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Homogenization of eigenvalue problems in perforated domains
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Abstract. In this paper, we treat some eigenvalue problems in periodically perfo-
rated domains and study the asymptotic behaviour of the eigenvalues and the eigen-
vectors when the number of holes in the domain increases to infinity. Using the
method of asymptotic expansion, we give explicit formula for the homogenized
coefficients and expansion for eigenvalues and eigenvectors. If we denote by e
the size of each. hole in the domain, then we obtain the following aysmptotic expansion
for the eigenvalues :

Dirichlet : = i = €= 24 + 4, + O (¢),

Stekloff : Ae = €ly + 0 (&9),

Neumann : A, = 4y + el + O (e?).

Using the method of enmergy, we prove a theorem of convergence in each case

considered here. We briefly study correctors in the case of Neumann eigenvalue
problem.

Keywords. Homogenization ; correctors ; eigenvalues ; eigenvectors.

1. Introduction

‘The theory of homogenization has been developed by many authors in recent

years. For a historic introduction and for a complete bibliography of the subject,
the reader is referred to the book of Bensoussan ez a/ [3]. The method of asymp-
totic development introduced in this book can also be applied to problems in g
periodically perforated domain. For the treatment of homogenization problems
in such domains, the reader is referred to the works of Lions [13], Duvaut [9]
Cioranescu [7], Cioranescu and Saint Jean Paulin [8]. ’

The study of such problems is important from theoretical as well as numerical
point of view. Because of the complicated structure of the perforated domains
any kind of calculation is difficult to perform. For example, if we treat the,
Dirichlet problem, we have to impose the boundary condition on the boundary
of the holes which are many in number. So, we wculd like to “approximate »’
the given problem by a * homogenized > problem on the domain without holes,
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240 M Vanninathan
By the msthod of asymptotic development, a problem on a periodically perforated
domain is reduced to solving problems in the ““basic cell”” and in the domain
without holes, _

This paper is divided into three parts :

Part A : Dirichlet eigenvalue problem

Part B : Stekloff eigenvalue problem

Part C : Neumann eigenvalue problem.

Our aim is to describe the asymptotic behaviour of the various eigenvalues when
the number of holes in the domain increases to infinity. In each case we explicitly
write down the ““ homogenized operator ” with the help of the method of asymp-
totic dsvelopmsnt and prove a homogenization theorem using the energy
method introduced by Tartar [14] and prolongation operators of Cioranescu and
Saint Jean Paulin [8]. :

We. treat here the case of Laplacian operator. But one can extend the results
to the case of elliptic, self-adjoint operators with periodic coefficients of the form

-3 &)

Ae

i

The eiganvalue problem corresponding to 45 in a fixed domain has been studied

by Kesavan [12]. The results of this paper were announced in Vanninathan [15],
[16].

2. Notations and hypothesis

First, we consider a reference cell :

N
(2.1) Y= II (0,»))CRY > 0.

i=1

Let 7;(i =1, 2, ..., M) be connected bounded open subsets of R¥ with sufficiently
smooth boundaries and which lie locally on one side of the boundary. Then
the holes in Y are #,N ¥ (= 1,2, ... M) and their union is denoted by T :

P4
2.2) T= ‘u #n Y).
=1
Tet
(2.3) Y¥=Y~T
Let S denote the boundary of T'in ¥*. For details see figure 1,
“- " (“‘t‘l\\ =
) N ’
’ S ~T N\
1 1T S
B > @
| (BN
\\~"'

Figure 1
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We assume that
(H1) Y* is connected.
For a function f given on Y, we define the average of fon Y:

@4 m(D =g SO,

where | ¥ | denotes the Lebesgue measure of ¥. Let ¢ be a small positive para-
meter which goes to zero. We denote by f€(x) or f (x/e), the function defined
in R¥ in a periodic fashion with period e 3¢ in the direction x;.

