive, i.e. there exists ν > 0 such that for a.e. y ∈ TN

A(y)ξ · ξ ≥ ν|ξ|2 for any ξ ∈ RK×N .

We assume that A(y) and c(y) are real, measurable, bounded, periodic func-
tions, i.e. their entries belong to L∞(TN), while d(x, y) is real, measurable
and bounded with respect to x, and periodic continuous with respect to y,
i.e. its entries belong to L∞

(
Ω; C(TN)

)
(other assumptions are possible).

A formal two-scale asymptotic expansion (in the spirit of [12]) shows that
the leading term in the ansatz of uε is the solution of an equation in the unit
cell TN . Therefore, we need to study a microscopic version of (1). It turns
out that the key cell problem is the following Bloch (or shifted) spectral cell
equation

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψn

)
+ c(y)ψn = λn(θ)ψn in TN , (8)

which, as a compact self-adjoint complex-valued operator on L2(TN)K , ad-
mits a countable sequence of real increasing eigenvalues (λn)n≥1 and normal-
ized eigenfunctions (ψn)n≥1 with ‖ψn‖L2(TN )K = 1. The dual parameter θ is
called the Bloch frequency and it runs in the dual cell of TN , i.e. by period-
icity it is enough to consider θ ∈ TN . We refer to [12], [18] for more details
about the Bloch spectral problem (8).

Our main assumption is that there exists a Bloch parameter θ0 ∈ TN

such that



(i) θ0 is the unique minimizer of λ1(θ) in TN ,
(ii) λ1(θ0) is a simple eigenvalue,
(iii) the Hessian matrix ∇θ∇θλ1(θ0) is positive definite.

(9)
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Remark 2.1 In the scalar case, K = 1, assumption (9) is satisfied with
θ0 = 0. Indeed, by using the maximum principle, it is easily seen that the
minimum of λ1(θ) is uniquely attained at 0, and then that the Hessian matrix
∇θ∇θλ1(0), being equal to the usual homogenized matrix (see e.g. [19]), is
positive definite. On the other hand, for any K > 1 and in the absence
of zero-order term, i.e. c ≡ 0, it is easy to check that θ0 = 0 is the unique
minimizer of λ1(θ) (however, λ1(0) is not simple and, if it exists, the Hessian
matrix may be not positive definite). In full generality, there always exists a
minimizer of λ1(θ) but it may be non-unique and λ1(θ0) has no reason to be
simple (although, by extending the results of [2], it is possible to show that
λ1(θ0) is generically simple).

Remark 2.2 The range of possible values of θ0 is limited. The coefficients A
and c being real, it is clear that taking the complex conjugate of (8) amounts
to change θ in −θ. In other words the function λ1(θ) = λ1(−θ) is even. Since
by periodicity it is enough to minimize λ1(θ) on [−1/2, +1/2]N , the assumed
uniqueness of the minimizer θ0 implies that necessarily all the components of
θ0 are either 0 or 1/2.

We do not know if it is possible to obtain a non-zero value of θ0. We per-
formed numerical experiments in 2-d to compute θ0 for the simplified trans-
port equations (the SPN model) which is a system of two coupled equations
[30]. Even for numerical values of the coefficients out of their range of phys-
ical validity, we always obtain θ0 = 0. Nevertheless, in a slightly different
context, namely for a system of linear elasticity which is not uniformly el-
liptic but simply satisfies the Hadamard ellipticity condition (in other words
the associated energy is rank-one convex but not convex), there are numeri-
cal and physical evidences that the minimal value θ0 in (9) is not zero [20].
Similarly, numerical computations in [1] show that, for a different model of
fluid-structure interaction, in 2-d there are two minimal values θ0: (0, 1/2)
and (1/2, 0).

Remark 2.3 Assumption (9) can be slightly weakened, see Remarks 4.6,
4.7 and 4.8. However, if we remove the simplicity assumption for λ1(θ0) the
homogenized limit is not any longer a scalar equation but rather a system (see
Remark 4.8 for details). For example, when c ≡ 0, the minimal eigenvalue
λ1(0) = 0 is of multiplicity K (with constant eigenvectors), and it is well-
known that, in such a case, (1) admits an homogenized limit which is again
a system of K equations.
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Under assumption (9) it is a classical matter to prove that the first eigen-
couple of (8) is smooth at θ0 (see e.g. [22]). Introducing the operator A(θ)
defined on L2(TN)K by

A(θ)ψ = −(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψ

)
+ c(y)ψ − λ1(θ)ψ, (10)

it is easy to compute the derivatives of (8) for n = 1. Denoting by (ek)1≤k≤N

the canonical basis of RN , the first derivative satisfies

A(θ)
∂ψ1

∂θk

= 2iπekA(y)(∇y+2iπθ)ψ1+(divy+2iπθ) (A(y)2iπekψ1)+
∂λ1

∂θk

(θ)ψ1,

(11)
and the second derivative is

A(θ)
∂2ψ1

∂θk∂θl

= 2iπekA(y)(∇y + 2iπθ)
∂ψ1

∂θl

+ (divy + 2iπθ)

(
A(y)2iπek

∂ψ1

∂θl

)

+2iπelA(y)(∇y + 2iπθ)
∂ψ1

∂θk

+ (divy + 2iπθ)

(
A(y)2iπel

∂ψ1

∂θk

)

+
∂λ1

∂θk

(θ)
∂ψ1

∂θl

+
∂λ1

∂θl

(θ)
∂ψ1

∂θk

−4π2ekA(y)elψ1 − 4π2elA(y)ekψ1 +
∂2λ1

∂θl∂θk

(θ)ψ1

(12)
For θ = θ0 we have ∇θλ1(θ0) = 0, thus equations (11) and (12) simplify and
we find

∂ψ1

∂θk

= 2iπζk,
∂2ψ1

∂θk∂θl

= −4π2χkl, (13)

where ζk is the solution of

A(θ0)ζk = ekA(y)(∇y +2iπθ0)ψ1 +(divy +2iπθ0) (A(y)ekψ1) in TN , (14)

and χkl is the solution of

A(θ0)χkl = ekA(y)(∇y + 2iπθ0)ζl + (divy + 2iπθ0) (A(y)ekζl)

+elA(y)(∇y + 2iπθ0)ζk + (divy + 2iπθ0) (A(y)elζk)

+ekA(y)elψ1 + elA(y)ekψ1 − 1

4π2

∂2λ1

∂θl∂θk

(θ0)ψ1 in TN .

(15)
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There exists a unique solution of (14), up to the addition of a multiple of
ψ1. Indeed, the right hand side of (14) satisfies the required compatibility
condition (i.e. it is orthogonal to ψ1) because ζk is just a multiple of the
partial derivative of ψ1 with respect to θk which necessarily exists, see (11).
On the same token, there exists a unique solution of (15), up to the addition
of a multiple of ψ1. The compatibility condition of (15) yields a formula for
the Hessian matrix ∇θ∇θλ1(θ0).

We now recall some results on the Bloch decomposition associated to the
spectral problem (8) (see e.g. [12], [18]).

Lemma 2.4 Let u(y) ∈ L2(RN)K. Define αk(θ) =
∫
RN u(y)·ψk(y, θ)e−2iπθ·ydy.

Then,

u(y) =
∑

k≥1

∫

TN

αk(θ)ψk(y, θ)e2iπθ·ydθ.

Furthermore, if v(y) =
∑

k≥1

∫
TN βk(θ)ψk(y, θ)e2iπθ·ydθ in L2(RN)K, we have

∫

RN

u(y) · v(y) dy =
∑

k≥1

∫

TN

αk(θ)βk(θ) dθ.

In the sequel we shall need a rescaled version of Lemma 2.4 that we now
describe. Upon the change of variable y = x

ε
, we define uε(x) = ε−N/2u(y)

which satisfies ‖uε‖L2(RN )K = ‖u‖L2(RN )K . Applying Lemma 2.4 we deduce
the following rescaled Bloch transform

uε(x) =
∑

k≥1

∫

ε−1TN

αε
k(η)ψk(

x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη, (16)

with η = θ−θ0

ε
and αε

k(η) = εN/2αk(θ). The same orthogonality property
holds true

∫

RN

uε(x) · vε(x) dx =
∑

k≥1

∫

ε−1TN

αε
k(η)β

ε

k(η) dη.
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3 Main results

Let Ω ⊂ RN be an open set (bounded or not). Let 0 < T < +∞ be a final
time. We first consider the following parabolic problem





∂uε

∂t
− div

(
A

(x

ε

)
∇uε

)
+

(
c
(

x
ε

)

ε2
+ d

(
x,

x

ε

))
uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω.
(17)

The unknown uε(t, x) is vector-valued, i.e. it is a function from (0, T ) × Ω
into CK with K ≥ 1. Since Bloch waves are involved in our results, we always
consider complex-valued unknown functions. Assuming that the initial data
u0

ε belongs to L2(Ω)K it is a classical result that there exists a unique solution
of (17) in C

(
[0, T ]; L2(Ω)K

) ∩ L2
(
(0, T ); H1

0 (Ω)K
)
.

Since the matrix c does not satisfy any positivity property, we can not
obtain any a priori estimate directly from (17). On the other hand, the cell
spectral problem and assumption (9) indicate that λ1(θ0) governs the time
decay (or growth, according to its sign) of the solution uε. Therefore, we first
perform a time renormalization in the spirit of the factorization principle (3)
and we introduce a new unknown

ũε(t, x) = e
λ1(θ0)t

ε2 uε(t, x), (18)

which satisfies




∂ũε

∂t
− div

(
A

(x

ε

)
∇ũε

)
+

c
(

x
ε

)− λ1(θ0)

ε2
ũε + d

(
x,

x

ε

)
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω.
(19)

Then, we can obtain the following a priori estimate.

Lemma 3.1 There exists a constant C > 0 which does not depend on ε (but
may depend on T ) such that the solution of (19) satisfies

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K ≤ C‖u0
ε‖L2(Ω)K . (20)

10



Theorem 3.2 Assume (9) and that the initial data u0
ε ∈ L2(Ω)K is of the

form

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x), (21)

with v0 ∈ W 1,∞(Ω). The solution of (17) can be written as

uε(t, x) = e−
λ1(θ0)t

ε2

(
ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (22)

where rε is a vector-valued remainder term, defined on (0, T )×RN , such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (23)

and vε is a scalar sequence which converges weakly in L2 ((0, T ); H1(Ω)), and
strongly in L2 ((0, T ); L2

loc(Ω)), to the solution v of the scalar homogenized
problem





∂v

∂t
− div (A∗∇v) + d∗(x) v = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = v0(x) in Ω,

(24)

with A∗ = 1
4π2∇θ∇θλ1(θ0) and d∗(x) =

∫
TN d(x, y)ψ1(y) · ψ1(y) dy.