Let us define now, ¢ the holes > in R¥ corresponding to ¢, starting from those
in Y. For that we introduce the function y as follows :

1 if yeY?
2.5) x(y)={0 et

We consider also the characteristic function of 7 :

1 if yeT,
2.60) x:( ={0 if yeY*
Put
2.7 0 =my () = I|Y;\l’

The “ holes ” in R¥ are the connected components of the set
{x e R¥/X(x) = 0}.

Finally, let us be given a bounded connected open subset 2 of R¥ whose boun-
dary is sufficiently smooth and £ lies locally on one side of its boundary. The
““holes ” in @ are then defined by
(2.8) T, =connected components in 2 of {xe Q/x°(x) = 0}. The perforated
domain Q. with which we work is
2.9 Q2.=0-T.

Let S, denote the boundary of T, in £..

We make the following restrictions on the geometry of £,.

(H2) Q. is connected.
(H3)  Each hole in T, has regular boundary.

In the problems we consider here, there is one more restriction on the geometry

of Q and the holes (cf. Cioranescu and Saint Jean Paulin [8]).

(H4)  The holes T, do not meet 42, the boundary of Q.

'We need, in fact, in Part A a stronger hypothesis. Given any hole T in ¥,
we can as before construct the holes T; in @ periodically. Set

(2.10) .QT; =Q ~T.
With this notation, it is evident that
@1) Q.=er, | e -

The stronger hypothesis is the following :

(HS) {there exists a hole T"in Y such that 7.C 'C T and the holes T, do
not intersect 0Q. ‘
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Remark (2.1).. The hypothesis (H4) is severe on the geometry of the domain Q
and the hole 7. One such example of 2 is a finite union of cells homothetic to
Y and with the hole T placed in the middle of Y.

Summation Convention. We adopt the usual summation convention with respect
to the repeated indices.

Part A: Dirichlet eigenvalue problem
3. Problem to be treated
With the above notations, we consider the following eigenvalue problem:
Find (u., A) € H: (2,) x R such that
3.1 { — Aue = Aeugin Q,,
(ug, Ue)e = 1,
where (.,.)e denotes the inner product in L*(Q.) and HZ(Q,) = {veL?(2,);
ovjox;e L2 (2,) for i =1,2,...N and v =0 on 02},
The variational formulation of this problem is the following :
Find (4, A)e H: (2. % R such that
(3.2) a® (ue, ) = Ae (e, v) for ve Hi (Qo),
(de; u)e = 1,
with the bilinear form a(.,.) defined by
u ov
0x; 53_5;

3.3) ()= dx.

According to spectral theory, there exist a sequence of eigenvalues {32, and
a sequence of corresponding eigenvectors {ul}i2, such that
O< <2< ... » o0,
(3.4 A is of finite multiplicity for each I,
{ and {#}};2, form an orthonormal basis in L2 (2,).

We can characterise the eigenvalues AL with the help of Rayleigh quotient (cf.
Weinstein and Steinger [17]).

3.5 R.()=%@0) v e H (2, v # 0.
(v, v).
The mimimax principle for the eigenvalues states that

% = min{max R, (v); S C H}(Q), dim §, = I},
vES]

(3.6) = max R, (v)

v€Ee (1)
= ma'X{Re(v);(v: uie)e =0,i=1, 2, ..., 1~ 1}:

where E (I) is the subspace of Hj(Q.) spamned by {i, ..., u},

This part is devoted to the study of the behaviour of v and ¥, when ¢ — 0.
We prove, in particular, that A is of order 2 and that {42 — €21} - Ith eigen-
value of the “ homogenized problem > where A is the first ei genvalue in the cell
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v+, As we will see, some weighted Sobolev spaces and their propertics are used
in this study.

4. Eigenvalue problem in the cell Y*

Let us define the space

4.1) Wy={veH'¥*;v=00n Sand v is Y-periodic, i.e., v assumes
same values on the opposite faces of ¥}
and the bilinear form

(4.2) a(u, U) = f g-%ig_;'dy for u, v EHI(Y*)

Y
The bilinear form being elliptic on W,, the following problem is well posed :
Find (¢, 4) € W, x R such that
(4.3) a (g, v) = A(P, v)yy for ve W,

(¢ ¢)Y* =1,

where (.,.)ys denotes the scalar product in L?(Y*).

In what follows, we consider only the first eigenvalue A of the above problem.
It is well known that Ais simple and the corresponding eigénvector ¢ has constant
sign in Y*. We choose the vector ¢ which is uniquely defined by (4.3) and

4.4 ¢>0in Y*

Remark (4.1). We extend ¢ by zero in the interior of the holes T and we
denote again by ¢ the extended function.

Remark (4.2). Tt follows from (4.3) that the function ¢° defined periodically
satisfies

‘ — A¢€ = 6—2 A¢E in Qe,
4.5 {
(4.5) #¢ =0 on S..

However, ¢° is not zero on 4Q.

5. Some weighted Sobolev spaces

We will see later that consideration of some weighted Sobolev spaces is very impor-
tant in the study of the present problem. Thereis a vast literature on this subject :
see for example Baouendi [1], Baouendi and Goulaouic [2], Geymont and
Grisvard [10], Goudjo [11]. In this section, we define scme weighted Sobolev spaces
and state some of their properties which will be needed later.

We consider the following spaces with weights ¢€ and ¢ (¢ being defined in § 4):

5.1 Ve= {” e D' (2e); §°0 € L3(Q), §° 3% € L2(Qy) for
(]

i=1,2,...,Nandv=00nBQ},
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5.2 V= {v e D' (Y¥); gve L2 (Y*), ¢% e L2(Y™*) for
1

j=1,2,..., N and v is Y-periodic}.

where, as usual,

D' () = space of distribuiions on @, and these spaces are provided with the
following norms :

2 ]1/2

L2 (Qe) ’

o le=[16% lE2cao + i
7 Z’(ir""):,l/2 )

¢€

Bx,

=1
¢ oY

1o =14 01k + }i

=1

Some of their propertieis are given in the following :

Proposition (5. lj

) The space D (RQ,) of infinitely differentiable functions on £, with compact
support in €, is dense in V.

2 We have a continuous inclusion
Ve — L2(L2.)

and the continuity constant of this inclusion does not depend op e: there exists
a constant ¢ > 0 independent of ¢ such that

(5.5 lvlzo <clvlevveve

(3) The map v - ¢°v defines an isomorphism of V, onto H:(Qo).
(4 The inclusion ¥V, - L%(§°) is compact where

(5.6) L2(¢%) = {veD'(Q); ¢°ve L*(Q)}

©) v»[? \ x4 L’me)]ﬂ2

defines a norm on V. equivalent to the norm | |.

Proof. All these properties are proved in the works cited above. The only
thing which is new is the inequality (5.5) with ¢ independent of . But one can
prove this, without much difficulty, from the continuity of the inclusion

6. W@ >IN,
where the space W (§) is defined by

5.8) W@ = {v e D' (Y*); ¢veL?(Y¥), ¢%—v— e L2(Y¥)for i=1,2, ..., N.}
Vi
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Proposition (5.2)

(1) The space of functions v e ¢* (¥*) N V which vanish in a neighbourhood of
S are dense in V.