Remark 3.3 Of course, if Ω is bounded, one can take ω = Ω in (23) and
replace L2

loc(Ω) by L2(Ω) in the above theorem.

Remark 3.4 It is only for simplicity that we make assumption (21) on the
”well-prepared” character of the initial data. Indeed, we use it only for prov-
ing the strong convergence of vε to v in L2 ((0, T ); L2

loc(Ω)). The rest of The-

orem 3.2 holds true with the weaker assumption that u0
ε(x)e−2iπ

θ0·x
ε two-scale

converges to ψ1(y, θ0)v
0(x) with v0 ∈ L2(Ω) (see [3], [25] and Proposition

4.1 for the notion of two-scale convergence). All the more, for any kind of
initial data we can still obtain a similar result, but the homogenized initial
condition v0 is just defined as some type of weak two-scale limit (which may
well be zero). In other words, there is no need to have well-prepared initial
data in Theorem 3.2.

Remark 3.5 Theorem 3.2 still holds true if we add to equation (17) a non-
linear term of order ε0. Typically, we can add a non-linear term of the
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type g(x, x
ε
, uε) where g(x, y, ξ) is an homogeneous of degree one, Lipschitz

function with respect to ξ such that

|g(x, y, ξ)− g(x, y, ξ′)| ≤ C|ξ − ξ′|, g(x, y, tξ) = tg(x, y, ξ) ∀ t > 0.

In such a case, the homogenized problem (24) has an additional zero-order
term which is g∗(x, v) with g∗(x, v) =

∫
TN g(x, y, ψ1(y, θ0)v) · ψ1(y, θ0) dy.

Similarly, it is possible to add to (17) a source term of the type

fε(t, x) = e−
λ1(θ0)t

ε2 e2iπ
θ0·x

ε f
(
t, x,

x

ε

)
.

It yields a source term f ∗(t, x) =
∫
TN f(t, x, y) · ψ1(y) dy in the homogenized

equation (24).

We now consider the eigenvalue problem in a bounded domain Ω




−div

(
A

(x

ε

)
∇uε

)
+

(
c
(

x
ε

)

ε2
+ d

(
x,

x

ε

))
uε = λεuε in Ω,

uε = 0 on ∂Ω.

(25)

Since Ω is assumed to be bounded, problem (25) has a real discrete spectrum

λε
1 ≤ λε

2 ≤ . . . ≤ λε
n . . . → +∞,

with real eigenfunctions denoted by uε
k, normalized by ‖uε

k‖L2(Ω)K = 1.

Theorem 3.6 Under assumption (9), for each k ≥ 1 we have

λε
k =

λ1(θ0)

ε2
+ µk + o(1) with lim

ε→0
o(1) = 0,

and the corresponding eigenvector uε
k(x) admits the representation

uε
k(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε

k(x) + rε
k(x) (26)

where vε
k ∈ H1

0 (Ω) and rε
k ∈ L2(Ω)K satisfy

lim
ε→0

‖rε
k‖L2(Ω)K = 0, ‖vε

k‖H1
0 (Ω) ≤ C, lim

ε→0
‖vε

k‖L2(Ω) = 1,

12



and any limit point vk, as ε → 0, of the scalar sequence vε
k is a normalized

eigenfunction associated to the k-th eigenvalue µk of the scalar homogenized
spectral problem

{ −div (A∗∇v) + d∗(x)v = µv in Ω,
v = 0 on ∂Ω,

(27)

with A∗ = 1
4π2∇θ∇θλ1(θ0) and d∗(x) =

∫
TN d(x, y)ψ1(y) · ψ1(y) dy.

Furthermore, if µk is a simple eigenvalue of (27), the entire sequence vε
k

converges to the homogenized eigenfunction vk.

Finally we address the following hyperbolic problem





∂2uε

∂t2
− div

(
A

(x

ε

)
∇uε

)
+

c
(

x
ε

)

ε2
uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω,
∂uε

∂t
(t = 0, x) = u1

ε(x) in Ω,

(28)

where uε(t, x) takes its values in CK with K ≥ 1. Assuming that the ini-
tial data are u0

ε ∈ H1
0 (Ω)K and u1

ε ∈ L2(Ω)K , (28) admits a unique solution
uε ∈ C

(
[0, T ]; H1

0 (Ω)K
)∩C1

(
[0, T ]; L2(Ω)K

)
. The scalar case K = 1 was ad-

dressed in [4]. Depending on the sign of the minimal eigenvalue λ1(θ0) of the
cell problem (8), we obtain different asymptotic behavior for (28). We begin
with the case λ1(θ0) = 0 which does not require any time renormalization.

Theorem 3.7 Assume (9), λ1(θ0) = 0 and that the initial data are of the
form

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H1

0 (Ω)K ,

u1
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v1(x) ∈ L2(Ω)K ,

(29)

with v0 ∈ H1
0 (Ω) ∩ W 1,∞(Ω) and v1 ∈ L2(Ω). The solution of (28) can be

written as
uε(t, x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (30)

where rε is a vector-valued remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (31)

13



and vε is a scalar sequence which converges weakly in L2 ((0, T ); H1(Ω)) to
the solution v of the scalar homogenized problem





∂2v

∂t2
− div (A∗∇v) = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = v0(x) in Ω,
∂v
∂t

(t = 0, x) = v1(x) in Ω,

(32)

with A∗ = 1
4π2∇θ∇θλ1(θ0).

When λ1(θ0) 6= 0, we can not homogenize directly (28). As in the scalar
case [4] we must rather perform a time rescaling and consider large times of
order ε−1. In other words, instead of (28) we now consider





ε2∂2uε

∂t2
− div

(
A

(x

ε

)
∇uε

)
+

c
(

x
ε

)

ε2
uε = 0 in Ω× (0, T )

uε = 0 on ∂Ω× (0, T )
uε(t = 0, x) = u0

ε(x) in Ω
∂uε

∂t
(t = 0, x) = u1

ε(x) in Ω.

(33)

Let us first assume that λ1(θ0) < 0. We perform a time renormalization
analogous to (18) and we introduce a new unknown

ũε(t, x) = e−
√
−λ1(θ0)t

ε2 uε(t, x), (34)

which satisfies




ε2∂2ũε

∂t2
+ 2

√
−λ1(θ0)

∂ũε

∂t
− div

(
A

(x

ε

)
∇ũε

)
+

c
(

x
ε

)− λ1(θ0)

ε2
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω,

∂ũε

∂t
(t = 0, x) = u1

ε(x)−
√
−λ1(θ0)

ε2
u0

ε(x) in Ω.
(35)

In this case we obtain a parabolic homogenized equation.

Theorem 3.8 Assume (9), λ1(θ0) < 0 and that the initial data is

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H1

0 (Ω)K , (36)
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with v0 ∈ H1
0 (Ω) ∩ W 1,∞(Ω), and that ε2u1

ε(x) is bounded in L2(Ω)K while
ε2ψ1

(
x
ε
, θ0

) · u1
ε(x) converges weakly to 0 in L2(Ω). The solution of (33) can

be written as

uε(t, x) = e

√
−λ1(θ0)t

ε2

(
ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (37)

where rε is a vector-valued remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (38)

and vε converges weakly in L2 ((0, T ); H1(Ω)) to the solution v of the scalar
homogenized problem





2
√
−λ1(θ0)

∂v
∂t
− div (A∗∇v) = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = 1

2
v0(x) in Ω,

(39)

with A∗ = 1
4π2∇θ∇θλ1(θ0).

Remark 3.9 The one half factor in front of the initial data in the homoge-
nized problem (39) is quite surprising. It arises because the initial velocity in
(35) contains some contribution of u0

ε . As already explained in the scalar case
[4], there is an initial layer in time in (35) which is not taken into account
by Theorem 3.8.

Let us now assume that λ1(θ0) > 0. We perform another time renormal-
ization and we introduce a new unknown

ũε(t, x) = e−i

√
λ1(θ0)t

ε2 uε(t, x), (40)

which satisfies



ε2∂2ũε

∂t2
+ 2i

√
λ1(θ0)

∂ũε

∂t
− div

(
A

(x

ε

)
∇ũε

)
+

c
(

x
ε

)− λ1(θ0)

ε2
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω,

∂ũε

∂t
(t = 0, x) = u1

ε(x)− i

√
λ1(θ0)

ε2
u0

ε(x) in Ω.
(41)

In this case we obtain a Schrödinger type homogenized equation. Remark
that, although there is no remainder term in (43), the convergence of vε is
much weaker than in the previous cases (see also Remark 6.4).
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Theorem 3.10 Assume (9), λ1(θ0) > 0 and that the initial data is

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H1

0 (Ω)K , (42)

with v0 ∈ W 1,∞(Ω), and that ε2u1
ε(x) is bounded in L2(Ω)K while ε2ψ1

(
x
ε
, θ0

)·
u1

ε(x) converges weakly to 0 in L2(Ω). The solution of (33) can be written as

uε(t, x) = ei

√
λ1(θ0)t

ε2 e2iπ
θ0·x

ε vε(t, x), (43)

where vε two-scale converges to ψ1(y, θ0)v(t, x) and v ∈ L2 ((0, T ); H1
0 (Ω)) is

the solution of the scalar homogenized problem




2i
√

λ1(θ0)
∂v

∂t
− div (A∗∇v) = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = 1

2
v0(x) in Ω,

(44)

with A∗ = 1
4π2∇θ∇θλ1(θ0).

Remark 3.11 All the results in the hyperbolic case (Theorems 3.7, 3.8, and
3.10) hold true when we add a zero-order term of the type d

(
x, x

ε

)
uε, where

d(x, y) is a real symmetric non-negative matrix with entries in L∞
(
Ω; C(TN)

)
.

This yields a zero-order term in the homogenized problem which is precisely
d∗(x) =

∫
TN d(x, y)ψ1(y) · ψ1(y) dy.

4 Proofs in the parabolic case

Notation: for any function φ(x, y) defined on RN × TN , we denote by φε

the function φ(x, x
ε
).

Proof of Lemma 3.1. We multiply equation (19) by ũε and we integrate
by parts to obtain

1

2

∫

Ω

|ũε(t, x)|2dx− 1

2

∫

Ω

|u0
ε(x)|2dx +

∫ t

0

∫

Ω

d
(
x,

x

ε

)
ũε · ũε ds dx

+

∫ t

0

∫

Ω

(
A

(x

ε

)
∇ũε · ∇ũε +

c
(

x
ε

)− λ1(θ0)

ε2
ũε · ũε

)
ds dx = 0.

(45)

If we can check that the last integral in (45) is non negative, the lemma is
proved by a standard Gronwall inequality. Extending ũε by zero outside Ω
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and changing the variable as y = x
ε
, a sufficient condition is to prove that,

for any u ∈ H1(RN)K ,
∫

RN

(A(y)∇u · ∇u + (c(y)− λ1(θ0)) u · u) dy ≥ 0.