(2) One has the continuous inclusion
YV — L2 (Y*).
(3) The map v — ¢v defines an isomorphism of ¥ onto W,.
(4) The inclusion '
(5.9 V=L@
is compact where we define
(5.10) L2($) ={pe D' (¥*) ;dpel (T}

o ool le5ka]

defines a norm equivalent to the quotient norm on F/R.
Now, we formulate the eigenvalue problems in the spaces V,. We define

a(¢€;u,v)= f (]sez?‘li%}’—'d)‘:for ua'UEVe:
Qe

(5.11) 0% 0%

(¢ s u,v) = | ¢% uvdxVuveL(#).
Qe
By virtue of the properties (4) and (5) of the proposition (5.1), the following
problem is well posed: ~ :
Find (ve, o) € Ve x R such that
(5.12) a(9c; ve, v) = He (¢° Ve v) for ve vV,
(¢¢; ve, ve) = 1.
Let {ul} be the sequence of eigenvelues and {4}, the sequence of corres-

ponding vectors satisfying

13 o< pe=spe< - >0 .
(5.13) (i) {vl)°, form an orthonormal basis in L2(4°).

We have once again the characterization of 4, analogous to (3.6), in terms of
Rayleigh quotient

R(¢e;v)=%%fl~;—;£—’#forven,v#0q ‘ :

6. Estimations on the eigenvalues

The following Lemma establishes one important relation between the eigen-
values A, A and g,
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Lemma (6.1). Let A be the first eigenvalue of the problem (4.3) with the eigen-
vector ¢. Then for all v e V,, we have

6.1 jax<¢€v>ax(¢fv>dx~emf¢e 2dx+j¢ezg” 2 g,

Proof. Since D () is dense in V,, it suffices to verify (6.1) for all v € D(Q,).
On the one hand, we have

e 9 rae N 00 0 , ¢ ov ov
fa?}"‘ v) 5 (6 'u)—ﬂ v dr + f¢ez,_..ﬁiid
Qe €

and on the other hand, by maltiplying (4.5) by ¢¢v? we obtain

5(15 6 2 — 2 f e, 2
f S m @it | g0ty
Qe

€

and so we deduce (6.1) without difficulty.

Corollary (6.1)

Let {1}, {¢t}i2, be tha sequences of eigenvalues of the problems (3.2) and
(5.12) I'G'SpuCtlvely Let A be the first eigenvalue of the problem (4.3). Then we
have

(6.2) A =¢e?i+uforl>1

Proof. 'In fact, we obtain, from (6.1)
R (§5v) = 24+ R(¢¢ ;0) for ve V..

Now we use the minimax principles for eigenvalues and the isomorphism of the
proposition (5.1) (iii) to get the relation (6.2).
Since i > 0 for all/1 > 1and ¢ > 0, wesee that thesequence {2 — =2 A} i

bounded below by zero. The following Proposition shows that it is bounded
above,

Proposition (6.1). Let {ui}® be the ‘sequence of eigenvalues of the problem
(5.12). Then for I >1, {sl}., is bounded independently of e.

Proof. We use the following characterizations of minimax principle :

(6.4 = min{ma.xR(q}‘ ; v)'; S;C Ve, dim S; = [}

We take S, to be the vector space spanned by Wi, Wy, -

., Wy, the first J-eigen-
vestors of the following Dirichlet problem : ' s

Find (w, v) € H} () X R such that
(6.5) .
— AW = v in .

It is not difficult to see that we have

(6.6) dim(S;/Q.) =1 for ¢ > 0.
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[S,/Q. denotes the restriction to Q,of functions belonging to S;]. So, onecan
take S,/Q, in (6.4). (This is alright, since no boundary condition is required on
S for Ve) We obtain

(6.7 pt < max R(¢° ;).

veSy

We claim that the right hand side of the inequality (6.7) is bounded above by a
constant independent of e. Infact, on the contrary we would have, for a sequence
¢, » 0, 2 sequeace {v,y C Sy such that

(6.0 [ BBV v,V va>n| Goiforn=1,
Q,, &

%

6.9y [oi=1Ffcn>L
Q

Here we have set Q,, = Q, and ¢% = ¢,. Since S; is of finite dimension, we have
(for a subsequence)

v, = v in HE (Q) strong.
Now, one can pass to the limit in (6.8) and obtain

m, (¢ [ »%=0.
Q

But (6.9) implies that

J v2=1.
o

This contradiction proves the Proposition.

7. Asymptotic development

The aim of this section is to find “the homogenized operator for the problem
(3.2) by the method of asymptotic development introduced in Bensoussan et al
[3] and Lions [13].

We introduce one ‘‘fast” variable :

(7.1)  y = xle.

Then, the differential operator 0/0x; applied to a function ¢ (x,y) becomes
0 d

7.2 — -1_7_

(7.2) 7x, + € 5, "

So, the laplacian operator is transformed into
(7.3)  e2A,+ 2T A, + A
where '

7.4 - i 2
.4 A”‘_W’ A”wa?‘ia}’c’ A"—m;'

e
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Taking into account Proposition (6.1) and Corollary (6.1), we propose the
following Ansatz for the problem (3.1):

(75) ue(x)=u0(xay)+€ul(xay)+ '-‘y=x/€=
(7.6) Ae=e2Ag+ ety + A+

We impose the following restrictions on the functions w; which are defined for
xeQ and ye Y*:

77 {u’(x’y)=0ifyess
7.7 u, (x, .) is Y-periodic in y.

We substitute the expressions (7.5) and (7.6) in equation (3.1) and we
identify the powers of e. We obtain

o (%, ) = ¢ () o (,i),
-9 {ul (o) = 69 0) 22 () + $ ) ()

(1.9 A, =4,
(7.10) 44 =0,
(7.11) Aty = Agthy,
where

(1) 4 is the first eigenvalue and ¢ the corresponding eigenvector of the problem
(4.3).

(2) The functions ¢¥) (j=1,2, .., N) are defined by
(1.12)  a(@®, v) — 2($9, v)ys = 2(9? , v) for v e Wy, $9 W,
0y v*
(3) The operator 4 (called homogenized operator) is defined by
02
the  homogenized coefficients > being defined by

(6]
(114 gu=3,+2 [ pdyforij=1,2. N
b

Remark (7.1)

The relations (7.9) and (7.10) are in accordance with the results of Proposition
(6.1) and Corollary (6.1).

Remark (7 .2) Since

=Q0fori=12...,N,
ay,;’ ¢)Y"

equations (7.12) can be solved for ¢¢) by Fredholm alternative,
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The  bomogenized problem” is an eigenvalue problem for the operator A:

Find (u, p) € H: (@) x R such that
(7.15) Au = pu in L, ’
u# 0,

The preceding formal calculations show that the sequence {de — €2 Me>o0
converges to an eigenvalue of the problem (7.15). We prove this result later by

the method of energy.

8. Ellipticity of the homogenized operator

The idea of proving the ellipticity of the operater consists of identifying the coeffi-
cients g,; with the homogenized coefficients associated with the problem (5.12).
So, we apply the asymptotic development method to the problem (5.12). First,
we write the problem (5.12) in operator form : The solution (v, fte) is charac-
terized by

('Uca :uc) € VG X R:

0 &2 ov 2 :
8.1 —53?@<¢ '5’55) = Ued® V¢ 10 Lo

¢ ot =1.
QE

We develop ve and g in the following form :
(82) ve(x)=vo(x,'y)+ev1(x,y)+ ...yﬂJC/E,

(8.3) e = o T €a + oo

where v, is defined on @ X Y* and it is Y-periodic in y.
We put these expressions in (8.1) and identify the powers of e. We get the
following results : ‘

(8.4) o (% ) = Do (%)

, ov -

8.5 01(n) =y 0) 5 ) to (),

and the necessary and sufficient condition so that we solve for v, is
(8.6)  Bov, = Hvo in 2,

where the operator B is defined by

02

(8.7 B=-—DPiga
with

(6))
8.9) pi,=5i,+f¢2€ay—g—)—dyfor j=1,2 ... N
ye ‘
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The functions w® (j = 1,2, ..., N) are defined (upto an additive constant) to
be solutions of the folIowmg vanaﬂona.l problem :

a(@; yv) = —a(p; ypv)VoeV,
(8.9) {y/(f)eV’ !

the bilinear form a(¢; .,.) being defined by

ou ov
(8.10) a(¢:u’0) f¢23y,3y dyVu,veV.