Applying the Bloch decomposition of Lemma 2.4 to u yields
∫

RN

(A(y)∇u · ∇u + (c(y)− λ1(θ0)) u · u) dy =
∑

k≥1

∫

TN

|αk(θ)|2 (λk(θ)− λ1(θ0)) dθ

which is non negative by assumption (9). 2

We now briefly recall the notion of two-scale convergence (see [3], [25]).

Proposition 4.1 Let wε be a bounded sequence in L2(Ω). There exist a
subsequence, still denoted by ε, and a limit w(x, y) ∈ L2(Ω × TN) such that
wε two-scale converges to w in the sense that

lim
ε→0

∫

Ω

wε(x)φ
(
x,

x

ε

)
dx =

∫

Ω

∫

TN

w(x, y)φ(x, y) dx dy

for all functions φ(x, y) ∈ L2
(
Ω; C(TN)

)
. The two-scale convergence is de-

noted by wε
2s
⇀ w.

Furthermore, if ε∇wε is also bounded in L2(Ω)N , then, up to another

subsequence, ε∇wε
2s
⇀ ∇yw and w belongs to L2

(
Ω; H1(TN)

)
.

Proof of Theorem 3.2. To simplify the exposition we forget the notation ·̃
for the solution ũε of (19). Equivalently, we could have subtracted from c(y)
an adequate constant, so that λ1(θ0) = 0 and uε = ũε. Define a sequence wε

by

wε(t, x) = uε(t, x)e−2iπ
θ0·x

ε .

By the a priori estimate of Lemma 3.1 we have

‖wε‖L∞((0,T );L2(Ω)K) + ε‖∇wε‖L2((0,T )×Ω)K ≤ C,

and applying Proposition 4.1, up to a subsequence, there exists a limit
w(t, x, y) ∈ L2

(
(0, T )× Ω; H1(TN)K

)
such that

wε
2s
⇀ w and ε∇wε

2s
⇀ ∇yw

17



in the sense of two-scale convergence.

First step. We multiply (19) by the complex conjugate of ε2φ(t, x, x
ε
)e2iπ

θ0·x
ε

where φ(t, x, y) is a smooth test function defined on [0, T ) × Ω × TN , with
compact support in [0, T )× Ω, and with values in CK . Integrating by parts
this yields

ε2

∫

Ω

u0
ε · φ

ε
e−2iπ

θ0·x
ε dx− ε2

∫ T

0

∫

Ω

wε · ∂φ
ε

∂t
dt dx

+

∫ T

0

∫

Ω

Aε(ε∇+ 2iπθ0)wε · (ε∇− 2iπθ0)φ
ε
dt dx

+

∫ T

0

∫

Ω

(cε − λ1(θ0) + ε2dε)wε · φε
dt dx = 0.

Passing to the two-scale limit yields the variational formulation of

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)w

)
+ c(y)w = λ1(θ0)w in TN .

By the simplicity of λ1(θ0), this implies that there exists a scalar function
v(t, x) ∈ L2 ((0, T )× Ω) (possibly complex-valued) such that

w(t, x, y) = v(t, x)ψ1(y, θ0). (46)

Second step. We multiply (19) by the complex conjugate of

Ψε = e2iπ
θ0·x

ε

(
ψ1(

x

ε
, θ0)φ(t, x) + ε

N∑

k=1

∂φ

∂xk

(t, x)ζk(
x

ε
)

)
(47)

where φ(t, x) is a smooth, compactly supported, test function defined from
[0, T ) × Ω into C, and ζk(y) is the solution of (14). After some algebra we
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find that
∫

Ω

Aε∇uε · ∇Ψεdx =

∫

Ω

Aε(∇+ 2iπ
θ0

ε
)(φwε) · (∇− 2iπ

θ0

ε
)ψ

ε

1

+ε

∫

Ω

Aε(∇+ 2iπ
θ0

ε
)(

∂φ

∂xk

wε) · (∇− 2iπ
θ0

ε
)ζ

ε

k

−
∫

Ω

Aεek
∂φ

∂xk

wε · (∇− 2iπ
θ0

ε
)ψ

ε

1

+

∫

Ω

Aε(∇+ 2iπ
θ0

ε
)(

∂φ

∂xk

wε) · ekψ
ε

1

−
∫

Ω

Aεwε∇ ∂φ

∂xk

· ekψ
ε

1

−
∫

Ω

Aεwε∇ ∂φ

∂xk

· (ε∇− 2iπθ0)ζ
ε

k

+

∫

Ω

Aεζ
ε

k(ε∇+ 2iπθ0)wε · ∇ ∂φ

∂xk

(48)

Now, for any smooth compactly supported test function Φ from Ω into CK ,
we deduce from the definition of ψ1 that

∫

Ω

Aε(∇+ 2iπ
θ0

ε
)ψε

1 · (∇− 2iπ
θ0

ε
)Φ +

1

ε2

∫

Ω

(cε − λ1(θ0))ψ
ε
1 · Φ = 0, (49)

and from the definition of ζk

∫

Ω

Aε(∇+ 2iπ
θ0

ε
)ζε

k · (∇− 2iπ
θ0

ε
)Φ +

1

ε2

∫

Ω

(cε − λ1(θ0))ζ
ε
k · Φ =

ε−1

∫

Ω

Aε(∇+ 2iπ
θ0

ε
)ψε

1 · ekΦ− ε−1

∫

Ω

Aεekψ
ε
1 · (∇− 2iπ

θ0

ε
)Φ.

(50)

Combining (48) with the potential term, we easily check that the first line of
its right hand side cancels out because of (49) with Φ = φwε, and the next

three lines cancel out because of (50) with Φ = ∂φ
∂xk

wε. On the other hand,

we can pass to the limit in the three last terms of (48). Finally, using the
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above information, (19) multiplied by Ψε yields after simplification
∫

Ω

u0
ε ·Ψε(t = 0)dx−

∫ T

0

∫

Ω

wε ·
(

ψ
ε

1

∂φ

∂t
+ ε

∂2φ

∂xk∂t
ζ

ε

k

)
dt dx

−
∫ T

0

∫

Ω

Aεwε∇ ∂φ

∂xk

· ekψ
ε

1dt dx

−
∫ T

0

∫

Ω

Aεwε∇ ∂φ

∂xk

· (ε∇− 2iπθ0)ζ
ε

kdt dx

+

∫ T

0

∫

Ω

Aεζ
ε

k(ε∇+ 2iπθ0)wε · ∇ ∂φ

∂xk

dt dx

+

∫ T

0

∫

Ω

dεwε ·Ψε dt dx = 0.

(51)

Passing to the two-scale limit in each term of (51) gives
∫

Ω

∫

TN

ψ1v
0 · ψ1φ(t = 0)dx dy −

∫ T

0

∫

Ω

∫

TN

ψ1v · ψ1

∂φ

∂t
dt dx dy

−
∫ T

0

∫

Ω

∫

TN

Aψ1v∇ ∂φ

∂xk

· ekψ1dt dx dy

−
∫ T

0

∫

Ω

∫

TN

Aψ1v∇ ∂φ

∂xk

· (∇y − 2iπθ0)ζkdt dx dy

+

∫ T

0

∫

Ω

∫

TN

Aζk(∇y + 2iπθ0)ψ1v · ∇ ∂φ

∂xk

dt dx dy

+

∫ T

0

∫

Ω

∫

TN

dψ1v · ψ1φ dt dx dy = 0.

(52)
Recalling the normalization

∫
TN |ψ1|2dy = 1, and introducing

A∗
jk =

∫

TN

(
Aψ1ej · ekψ1 + Aψ1ek · ejψ1

+Aψ1ej · (∇y − 2iπθ0)ζk + Aψ1ek · (∇y − 2iπθ0)ζj

−Aζk(∇y + 2iπθ0)ψ1 · ej − Aζj(∇y + 2iπθ0)ψ1 · ek

)
dy,

(53)

and d∗(x) =
∫
TN d(x, y)ψ1(y) · ψ1(y) dy, (52) is equivalent to

∫

Ω

v0φ(0)dx−
∫ T

0

∫

Ω

(
v
∂φ

∂t
+ A∗v · ∇∇φ− d∗(x)vφ

)
dt dx = 0
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which is a very weak form of the homogenized equation (24). Note, however,
that we can not recover the Dirichlet boundary condition from (52). To this
end we shall use the compactness Lemma 4.3 below (which was not required
so far) or, more precisely, its Corollary 4.5 which implies the existence of a
bounded scalar sequence vε in L2

(
(0, T ); H1(RN)

)
such that

uε(t, x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (54)

and limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN . Up to a subse-
quence, vε converges weakly to a limit v in L2

(
(0, T ); H1(RN)

)
, which nec-

essarily coincides with the two-scale limit obtained in (46). If the compact
set ω lies outside Ω, i.e. ω ⊂ (

RN \ Ω
)
, we deduce from (54) that

ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) = −rε(t, x) in ω × (0, T ),

and since ψ1 is normalized, we obtain

‖rε‖2
L2((0,T )×ω)K =

∫ T

0

∫

ω

|ψ1

(x

ε
, θ0

)
|2|vε(t, x)|2dt dx →

∫ T

0

∫

ω

|v(t, x)|2dt dx = 0.

Therefore, we deduce that v = 0 in any compact set ω outside from Ω. This
implies that v belongs to L2 ((0, T ); H1

0 (Ω)).
The compatibility condition of equation (15) for the second derivative of

ψ1 yields that the matrix A∗, defined by (53), is indeed equal to 1
4π2∇θ∇θλ1(θ0),

and thus is real, symmetric, positive definite by assumption (9). Therefore,
the homogenized problem (24) is well posed. By uniqueness of the solution
of the homogenized problem (24), we deduce that the entire sequence vε

converges to v (which is a real-valued function if the initial data v0 is so). 2

Remark 4.2 As usual in periodic homogenization, the choice of the test
function Ψε, defined by (47), is dictated by the formal two-scale asymptotic
expansion that can be obtained for the solution uε of (17). Indeed, if one
admits that the ansatz of uε starts with the following two exponential terms
(which is not obvious a priori !), then a simple and formal computation shows
that

uε(t, x) ≈ e−
λ1(θ0)t

ε2 e2iπ
θ0·x

ε

(
ψ1

(x

ε
, θ0

)
v(t, x) + ε

N∑

k=1

∂v

∂xk

(t, x)ζk(
x

ε
)

)
,

where v is the homogenized solution of (24).
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Lemma 4.3 Let uε be a bounded sequence in L2(RN)K. Assume that there
exists a finite constant C such that

∫

RN

(
A

(x

ε

)
∇uε · ∇uε +

c
(

x
ε

)− λ1(θ0)

ε2
uε · uε

)
dx ≤ C. (55)

Then, under assumption (9),

uε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(x) + rε(x), (56)

where vε is a bounded scalar sequence in H1(RN) and limε→0 ‖rε‖L2(ω)K = 0
for any compact set ω ⊂ RN .