It is not difficult to see that the operator B is elliptic in the sense that there
exists a constant o > 0 such that

(8.11) Dbl = abif, for &€ = () RV
In fact, the coefficients p;; can be expressed by the following formula :

(8.12) py =a(g; v + y,y® +y) for i, j=1,2,... N,
taking into account the following re.lation

a(f; v +y,y) =0ferij=1,2 ... N.
Now, the inequality (8.11) is a simple consequence of (8.12).

Theorem (8.1)

Let (94;) and (p;;) be defined by (7.14) and (8.8) respectively. Then we have
qii =p’” for i’j= 132: PR N

In particular, the operator 4 is symmetric and elliptic.

Proof. We prove that ¢y is a sclution to the problem (7.12). For that we

use the isomorphism betwsen the spaces V and W, given by the Propoﬂtlon (5.2)
(iif). Firstly, we have gy e W,.

By virtue of the Proposition (5.2) (i), it suffices to verify that
819 [ Z g @b = [ #vovars ] % 40
3 ;s oy; 9y

for all vec® (¥*) N V which vanish in a neighbourhood of S. The relation

(8.15) is easily proved by using the definitions of ¢ and y and the followirg
identity :

(8.16) ZJ S5 ¢ ~f¢2%_dvaeVi

Now we take ¢ = gyt in the formula (7 .14) defining g;;. We obtain

‘ d .
a,=3,+2 [ Zwnsa,
v
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Pe)
=1 (S,lj + f ¢ 2 ";U'j;;— dy
Y#

= Dijs

and so the Theorem is proved.

9. Homogenization theorems

In this section using energy method we show how on€ passes to the limitas ¢ = 0
in the problem (5.12) which determines the correctors u.. Before that, we need
some more notations. Let us denote by T’ any hole satisfying the hypothesis
(HS). We denote by PP, the prolongation operator constructed from the hole
T’ satisfying the following condition :

For all v in H' (2, with v =0 on 9, we have
PP v e Hi(Q) and there exists a constant ¢ > 0

©.1) { independent of ¢ (but depending on the hole 7”) such that

| 1Proha<elvb,ay

‘twhere lv 1,0 = {}V?) .V dx.

!

The existence of the operator P¥ is proved in Cioranescu and Saint Jean Paulin
[8] and Cioranescu [7].

Lemma (9.1). Suppose for each ¢ > 0, we are given w, in V. such that

(9-2)  ||Welle < ¢, independent of €.

Then there exists a subsequence of e (again denoted by €) and a function wy in
H} () such that

(9.3) PP w.—w, in H}(Q) weak,

for all holes T” verifying (HS5).

Proof. Tt follows from the hypothesis (9.2) and from the fact that ¢ > 0 in y*
that there exists a constant c¢p such that

(94) \ We'll, QT' < Cp.
€

Thanks to the inequality (9.1), we see that the sequence {PT’ w.} remains bounded
in Hi(Q). So, we can extract a subsequence of e« and a function wi’ in Hj (L)
both depending on 77 such that

9.5) PI'w.— wl in H:(Q) weak,

for the extracted subsequence. :

Now 13t us consider another hole satisfying (H5). By similar arguments as
before, we obtain a subsequence of the subsequence already picked up and a
function wr” in H(Q2) such that -
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(9.6)  PI"w, — wi” in Hi(Q) weak.