Remark 4.4 If the sequence uε further vanishes outside an open set Ω, then
we can obtain the representation (56) with vε uniformly bounded in H1

0 (Ω).
Indeed, it is enough to project the function vε ∈ H1(RN), given by Lemma
4.3, on H1

0 (Ω).

Corollary 4.5 Let ũε be the solution of the parabolic system (19). Then,
under assumptions (9) and (21),

ũε(t, x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x),

where vε is a bounded scalar sequence in L2((0, T ); H1(RN)), such that ∂vε

∂t
is

bounded in L2((0, T )×RN), and limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact
set ω ⊂ RN . In particular, vε is relatively compact in L2

(
(0, T ); L2

loc(RN)
)
.

Proof of Lemma 4.3. Our proof is in the spirit of the previous works
[17], [19], [29]. Applying the rescaled Bloch decomposition (16) to uε(x) with
η = θ−θ0

ε
, we have

uε(x) =
∑

k≥1

∫

ε−1TN

αε
k(η)ψk(

x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη, (57)

and ∫

RN

(
A

(x

ε

)
∇uε · ∇uε +

c
(

x
ε

)− λ1(θ0)

ε2
uε · uε

)
dx
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= ε−2
∑

k≥1

∫

ε−1TN

|αε
k(η)|2

(
λk(θ0 + εη)− λ1(θ0)

)
dη.

Since λk(θ)− λ1(θ0) ≥ 0 and, for k ≥ 2, λk(θ)− λ1(θ0) ≥ C > 0, we deduce
from the bound (55) that

∑

k≥2

∫

ε−1TN

|αε
k(η)|2dη ≤ Cε2.

For k = 1, by assumption (9) there exists C > 0 such that

λ1(θ)− λ1(θ0) ≥ C|θ − θ0|2 ∀θ ∈ TN ,

and thus (55) implies
∫

ε−1TN

|η|2|αε
1(η)|2dη ≤ C.

Extending αε
1(η) by zero outside ε−1TN , and using the inverse Fourier trans-

form, we deduce that the scalar sequence ṽε, defined by

ṽε(x) =

∫

RN

αε
1(η)e2iπη·xdη,

is bounded in H1(RN).
Introducing a parameter 0 < q < 1 (to be chosen later) we define a cut-off

of ṽε by

vε =

∫

|η|<ε−q

αε
1(η)e2iπη·xdη. (58)

The difference between vε and ṽε is small since

‖ṽε − vε‖2
L2(RN ) =

∫

|η|>ε−q

|αε
1(η)|2dη ≤ ε2q

∫

RN

|η|2|αε
1(η)|2dη ≤ Cε2q.

Similarly we have
∫

ε−1TN

αε
1(η)ψ1(

x

ε
, θ0+εη)e2iπη·xe2iπ

θ0·x
ε dη =

∫

|η|<ε−q

αε
1(η)ψ1(

x

ε
, θ0+εη)e2iπη·xe2iπ

θ0·x
ε dη+tε(x),

where tε is small, i.e.

‖tε‖2
L2(RN ) =

∫

η∈ε−1TN , |η|>ε−q

|αε
1(η)|2dη ≤ ε2q

∫

ε−1TN

|η|2|αε
1(η)|2dη ≤ Cε2q.
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Since the first eigencouple of (8) is differentiable with respect to θ at θ0, there
exists a constant C > 0 such that

‖ψ1(·, θ)− ψ1(·, θ0)‖L2(TN )K ≤ C|θ − θ0| ∀θ ∈ TN .

Therefore, we have
∫

|η|<ε−q

αε
1(η)ψ1(

x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη = ψ1(

x

ε
, θ0)e

2iπ
θ0·x

ε vε(x) + sε(x)

where sε is small, i.e.

‖sε‖2
L2(ω)K =

∫

ω

∣∣∣∣
∫

|η|<ε−q

αε
1(η)

(
ψ1(

x

ε
, θ0 + εη)− ψ1(

x

ε
, θ0)

)
e2iπη·xe2iπ

θ0·x
ε dη

∣∣∣∣
2

dx

≤
∫

ω

(∫

|η|<ε−q

dη

)(∫

|η|<ε−q

|αε
1(η)|2

∣∣∣ψ1(
x

ε
, θ0 + εη)− ψ1(

x

ε
, θ0)

∣∣∣
2

dη

)
dx

≤ Cε−Nq

∫

|η|<ε−q

|αε
1(η)|2

(∫

ω

∣∣∣ψ1(
x

ε
, θ0 + εη)− ψ1(

x

ε
, θ0)

∣∣∣
2

dx

)
dη

≤ C|ω|ε−Nq

∫

|η|<ε−q

ε2|η|2|αε
1(η)|2dη

≤ C|ω|ε2−Nq,

for any compact set ω ⊂ RN (we can not obtain a uniform estimate on
RN since sε is not defined as a Bloch decomposition). Collecting all the
intermediate steps we deduce

uε(x) = ψ1(
x

ε
, θ0)e

2iπ
θ0·x

ε vε(x) + rε(x)

and ‖rε‖2
L2(ω)K ≤ C|ω|ε 2

N+2 with the optimal value of q equal to 2/(N + 2).
2

Proof of Corollary 4.5. The parabolic energy estimate for (19) yields

1

2

∫

Ω

|ũε(T )|2dx +

∫ T

0

∫

Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
dx dt ≤ C.

This implies assumption (55) (integrated in time) and thus, mimicking the
proof of Lemma 4.3, we obtain the same result with vε bounded in L2((0, T ); H1(RN))
and rε converging strongly to 0 in L2((0, T )× ω)K .
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To obtain the bound on ∂vε

∂t
we now multiply (19) by ∂ũε

∂t
to obtain

∫ T

0

∫

Ω

∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

dx +
1

2

∫

Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
(T )dx =

1

2

∫

Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
(0)dx. (59)

Using assumption (21) of well-prepared initial data, and taking into account
the equation satisfied by ψ1, a simple computation shows that the right hand
side of (59) is equal to

1

2

∫

Ω

Aε(ψ1
ε ⊗∇v0) · (ψ1

ε ⊗∇v0) dx,

which is bounded since v0 ∈ W 1,∞(Ω). Thus, it implies that ∂ũε

∂t
is bounded

in L2((0, T ) × Ω)K . Recalling the Bloch wave decomposition (57) of ũε, we
have

∂ũε

∂t
(t, x) =

∑

k≥1

∫

ε−1TN

∂αε
k

∂t
(t, η)ψk(

x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη,

and

‖∂vε

∂t
‖2

L2((0,T )×RN ) =

∫ T

0

∫

ε−1TN

∣∣∣∣
∂αε

k

∂t

∣∣∣∣
2

dη dt ≤ ‖∂ũε

∂t
‖2

L2((0,T )×Ω)K ,

which proves that vε is bounded in H1((0, T )×RN) and thus locally relatively
compact in L2((0, T )× RN).

If Ω = RN we can obtain the same compactness of vε without using
assumption (21). Indeed, it suffices to multiply (19) by a test function

φε(t, x) =

∫

ε−1TN

β(t, η)ψ1(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη,

where β(t, η) is the Fourier transform of a function φ(t, x) ∈ L2((0, T ); H1(RN)).
Then, using the Bloch decomposition, we can prove that ∂vε

∂t
is bounded in

L2((0, T ); H−1(RN)) which, by a standard embedding theorem, yields the
result. This trick does not work for Ω 6= RN because φε does not satisfy the
Dirichlet boundary condition. 2
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Remark 4.6 If we remove from assumption (9) the positive definite charac-
ter of the Hessian matrix ∇θ∇θλ1(θ0), we can still obtain an homogenization
result, weaker than Theorem 3.2. Indeed, the same proof shows that wε two-
scales converges, up to a subsequence, to ψ1(y, θ0)v(t, x) where v is a solution
of the homogenized equation (24) with a possibly degenerate matrix A∗ (which
is nevertheless always non-negative because θ0 is a minimum point). How-
ever, Lemma 4.3 holds true only if ∇θ∇θλ1(θ0) is positive definite. Thus,
we can not recover the Dirichlet boundary condition, neither can we obtain
the uniqueness of the homogenized solution and the convergence of the entire
sequence wε.

Remark 4.7 If we remove from assumption (9) the condition that the min-
imum point θ0 of λ1(θ) is unique, then we can also prove a weaker version of
Theorem 3.2. For each minimum and associated Hessian matrix ∇θ∇θλ1, we
can extract a subsequence such that wε two-scales converges ψ1(y, θ0)v(t, x)
where v is a solution of the homogenized equation (24). However, since
Lemma 4.3 does not hold true in this case, we can not recover the Dirichlet
boundary condition. Nevertheless, if Ω = RN and ∇θ∇θλ1 is positive defi-
nite, we do not need any boundary condition to obtain the unique resolvability
of the homogenized equation. Thus, in such a case, the entire sequence wε is

converging. Recall that wε = e
λ1(θ0)t

ε2 e−2iπ
θ0·x

ε uε, so that for different minima
we have different values of θ0, thus different sequences wε, and eventually
different homogenized problems. If the initial condition is a superposition of
well-prepared initial data for each minimum point θ0, then, by linearity, we
can decompose the solution in a superposition of elementary solutions, each
of them converging to its own homogenized limit depending on θ0.

Remark 4.8 If we replace, in assumption (9), the simplicity of λ1(θ0) by the
condition that its multiplicity is k ≥ 1, and if we make suitable assumptions
on the smoothness of the k first branches of eigenvalues λn(θ) (and corre-
sponding eigenvectors) in the vicinity of θ0, then we can generalize Theorem
3.2. The main difference is that, in such a case, the homogenized problem is
now a system of k diffusion equations which are coupled only by zero-order
terms. The diffusion tensor of each equation is the Hessian of the corre-
sponding branch of eigenvalues at θ0. This is clearly seen in the first step
of the proof of Theorem 3.2 where the conclusion is now that the two-scale
limit w(t, x, y) is a combination of k independent eigenvectors associated to
λ1(θ0). In the second step of the proof, we now choose a test function which
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is a similar combination of k test functions associated to each smooth branch
of eigenvectors (the functions ζi are the corresponding derivatives with re-
spect to θi of these eigenvectors and may thus change from one branch to
another). Passing to the limit is as before and there is no coupling of the
second-order terms because of the orthogonality property of the chosen family
of eigenvectors.

5 Proofs for the spectral problem

This section is devoted to the proof of Theorem 3.6.

Lemma 5.1 There exists a finite constant C, which does not depend on ε,
such that

λ1(θ0)

ε2
+ C ≤ λε

1 ≤
λ1(θ0)

ε2
+ µ1 + o(1), (60)

where o(1) vanishes as ε → 0.