But we have the relation

(9.7 Xy-(rur (x/e) PY we = 2y - (rur (x/€) P{” we in Q

where Xy - (rurny (¥)1s the characteristic function of ¥ — (I" U T”). One can pass
to the limit in (9.7) and we obtain
My (Ly-trrury) W = my (ly-(rrur) W5 s

" and so w = wI” in Q. By the uniqueness of the limit, we see that the proof is
complete.

Lemma (9.2). Let {we}e > o be given as in the preceding Lemma. Then for the
subsequence of e and for the function w, in H}(2) given by the Lemma (9.1)
we have

(9.8)  Prw.— w, in H3(Q) weak for all holes T, !
©.9 I ¢ (x] &) f (xle) we dx — [ my (85) wo dx,

o

where f is given in L2(Y).
Proof. Let T’ be a hole satisfying (HS). We write

(9.10) s{j" fewedx — !flmy(cﬁf)wodx

=[] ¢ feWedx— [ myp(dfywl+1[] P° [ We dx
a, Q Q-Q,

Te Te Te

- gJ; My (1) Wo dx],

R R e e R R

where we have set

©.11) my (g) = T"l—l { g dy for subsets U of Y. f

We have the following estimate :

| ‘{ 2 9° fewedx | < || @ l®-n | ¢ lzxae || We L2 qe -

Te ﬂ‘;

St er s et

SRR

Using now Proposition (5.1) (2), we deduce
(9.12) IA'_ o ¢¢ e we dx | < cll ¢ 1L®r-n»

?
Te T,

where ¢ is a constant indepencdent of T’ and e. \
We also have 5

O-13) | § mer @) wodx] < cld li2wn- |
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Since ¢ = 0 on S, we can choose T”satisfying (H5) and || 4 [;°(y-r sufficiently
small, For this hole 7’, we have the convergence

9.14) d“ ¢¢ f€ PY we dx — sj; My—p () W, dx.

Te

Combining all these results, we obtain (9.9).
Using similar arguments, we can prove the following :

Lemma (9.3). Let {we} and {v; be two sequences such that

” We He <c

@19 o<

} independent of e.
Then there exist a subsequence of ¢ (again denoted by ) and functions wy, Vo
in H:(Q) such that we have the following convergence for this subsequence of e :

.16 {PE’ Wwe = Wwo in H} () weak,
-16) P v, — vy in H} (Q) weak,

for all holes T’ satisfying (HS5) and
9.17) A‘ P fEWwevedx — ‘J; my (@ f) wo v dx,

for all fin L® (Y).
Now we have all the tools to prove the following homogenization theorem:

Theorem (9.1). We suppose that (HS5) is satisfied. Let (ve, 4e) bE a solution
of the problem (5.12). We assume

(9.18) pe—nas e—0.

Then y is an eigenvalue of the “ homogenized problem (7.15). Furthermore
there is an eigenvector v, in Hi () corresponding to u and a subsequence of e
(again denoted by €) such that

(9.19) Prov.— v, in Hj (Q) weak for all holes T”

satisfying (H5), PP being the prolongation operator verifying (9.1).

Proof.

Step 1. Taking v = v, in (5.12), we obtain

(9.20) |v¢lle < ¢ independent of e.

Set

©2) a=¢Ping,i=12... N
X4

It follows that

©.22) &z @g<6i=12...N
and we have

(9.23) — div (¢ E9) = peg® Ve in Q¢
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So, ¢¢ &°. v, admits a trace on 0Qe where v, is the exterior normal to 92,. It is
not difficult to see that

(9.24) ¢°¢° . ve =0 on Se.
So, equation (9.23) is valid in Q if we extend ¢° by zero in the holes.
(9.25) — div(¢° &%) = pd® ve in Q.

In (9.25), we take some atbitrary extensions for ¢€ and »,. Using Lemma
(9.1), we can extract a subsequence of ¢ (again denoted by ¢) such that

(9.26) ¢°€éi— ¢, in L? () weak, i=1,2,... N.
(9.27) PTve— vy in HE(R) weak, for all holes
T’ satisfying (HS).