Proof. Let (µ1, v1) be the first eigencouple of the homogenized problem (27).
For each small δ > 0, we introduce a smooth and compactly supported in Ω
function wδ, such that ‖wδ‖L2(Ω) = 1 and

∫

Ω

(
A∗∇wδ · ∇w̄δ + d∗(x)|wδ|2) dx < µ1 + δ.

In other words, wδ is an approximation of v1. In the variational formulation

λε
1 = min

‖u‖
L2(Ω)K

=1

∫

Ω

(
Aε∇u · ∇u +

(
ε−2cε + dε

)
u · u)

dx (61)

we substitute a test function of the form

U ε = γεe
2iπ

θ0·x
ε

(
ψ1(

x

ε
, θ0)w

δ(x) + ε

N∑

k=1

∂wδ

∂xk

(x)ζk(
x

ε
)

)
, (62)

where ζk is the solution of (14) and γε is a normalization constant chosen in
such a way that ‖U ε‖L2(Ω)K = 1. Since ψ1 and ζk are periodic functions, and
since wδ is normalized, we have lim

ε→0
γε = 1. In view of (10) and (14), after

simple rearrangements we obtain

λε
1 ≤

λ1(θ0)

ε2
+ o(1) + γ2

ε

∫

Ω

Aε
αβ,klψ

ε
1,αψ̄ε

1,β

∂wδ

∂xk

∂wδ

∂xl

dx
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+γ2
ε

∫

Ω

{
ψ̄ε

1,αAε
αβ,ml

(
∂

∂ym

+ 2iπθ0,m

)
ζε
k,β

∂wδ

∂xl

∂wδ

∂xk

+ψε
1,α

(
∂

∂yk

− 2iπθ0,k

) (
Aε

αβ,kmζ̄ε
l,β

) ∂wδ

∂xm

∂wδ

∂xl

}
dx

+γ2
ε

∫

Ω

ψ̄ε
1,αψε

1,βdε
αβ|wδ|2dx + ε2γ2

ε

∫

Ω

dε(ζε∇wδ) · (ζ̄ε∇wδ)dx

+2εγ2
εR

(∫

Ω

(
ψ̄ε

1ζ
εAε∇∇wδwδ + dε(wδψ̄ε

1) · (ζε∇wδ)
)
dx

)
.

¿From the definitions of A∗ and d∗, we deduce

λε
1 ≤

λ1(θ0)

ε2
+ µ1 + δ + o(1), (63)

where o(1) vanishes as ε → 0. Since δ is an arbitrary positive number, this
yields the required upper bound in (60). On the other hand, by using Lemma
2.4 we have

min
‖u‖

L2(Ω)K
=1

∫

Ω

(
Aε∇u · ∇u +

(
ε−2cε + dε

)
u · u)

dx ≥ (64)

λ1(θ0)

ε2
+ inf

x∈Ω,y∈TN ,|η|=1
d(x, y)η · η

which yields the desired lower bound. 2

Lemma 5.2 There exists a scalar sequence vε, which is uniformly bounded
in H1

0 (Ω), such that ‖vε‖L2(RN ) = 1 + o(1) and

uε
1(x) = ψ1(

x

ε
, θ0)e

2iπ
θ0·x

ε vε(x) + rε(x) with lim
ε→0

‖rε‖L2(Ω)K = 0. (65)

Proof of Lemma 5.2. ¿From the upper bound of Lemma 5.1 and from the
Bloch decomposition applied to uε

1, we deduce

λ1(θ0)

ε2
+

∫

Ω

dεuε
1 · uε

1 dx ≤ λε
1 ≤

λ1(θ0)

ε2
+ µ1 + o(1),

which, together with the normalization ‖uε
1‖L2(Ω)K = 1, implies that

−∞ < inf
x∈Ω,y∈TN ,|η|=1

d(x, y)η · η ≤
∫

Ω

dεuε
1 · uε

1 dx ≤ C. (66)
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Then, the existence of ṽε, bounded in H1(RN), and such that

uε
1(x) = ψ1(

x

ε
, θ0)e

2iπ
θ0·x

ε ṽε(x) + rε(x),

is a consequence of Lemma 4.3 since

∫

Ω

(
Aε∇uε

1 · ∇uε
1 +

cε − λ1(θ0)

ε2
uε

1 · uε
1

)
dx = λε

1−
λ1(θ0)

ε2
−

∫

Ω

dεuε
1·uε

1 dx ≤ C.

As explained in Remark 4.4, we can replace ṽε ∈ H1(RN) by vε ∈ H1
0 (Ω)

defined as the solution of

−∆vε = −∆ṽε in Ω, vε ∈ H1
0 (Ω).

Since uε
1 vanishes outside Ω and rε converges locally strongly to 0, it is easy

to show that (65) is satisfied with such a sequence vε. 2

Proof of Theorem 3.6. We focus on the first eigenfunction, k = 1. For
k > 1 a similar proof holds true.

By Lemma 5.2 the family vε is relatively compact in L2(Ω) and any limit
point v0 of a converging subsequence, satisfies the relation ‖v0‖L2(Ω) = 1. By

Lemma 5.1 we can also extract a subsequence such that λε
1− λ1(θ0)

ε2
converges

to a limit µ. According to (60)

C ≤ µ ≤ µ1. (67)

The proof is now very similar to that of Theorem 3.2 (see Section 4). Up to
another subsequence, e−2πix·θ0/εuε

1(x) two-scale converges to a limit u0
1(x, y)

and ε∇
(
e−2πix·θ0/εuε

1

)
two-scale converges to ∇yu

0
1(x, y). As in the first step

of the proof of Theorem 3.2, one can easily show that

u0
1(x, y) = v0(x)ψ1(y, θ0),

where v0 is a limit point of vε. To find the equation satisfied by v0, we proceed
as in the second step of the proof of Theorem 3.2. We multiply (25) by the
test function

Ψε(x) = e2iπ
θ0·x

ε

(
ψ1(

x

ε
, θ0)φ(x) + ε

N∑

k=1

∂φ

∂xk

(x)ζk(
x

ε
)

)
,
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where φ is smooth with compact support. This yields

∫

Ω

Aε(x)∇uε
1(x)∇Ψε(x)dx +

∫

Ω

cε(x)− λ1(θ0)

ε2
uε

1(x) ·Ψε(x)dx+

+

∫

Ω

dε(x)uε
1(x) ·Ψε(x) =

λε
1 − λ1(θ0)

ε2

∫

Ω

uε
1(x) ·Ψε(x).

As before, using (8) and (14), we can pass to the two scale limit to obtain

∫

Ω

(
A∗v0 · ∇∇φ + d∗(x)v0φ

)
dx = µ

∫

Ω

v0φ dx

which is a weak variational formulation of

−A∗ · ∇∇v0 + d∗v0 = µv0 in Ω. (68)

The Dirichlet boundary condition for the limit v0 is recovered as in the par-
abolic case. Since v0 6= 0 and µ ≤ µ1, we necessarily have

µ = µ1,

and v0 is an eigenfunction of (27) associated with µ1. If µ1 is simple, up to
a convenient renormalization, the entire sequence uε

1 is converging (and not
merely a subsequence). 2

6 Proofs in the hyperbolic case

We begin with proof of Theorem 3.7 when λ1(θ0) = 0. Actually, as soon
as uniform a priori estimates are obtained for the solution of equation (28),
the proof of convergence is completely similar to that of Theorem 3.2 in the
parabolic case. Therefore, for the sake of brevity, we content ourselves in
establishing those a priori estimates.

Lemma 6.1 Under the assumptions of Theorem 3.7 the solution uε of (28)
satisfies

‖uε‖L∞((0,T );L2(Ω)K) + ε‖∇uε‖L2((0,T )×Ω)N×K +‖∂uε

∂t
‖L∞((0,T );L2(Ω)K) ≤ C, (69)
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where C > 0 is a constant which does not depend on ε. Furthermore, there
exists a scalar sequence vε, uniformly bounded in L2 ((0, T ); H1(Ω)), such that

uε(t, x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (70)

where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN . (71)

Proof. We multiply (28) by ∂uε

∂t
to obtain the usual energy conservation

Eε(t) = Eε(0) with Eε(t) =
1

2

∫

Ω

(∣∣∣∣
∂uε

∂t

∣∣∣∣
2

+ Aε∇uε · ∇uε +
cε

ε2
uε · uε

)
dx.

(72)
Since λ1(θ0) = 0, by using the well-prepared character of the initial data (29)
and equation (8), a classical computation shows that

Eε(0) =
1

2

∫

Ω

(∣∣u1
ε

∣∣2 + Aε(ψ1
ε ⊗∇v0) · (ψ1

ε ⊗∇v0)
)

dx,

which is uniformly bounded by assumption. Then, the Bloch wave analysis
of Lemma 3.1 yields

∫

Ω

(
Aε∇uε · ∇uε +

cε

ε2
uε · uε

)
dx ≥ 0.

Therefore, we deduce (69) from (72). To obtain (70) and (71) we use Lemma
4.3 since (72) implies that assumption (55) is satisfied. 2

We now turn to the proof of Theorem 3.8 when λ1(θ0) < 0. Once again
the proof of convergence is very similar to that of Theorem 3.2 as soon
as uniform a priori estimates are established (see [4] in the scalar case if
necessary). Therefore, we restrict ourselves to obtaining a priori estimates
for the rescaled hyperbolic system (35).

Lemma 6.2 Under the assumptions of Theorem 3.8 the solution ũε of (35)
satisfies

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K + ε‖∂ũε

∂t
‖L2((0,T )×Ω)K ≤ C, (73)
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where C > 0 is a constant which does not depend on ε. Furthermore, there
exists a scalar sequence vε, uniformly bounded in L2 ((0, T ); H1(Ω)), such that

ũε(t, x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (74)

where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN . (75)

Proof. In a first step we multiply (35) by ∂ũε

∂t
to obtain the usual energy

conservation

Eε(T ) + 2
√
−λ1(θ0)

∫ T

0

∫

Ω

∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

dx dt = Eε(0) (76)

with

Eε(t) =
1

2

∫

Ω

(
ε2

∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

+ Aε∇ũε · ∇ũε +
cε − λ1(θ0)

ε2
ũε · ũε

)
dx.

As in the proof of Lemma 6.1, using (8) yields

∫

Ω

(
Aε∇u0

ε · ∇u0
ε +

cε − λ1(θ0)

ε2
u0

ε · u0
ε

)
dx =

∫

Ω

Aε(ψ1
ε⊗∇v0)·(ψ1

ε⊗∇v0) dx,

which is however not sufficient to show that Eε(0) is uniformly bounded.
Indeed we have

∂ũε

∂t
(0) = u1

ε −
√
−λ1(θ0)

ε2
u0

ε

which merely implies
Eε(0) ≤ Cε−2.

Nevertheless, from the Bloch wave analysis of Lemma 3.1 we deduce

∫

Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
dx ≥ 0,

which, combined with (76), yields

ε2‖∂ũε

∂t
‖L∞((0,T );L2(Ω)K) + ε

√
−λ1(θ0)‖∂ũε

∂t
‖L2((0,T )×Ω)K ≤ C. (77)
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In a second step we multiply (35) by ũε to obtain a better energy estimate

√
−λ1(θ0)

∫

Ω

|ũε(T )|2 dx +

∫ T

0

∫

Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
dx dt =

√
−λ1(θ0)

∫

Ω

|ũε(0)|2 dx + ε2

∫ T

0

∫

Ω

∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

dx dt

+ε2

∫

Ω

ũε(0)
∂ũε

∂t
(0) dx− ε2

∫

Ω

ũε(T )
∂ũε

∂t
(T ) dx.

(78)
Using (77) we deduce from (78)

√
−λ1(θ0)‖ũε(T )‖2

L2(Ω)K ≤ C
(
1 + ‖ũε(T )‖L2(Ω)K

)
,

which implies that ũε is bounded in L∞
(
(0, T ); L2(Ω)K

)
. Using this infor-

mation in (78) shows that assumption (55) is satisfied: thus, Lemma 4.3 can
be applied to obtain (74) and (75). 2

Finally we arrive at the proof of Theorem 3.10 when λ1(θ0) > 0 and again
we simply address the question of uniform a priori estimates for (41) (the
proof of convergence is an adaptation of Theorem 3.2 and of the arguments
of [4] in the scalar case).

Lemma 6.3 Under the assumptions of Theorem 3.10 the solution ũε of (41)
satisfies

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K + ε2‖∂ũε

∂t
‖L∞((0,T );L2(Ω)K) ≤ C,

(79)
where C > 0 is a constant which does not depend on ε.

Remark 6.4 The result of Lemma 6.3 is weaker than those of Lemmas 6.1
and 6.2 since it does not give any strong compactness of ũε. In particular, it
implies that we can not straightforwardly recover the homogenized Dirichlet
boundary condition. As in the scalar case [4], in order to obtain the ho-
mogenized boundary condition the trick is to study the homogenization of a
time integral of (41) which has less oscillating initial data. Indeed, defining
wε(t, x) =

∫ t

0
ũε(s, x) ds + χε(x) with a suitable choice of χε (so that wε satis-

fies the same p.d.e. than (41) without source term), one can obtain better a
priori estimates for wε than for ũε. We thus obtain an homogenized equation

33



with a Dirichlet boundary condition for a limit of wε, and upon differentiating
in time we deduce the desired Dirichlet boundary condition for the limit of ũε

(see [4] for details).

Proof. In a first step we multiply (41) by ∂ũε

∂t
and we take the real part to

obtain the usual energy conservation

Eε(t) = Eε(0) (80)

with Eε(t) =
1

2

∫

Ω

(
ε2

∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

+ Aε∇ũε · ∇ũε +
cε − λ1(θ0)

ε2
ũε · ũε

)
dx. As in

the proof of Lemma 6.2, the assumptions merely imply

Eε(0) ≤ Cε−2.

Nevertheless, from the Bloch wave analysis of Lemma 3.1 we deduce

∫

Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
dx ≥ 0,

which, combined with (80), yields

ε2‖∂ũε

∂t
‖L∞((0,T );L2(Ω)K) ≤ C. (81)

In a second step we multiply (41) by ũε and we take the imaginary part

√
λ1(θ0)

∫

Ω

|ũε(T )|2 dx−
√

λ1(θ0)

∫

Ω

|ũε(0)|2 dx

+ε2I
(∫

Ω

ũε(T )
∂ũε

∂t
(T ) dx−

∫

Ω

ũε(0)
∂ũε

∂t
(0) dx

)
= 0.

(82)

Using (81) we deduce from (82)

√
λ1(θ0)‖ũε(T )‖2

L2(Ω)K ≤ C
(
1 + ‖ũε(T )‖L2(Ω)K

)
,

which implies that ũε is bounded in L∞
(
(0, T ); L2(Ω)K

)
. Remark that (82),

unlike (78), does not include any gradient term, so we can not apply Lemma
4.3 to obtain a better estimate. 2
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7 Generalization to higher level bands

We generalize the homogenization of a parabolic system established in Sec-
tion 3 for initial data concentrating at the bottom of the first Bloch band to
another type of initial data concentrating at the bottom of an higher level
band. Such a generalization holds true only in the case of the whole space
Ω = RN because otherwise we lack an adequate generalization of the com-
pactness Lemma 4.3. ¿From now on in this section we replace assumption
(9) by the following one: for an energy level n ≥ 1, there exists a Bloch
parameter θ0 ∈ TN such that





(i) θ0 is the unique minimizer of λn(θ) in TN ,
(ii) λn(θ0) is a simple eigenvalue,
(iii) the Hessian matrix ∇θ∇θλn(θ0) is positive definite.

(83)

Under assumption (83) the nth eigencouple of (8) is smooth at θ0. It is easily

seen that the first derivative ∂ψn

∂θk
and the second derivative ∂2ψn

∂θk∂θl
satisfy

equations similar to (11) and (12) respectively, up to changing the index 1
to n. In particular, for θ = θ0 we still use the following notation

∂ψn

∂θk

= 2iπζk,
∂2ψn

∂θk∂θl

= −4π2χkl. (84)

where ζk and χkl are solutions of (14) and (15) respectively, up to changing
the label 1 to n.

We study a parabolic system with purely periodic coefficients





∂uε

∂t
− div

(
A

(x

ε

)
∇uε

)
+

c
(

x
ε

)

ε2
uε = 0 in RN × (0, T ),

uε(t = 0, x) = u0
ε(x) in RN .

(85)

We also need an assumption on the initial data which must be “well pre-
pared”, namely concentrating at the bottom on the nth Bloch band. Recall
from Lemma 2.4 that any function u0

ε ∈ L2(RN) can be decomposed as

u0
ε(x) =

∑

k≥1

∫

ε−1TN

αε
k(η)ψk(

x

ε
, θ0 + εη)e2iπη·xe−2iπ

θ0·x
ε dη,
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with η = θ−θ0

ε
. We denote by Πn

ε the projection operator on the Bloch bands
above the nth level

Πn
ε u

0
ε(x) =

∑

k≥n

∫

ε−1TN

αε
k(η)ψk(

x

ε
, θ0 + εη)e2iπη·xe−2iπ

θ0·x
ε dη. (86)

Our assumption on the initial data is that

u0
ε = Πn

ε u
0
ε . (87)

Typically, we are interested in an initial data of the type

u0,1
ε (x) = Πn

ε

(
v0(x)ψn(

x

ε
, θ0)e

2iπ
θ0·x

ε

)
, (88)

with v0 ∈ L2(RN). However, since the projection operator Πn
ε is not very ex-

plicit, we also consider another type of initial data which satisfies assumption
(87), namely

u0,2
ε (x) =

∫

ε−1TN

αn(η)ψn(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη, (89)

with αn ∈ L2(RN) being the Fourier transform of v0(x). Actually, it is easy
to check that

lim
ε→0

‖u0,1
ε − u0,2

ε ‖L2(RN )K = 0.

For such well-prepared initial data, we perform a time renormalization similar
to (18)

ũε(t, x) = e
λn(θ0)t

ε2 uε(t, x), (90)

such that ũε satisfies




∂ũε

∂t
− div

(
A

(x

ε

)
∇ũε

)
+

c
(

x
ε

)− λn(θ0)

ε2
ũε = 0 in RN × (0, T ),

ũε(t = 0, x) = u0
ε(x) in RN .

(91)

Lemma 7.1 Under assumption (87), the solution of (91) satisfies

‖ũε‖L∞((0,T );L2(RN )K) + ε‖∇ũε‖L2((0,T )×RN )N×K ≤ C‖u0
ε‖L2(RN )K , (92)

and there exists a bounded scalar sequence vε in L2
(
(0, T ); H1(RN)

)
such

that
ũε(t, x) = ψn

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (93)

where limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN .
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Theorem 7.2 Assume that the initial data u0
ε ∈ L2(RN)K is of the form

(88) or (89). The solution of (85) can be written as

uε(t, x) = e−
λn(θ0)t

ε2

(
ψn

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (94)

where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (95)

and vε converges weakly in L2
(
(0, T ); H1(RN)

)
to the solution v of the scalar

homogenized problem





∂v

∂t
− div (A∗

n∇v) = 0 in RN × (0, T ),

v(t = 0, x) = v0(x) in RN ,
(96)

with A∗
n = 1

4π2∇θ∇θλn(θ0).

Remark 7.3 In the context of the Schrödinger equation Theorem 7.2 is
called an effective mass theorem [24], [26], [27]. Even in the case of a scalar
equation, Theorem 7.2 is new since the factorization principle does not work
for an energy level n > 1, namely one can not divide the unknown uε by
ψn

(
x
ε
, θ0

)
which necessarily vanishes at some points in TN .

Remark 7.4 An initial data of the type (88) or (89) would yield a zero limit
if homogenized in the setting of Theorem 3.2. The solution uε, given by (94),
decays much faster than that given by (22) because λn(θ0) > λ1(θ0). There-
fore, we can interpret Theorem 7.2 as describing initial layers in time, com-
pared to Theorem 3.2 which captures the average behavior. This is consistent
with the classical homogenization of parabolic equations, when c ≡ 0, where
initial layers in time are known to exist [13] but can not be characterized by
the classical homogenization theory.

Proof of Lemma 7.1. We apply the rescaled Bloch decomposition (16) to
equation (91)

ũε(t, x) =
∑

k≥1

∫

ε−1TN

αε
k(t, η)ψk(

x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη,
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with

αε
k(t, η) = αε

k(0, η)e
(λn−λk)(θ0+εη)

ε2
t.

¿From assumption (87) we deduce that αε
k(t, η) = 0 for any k < n. Therefore,

for any time t, we have Πn
ε ũε(t, x) = ũε(t, x). Thus,

∫

RN

(
A

(x

ε

)
∇ũε · ∇ũε +

c
(

x
ε

)− λn(θ0)

ε2
ũε · ũε

)
dx ≥ 0,

which easily yields the a priori estimate (92). We now mimic the arguments of
the proof of Lemma 4.3 (replacing the label 1 by n) to obtain the compactness
result (93). 2

Proof of Theorem 7.2. The proof is very similar to that of Theorem 3.2
so we simply sketch the main points. We introduce, as before, a sequence wε

defined by

wε(t, x) = ũε(t, x)e−2iπ
θ0·x

ε .

By the a priori estimates of Lemma 7.1, there exist a subsequence and a
limit w(t, x, y) ∈ L2

(
(0, T )× RN ; H1(TN)K

)
such that wε and ε∇wε two-

scale converges to w and ∇yw respectively [3], [25]). Similarly, by its very
definition, wε(0, x) two-scale converges to ψn (y, θ0) v0(x). In a first step we

multiply (91) by the complex conjugate of ε2φ(t, x, x
ε
)e2iπ

θ0·x
ε where φ(t, x, y)

is a smooth test function defined in [0, T ) × RN × TN with values in CK .
Passing to the two-scale limit yields the existence of a scalar function v(t, x) ∈
L2

(
(0, T )× RN

)
such that w(t, x, y) = v(t, x)ψn(y, θ0). In a second step we

multiply (91) by the complex conjugate of

Ψε = e2iπ
θ0·x

ε

(
ψn(

x

ε
, θ0)φ(t, x) + ε

N∑

k=1

∂φ

∂xk

(t, x)ζk(
x

ε
)

)

where φ(t, x) is a smooth, compactly supported, test function defined from
[0, T ) × RN into C, and ζk(y) is the solution of (14) where the label 1 is
replaced by n. Passing to the two-scale limit yields a very weak form of the
homogenized equation (96). It is routine to show that its solution v(t, x) is
indeed a classical weak solution. Then, by uniqueness of the solution, we
deduce that the entire sequence wε two-scale converges to ψn (y, θ0) v(t, x).
2
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Remark 7.5 All the results of this section are specific to the case of the
whole space, i.e. Ω = RN , and can not be extended to the case of an additional
zero-order term d(x, x

ε
) because we crucially use the Bloch diagonalization to

get a priori estimates.

8 Fourth order homogenized problem

By changing the main assumption on the Bloch spectrum it is possible to
obtain a fourth order homogenized equation from a second order parabolic
problem. Specifically we consider





ε2∂uε

∂t
− div

(
A

(x

ε

)
∇uε

)
+

(
ε−2c

(x

ε

)
+ ε2d

(
x,

x

ε

))
uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω.

(97)
Remark that the time scaling in (97) is not the same than that in (17):
this means that we are looking for an asymptotic for longer time of order
ε−2 in (97), compared to (17). Instead of (9), we now make the following
assumption





(i) θ0 is the unique minimizer of λ1(θ) in TN ,
(ii) λ1(θ0) is a simple eigenvalue,
(iii) ∇θ∇θλ1(θ0) = 0,
(iv) the fourth-order tensor ∇θ∇θ∇θ∇θλ1(θ0) is positive definite.

(98)

Remark 8.1 We do not know if assumption (98) is satisfied in any practical
example.

Since λ1(θ0) is a minimum, we also have ∇θλ1(θ0) = 0 and ∇θ∇θ∇θλ1(θ0) =
0. Under assumption (98) the first eigencouple of (8) is smooth at θ0. Recall
that, for θ = θ0, the two first derivatives of ψ1 are given by

∂ψ1

∂θk

= 2iπζk,
∂2ψ1

∂θk∂θl

= −4π2χkl, (99)

where ζk is the solution of (14) and χkl is the solution of (15) (remark that
this last equation simplifies since ∇θ∇θλ1(θ0) = 0). Similarly, the third
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derivative is
∂3ψ1

∂θj∂θk∂θl

= −8iπ3ξjkl, (100)

where

A(θ0)ξjkl = ejA(y)(∇y + 2iπθ0)χkl + (divy + 2iπθ0) (A(y)ejχkl)

+ekA(y)(∇y + 2iπθ0)χjl + (divy + 2iπθ0) (A(y)ekχjl)

+elA(y)(∇y + 2iπθ0)χkj + (divy + 2iπθ0) (A(y)elχkj)

+ekA(y)elζj + ejA(y)elζk + ekA(y)ejζl.

(101)

There exists a unique solution of (101), up to the addition of a multiple of
ψ1. Indeed, the right hand side of (101) satisfies the required compatibility
condition (i.e. it is orthogonal to ψ1) because all derivatives of λ1(θ), up to
third order, are zero at θ = θ0.

We perform a time renormalization by introducing a new unknown

ũε(t, x) = e
λ1(θ0)t

ε4 uε(t, x), (102)

which satisfies




∂ũε

∂t
− ε−2div

(
A

(x

ε

)
∇ũε

)
+

c
(

x
ε

)− λ1(θ0)

ε4
ũε + d

(
x,

x

ε

)
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω.
(103)

As usual we obtain the following a priori estimate

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K ≤ C‖u0
ε‖L2(Ω)K ,

where the constant C > 0 does not depend on ε.

Theorem 8.2 Assume that the initial data u0
ε ∈ L2(Ω)K is of the form

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x), (104)

with v0 ∈ L2(Ω). The solution of (97) can be written as

uε(t, x) = e−
λ1(θ0)t

ε4

(
ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (105)
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where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN ,

and vε converges weakly in L2 ((0, T ); H2(Ω)) to the solution v of the scalar
fourth-order homogenized problem





∂v

∂t
+ div div (A∗∇∇v) = 0 in Ω× (0, T ),

∂v

∂n
= v = 0 on ∂Ω× (0, T ),

v(t = 0, x) = v0(x) in Ω,

(106)

with A∗ = 1
16π4∇θ∇θ∇θ∇θλ1(θ0).

To prove Theorem 8.2 we need the following generalization of Lemma 4.3.

Lemma 8.3 Let uε be a bounded sequence in L2(RN)K. Assume that there
exists a finite constant C such that

∫

RN

(
A

(x

ε

)
∇uε · ∇uε +

c
(

x
ε

)− λ1(θ0)

ε2
uε · uε

)
dx ≤ Cε2. (107)

Then, under assumption (98),

uε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(x) + rε(x), (108)

where vε is a bounded scalar sequence in H2(RN) and limε→0 ‖rε‖L2(ω)K = 0
for any compact set ω ⊂ RN .

Proof. Introducing the rescaled Bloch decomposition (16) of uε(x) with
η = θ−θ0

ε
,

uε(x) =
∑

k≥1

∫

ε−1TN

αε
k(η)ψk(

x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη,

the same arguments than those in the proof of Lemma 4.3 and the estimate

λ1(θ)− λ1(θ0) ≥ C|θ − θ0|4 ∀θ ∈ TN ,
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shows that ∫

ε−1TN

|η|4|αε
1(η)|2dη ≤ C.

Defining vε(x) as the inverse Fourier transform of αε
1(η), we deduce that vε

is uniformly bounded in H2(RN). 2

Proof of Theorem 8.2. The proof is similar to that of Theorem 3.2.

The first step is identical: the function wε(t, x) = uε(t, x)e−2iπ
θ0·x

ε two-scale
converges to a limit v(t, x)ψ1(y, θ0). In the second step, we multiply (103)
by the complex conjugate of

Ψε = e2iπ
θ0·x

ε

(
ψ1(

x

ε
, θ0)φ(t, x) + ε

N∑

k=1

∂φ

∂xk

(t, x)ζk(
x

ε
)

+ε2

N∑

k,l=1

∂2φ

∂xk∂xl

(t, x)χkl(
x

ε
) + ε3

N∑

j,k,l=1

∂3φ

∂xj∂xk∂xl

(t, x)ξjkl(
x

ε
)

)
,

(109)
where φ(t, x) is a smooth, compactly supported, test function defined from
[0, T )× Ω into R, ζk(y) is the solution of (14), χkl(y) is the solution of (15),
and ξjkl(y) is the solution of (101). After some tedious algebra we find that

∫

Ω

|ψε
1|2v0φ(0) dx−

∫ T

0

∫

Ω

wε · ψε

1

∂φ

∂t
dt dx

−
∫ T

0

∫

Ω

Aεwε∇ ∂3φ

∂xj∂xk∂xl

· ekχ
ε
jl dt dx

−
∫ T

0

∫

Ω

Aεwε∇ ∂3φ

∂xj∂xk∂xl

· (ε∇− 2iπθ0)η
ε
jkl dt dx

+

∫ T

0

∫

Ω

Aεηε
jkl(ε∇+ 2iπθ0)wε · ∇ ∂3φ

∂xj∂xk∂xl

dt dx

+

∫ T

0

∫

Ω

dεwε · ψε

1φ dt dx = O(ε).

(110)
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Passing to the two-scale limit in each term of (110) gives
∫

Ω

∫

TN

|ψ1|2v0φ(0) dx dy −
∫ T

0

∫

Ω

∫

TN

|ψ1|2v∂φ

∂t
dt dx dy

−
∫ T

0

∫

Ω

∫

TN

Aψ1v∇ ∂3φ

∂xj∂xk∂xl

· ekχjl dt dx dy

−
∫ T

0

∫

Ω

∫

TN

Aψ1v∇ ∂3φ

∂xj∂xk∂xl

· (∇y − 2iπθ0)ηjkl dt dx dy

+

∫ T

0

∫

Ω

∫

TN

Aηjkl(∇y + 2iπθ0)ψ1v · ∇ ∂3φ

∂xj∂xk∂xl

dt dx dy

+

∫ T

0

∫

Ω

∫

TN

dψ1v · ψ1φ dt dx dy = 0.

(111)

Recalling the normalization
∫
TN |ψ1|2dy = 1, and introducing

A∗
jklm =

∫

TN

(
− Aψ1em · ekχjl − Aψ1em · (∇y − 2iπθ0)ηjkl

+Aηjkl(∇y + 2iπθ0)ψ1 · em

)
dy

(112)

(which has to be symmetrized), and d∗(x) =
∫
TN d(x, y)ψ1(y) ·ψ1(y) dy, (111)

is equivalent to
∫

Ω

v0φ(0) dx−
∫ T

0

∫

Ω

(
v
∂φ

∂t
− A∗v · ∇∇∇∇φ− d∗(x)vφ

)
dt dx = 0

which is a very weak form of the homogenized equation (106). To recover
the Dirichlet boundary condition, we use Lemma 8.3 which implies that
v ∈ H2(RN) and v = 0 in any compact set ω ⊂ (

RN \ Ω
)
. Thus v belongs

to H2
0 (Ω).

The compatibility condition of the equation giving the fourth deriva-
tive of ψ1 yields that the tensor A∗, defined by (112), is indeed equal to

1
16π4∇θ∇θ∇θ∇θλ1(θ0), and thus is real, symmetric, positive definite by as-
sumption (98). Therefore, the homogenized problem (106) is well posed. By
uniqueness of the solution, the entire sequence vε converges to v. 2

9 Homogenization of fourth-order equations

Our method also applies to fourth-order problems. Although systems of
equations can be treated, for simplicity we focus on the case of a single
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equation, without loss of generality since there is no maximum principle
for fourth-order elliptic equation. Let us introduce the following symmetric
fourth-order operator

Aε = div div
(
Θ(

x

ε
)∇∇

)
− 1

ε2
div

(
A(

x

ε
)∇

)
+

1

ε4
c(

x

ε
) + d(x,

x

ε
), (113)

with periodic coefficients Θ(y) = {Θijkl(y)}, A(y) = {Aij(y)} and c(y) which
are real periodic functions in L∞(TN). Furthermore, Θ and A are symmetric
tensors, and Θ is uniformly elliptic (A needs not to be positive). The locally
periodic term d(x, y) belongs to L∞

(
Ω; C(TN)

)
.

Under these assumptions the Bloch decomposition for (113) is basically
the same as that for second order operators. On the torus TN we introduce
the Bloch operators

A(θ)ψ(y) = e−2iπy·θAe2iπy·θψ(y) =

(∇y + 2iπθ)(∇y + 2iπθ) · (Θ(y)(∇y + 2iπθ)(∇y + 2iπθ))ψ(y)+

−(∇y + 2iπθ) · (A(y)(∇y + 2iπθ)ψ(y) + c(y)ψ(y),

with A = div div(Θ(y)∇∇) − div(A(y)∇) + c(y). Then, the Bloch spectral
cell problem

A(θ)ψn = λn(θ)ψn in L2(TN)

has a discrete spectrum λ1(θ) ≤ λ2(θ) ≤ . . . ≤ λn(θ) → +∞. Moreover, all
the statements of Lemma 2.4 (and its rescaled version) remain valid.

It is quite natural to make assumption (98) which implies ∇θ∇θλ1(θ0) =
0. For example, (98) is easily seen to be satisfied with θ0 = 0 if there are no
zero and second order terms in (113), i.e. A ≡ 0, c ≡ 0.

We begin with the parabolic Cauchy problem





∂uε

∂t
+Aε uε = 0 in Ω× (0, T ),

uε = 0,
∂uε

∂n
= 0 on ∂Ω× (0, T ),

uε(t = 0, x) = u0
ε(x) in Ω.

(114)

Theorem 9.1 Assume (98). Let uε(t, x) be a solution of (114) with Aε given
by (113), and u0

ε ∈ L2(Ω) be an initial data of the form

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x),
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with v0 ∈ L2(Ω). Then uε can be written as

uε(t, x) = e−
λ1(θ0)t

ε4

(
ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
,

where the remainder term rε satisfies the relation

lim
ε→0

‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ RN ,

and vε converges weakly in L2 ((0, T ); H2(Ω)) to the solution v of




∂v

∂t
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = v0(x) in Ω,

with the homogenized operator

A∗ = div div (Θ∗∇∇) + d∗(x) (115)

and Θ∗ = 1
16π4∇θ∇θ∇θ∇θλ1(θ0), d∗(x) =

∫
TN d(x, y)|ψ1(y, θ0)|2dy.

The proof of Theorem 9.1 is very similar to that of Theorem 8.2. Upon

defining ũε(t, x) = e
λ1(θ0)t

ε4 uε(t, x), the a priori estimates are

‖ũε‖L2(Ω) + ε‖∇ũε‖L2(Ω)N + ε2‖∇∇ũε‖L2(Ω)N2 ≤ C,

which, up to a subsequence, implies the following two-scale convergences for
wε = e−2iπx·θ0/εũε(t, x)

wε 2s
⇀ v(t, x)ψ1(y, θ0), ε∇wε 2s

⇀ v(t, x)∇yψ1(y, θ0), ε2∇∇wε 2s
⇀ v(t, x)∇y∇yψ1(y, θ0)

where v(t, x) is a limit point of a sequence vε, bounded in L2
(
(0, T ); H2(RN)

)
,

introduced in a variant of Lemmas 4.3 and 8.3. Eventually, we use the same
test function defined in (109). We safely leave the details to the reader.

We then study the Dirichlet spectral problem

Aεuε
n = λε

nuε
n, uε

n ∈ H2
0 (Ω)

stated in a bounded domain Ω ⊂ RN , which, under the standing ellipticity
assumptions, admits a discrete spectrum, λε

n → +∞ as n → +∞, with
corresponding normalized eigenfunctions denoted by uε

n.
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Theorem 9.2 Assume (98). Then for any n ≥ 1

λε
n =

λ1(θ0)

ε4
+ µn + o(1) as ε → 0

and the corresponding eigenfunction uε
n(x) admits the representation

uε
n(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε

n(x) + rε
n(x), (116)

where

lim
ε→0

‖rε
n‖L2(Ω) = 0, ‖vε

n‖H2(Ω) ≤ C, lim
ε→0

‖vε
n‖L2(Ω) = 1, (117)

and the family vε
n is relatively compact in L2(Ω). Moreover, any limit point

v0
n, as ε → 0, of the sequence vε

n is a normalized eigenfunction associated to
the n-th eigenvalue µn of the scalar homogenized spectral problem

A∗v = µv in Ω, v ∈ H2
0 (Ω),

with A∗ defined by (115). If µn is a simple eigenvalue of the latter problem,
the entire sequence vε

n converges to the homogenized eigenfunction vn.

The proof is a combination of those of Theorems 3.6 and 8.2. The crucial
point is to obtain a uniform estimate for the energy (Aεuε

n, u
ε
n). To this end

we use a test function of the type of (109).

Finally, for the hyperbolic system




∂2uε

∂t2
+Aεuε = 0 in Ω× (0, T ),

uε = 0,
∂uε

∂n
= 0 on ∂Ω× (0, T ),

uε(0, x) = u0
ε(x) in Ω,

∂uε

∂t
(0, x) = u1

ε(x) in Ω,

(118)

we obtain different homogenized limits according to the sign of λ1(θ0).

Theorem 9.3 Let (98) be fulfilled, and assume that λ1(θ0) = 0 and the
initial data are

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H2

0 (Ω),

u1
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v1(x) ∈ L2(Ω),
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with v0 ∈ H2
0 (Ω) and v1 ∈ L2(Ω). The solution of (118), with Aε given by

(113), can be written as

uε(t, x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x),

where the remainder term rε satisfies the relation

lim
ε→0

‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ RN ,

and vε converges weakly in L2 ((0, T ); H2(Ω)) to the solution v of





∂2v

∂t2
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = v0(x) in Ω,
∂v
∂t

(t = 0, x) = v1(x) in Ω,

with A∗ defined by (115).

The proof is the same as that of Theorem 3.7. If λ1(θ0) 6= 0, then we
need to look at a different time scaling. Instead of (118), we now consider





ε4∂2uε

∂t2
+Aεuε = 0 in Ω× (0, T ),

uε = 0,
∂uε

∂n
= 0 on ∂Ω× (0, T ),

uε(0, x) = u0
ε(x) in Ω,

∂uε

∂t
(0, x) = u1

ε(x) in Ω,

(119)

Theorem 9.4 Let (98) be fulfilled, and assume that the initial data are

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H2

0 (Ω),

with v0 ∈ H2
0 (Ω), and that ε4u1

ε(x) is bounded in L2(Ω) while ε4ψ1

(
x
ε
, θ0

)
u1

ε(x)
converges weakly to 0 in L2(Ω).

If λ1(θ0) < 0 the solution of (119) can be written as

uε(t, x) = e

√
−λ1(θ0)t

ε4

(
ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
,
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where lim
ε→0

‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ RN , and vε converges

weakly in L2 ((0, T ); H2(Ω)) to the solution v of




2
√
−λ1(θ0)

∂v

∂t
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = 1
2
v0(x) in Ω.

If λ1(θ0) > 0 the solution of (119) satisfies

uε(t, x) = ei

√
λ1(θ0)t

ε4 e2iπ
θ0·x

ε vε(t, x),

where vε two-scale converges to ψ1(y, θ0)v(t, x) and v ∈ L2 ((0, T ); H2
0 (Ω)) is

the solution of




2i
√

λ1(θ0)
∂v

∂t
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = 1
2
v0(x) in Ω,

with A∗ defined by (115).

Again the proof is similar to those of Theorems 3.8 and 3.10.

Assumption (98) is not the only possible one. In particular, it may happen
that ∇θ∇θλ1(θ0) does not vanish at the minimum point θ0. Therefore, we
now make assumption (9), i.e. ∇θ∇θλ1(θ0) is positive definite instead of (98).

Remark 9.5 We give an explicit example where (9) is satisfied rather than
(98). Consider an arbitrary periodic, symmetric, uniformly elliptic, operator
B of the form B = −divy(B(y)∇y) + c(y) and its Bloch spectrum µ1(θ) ≤
µ2(θ) ≤ . . .. Adding, if necessary, a sufficiently large positive constant to c,
we can assume that µ1(θ) ≥ C > 0. Considering the relation

(
e−2iπy·θB2e2iπy·θ) ψ =

(
e−2iπy·θBe2iπy·θ) (

e−2iπy·θBe2iπy·θ) ψ

we conclude that the Bloch spectrum of the operator A = B2 is (λn(θ) = µ2
n(θ))n≥1.

According to Remark 2.1 the unique minimum point of µ1 is attained at θ0 = 0
and the matrix ∇θ∇θµ1(0) is positive definite. Since µ1(θ) is strictly positive,
the function λ1(θ) = µ2

1(θ) also has a unique minimum point at θ0 = 0 and
its Hessian at 0 is positive definite.
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Under assumption (9) we need to change the scaling of (113) and consider
instead the new operator

Aε = ε2div div
(
Θ(

x

ε
)∇∇

)
− div

(
A(

x

ε
)∇

)
+

1

ε2
c(

x

ε
) + d(x,

x

ε
). (120)

Then, the homogenization of the parabolic equation is given by a result
similar to Theorem 3.2.

Theorem 9.6 Assume (9). Let uε(t, x) be a solution of the parabolic equa-
tion (114) with Aε given by (120), and u0

ε ∈ L2(Ω) be an initial data of the
form

u0
ε(x) = ψ1

(x

ε
, θ0

)
e2πi

θ0·x
ε v0(x),

with v0 ∈ L2(Ω). Then uε can be written as

uε(t, x) = e−
λ1(θ0)t

ε2

(
ψ1

(x

ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
,

where the remainder term rε satisfies

lim
ε→0

‖rε‖L2((0,T )×ω) = 0

on any compact set ω ⊂ RN , and vε converges weakly in L2 ((0, T ); H1(Ω))
to the solution v of the scalar homogenized problem





∂v

∂t
− div (A∗∇v) + d∗(x) v = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(0, x) = v0(x) in Ω,

with A∗ = 1
4π2∇θ∇θλ1(θ0) and d∗(x) =

∫
TN d(x, y)|ψ1(y, θ0)|2dy.

The proof of Theorem 9.6 relies on the same test function as in the
proof of Theorem 3.2. It should be noted that although uε(t, x) belongs to
L2 ((0, T ); H2

0 (Ω)), the sequence vε, defined in Theorem 9.6, is only bounded
in L2

(
(0, T ); H1(RN)

)
, uniformly with respect to ε. This is due to assump-

tion (9) which allows us to prove Lemma 4.3 but not Lemma 8.3.
Of course, similar results can be obtained for the spectral problem and

for the hyperbolic equation: in both cases the homogenized operator is of
second-order in space as in Theorem 9.6.
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