Step 2. Using the technique of Lemma (9.2), we can pass to the limit in (9.25)
to get

(9-28) - diV é = lr‘ mY (¢2) 'Uo in .Q.
Step 3. We introduce w as solution to the following variational problem :

a(p; wo)y=0forveV,
(9.29) {w(fIIeV),

where II(y) is a homogeneous polynomial of degree 1. Set
(9.30) n=¢Vwin Y*
Then 7 satisfies
(9.31) —div(dn) =0in Y*
Also we have ¢n . v =0 on S where v is the outer normal to S. So, we obtain
(9.32) —div(¢n) =0in Q.
We set
() =w() —II() for ye T*

Then y € V and we take some extension of ¢ in the hole and we extend y periodi-
cally throughout RY. We define

(9.33) we(x) = e w(xe)
=TI(x) + ey (x/¢) in Q.
Since we L2(Y), y (x/e) remains bounded in L2(Q) and so
(9.34) w*—>IIin L?(£) strong. ‘
Step 4. Let ge D (Q).
We take v = gw* in (5.12) and muitiply (9.32) by gv, and subtract, we get

og og .
€ &€ € -0 . € e o €
9.35) Qfegb & w o, ‘{erﬁ T Ve 5 = He ‘{eqﬁ Ve8 we dx.
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Uéing the techniquc of Lemma (9.2), we pass to the limit in (9.35) to get

(9.36) ISH J"my(¢m)vo =ﬂmy(¢)fvog1'1dx

It follows from (9.36) and (9.28) that
(9.37) &%E (qizaw P in Q.

Step 5. Now wetakeIl = y; (j = 1,2, ... N). The corresponding test function
w=w® 4+ y, where y¥) is given by (8.9). So, we get

/] ) ‘
(9.38) & = my (¢2)q¢,-3——§§; for j=1,2,... N.

This when combined with (9.28) shows that |

(9.39) Avy = uv, in .

Step 6. To complete the proof, we have to show that
(9.40) v, # 0.

We have

9.41) [ ¢%02 =1,

€ t

and at the limit we obtain
mY (¢2) J‘ 'v% = 1:
Q
and so (9.40) follows.

Theorem (9.2). We assume (HS). Let A be the first eigenvalue of the problem
(4.3) with cigenvector ¢. Let {vl, u} 112 be the spectrum of the problem (5.12)
Let {Al}e, be the sequence of cigenvalue of the problem (3.1). Then

1) A — %) =g for I >1.
(i) W — Ith eigenvalue p' of the problem (7.15).

(iii) There exist a subsequence of e (again denoted by e) and eigenvectors
{v*} of the problem (7.15) corresponding to {u’} such that

(9.42) PT v, - o in H}i(2) weak for all holes T”
satisfying (H5).

(9.43) {v%} form an orthogonal base in L2(£).

(iv) If ## is a q1mp1e eigenvalue of (7.15), then given any eigenvector vo corres-
ponding to ¢ satisfying (9.42), Wwe can choose an eigenvector vg, o of the
problem (5.12) corresponding to u. such that

(9.44) PI'VL, v} in HE(R2) weak for the whole sequence of e.

P. (A)—7
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Proof. By Proposition (6.1), we can extract a subsequence of e such that
(9.45) u: —Hu* as ¢ — 0,

According to Theorem (9.1), u! is an eigenvalue of the problem (7.15) with eigen-
vector »* satisfying (9.42). To prove 4 is the /th eigenvalue, it suffices to verify
that

(1) {v%} is an orthogonal base in L?(€Q).

(2) There i3 no cther eigenvalue except {4} for the problem (7 15) ¢ (u, p)e
H(Q) x R such that du = pu.

We remark, first, that the eigenvectors {»?} are orthogonal in L2(Q). In fact,
the passage to the limit in the relation

(9'46) s-,'; 4553 vle ”? = 5lma ‘
€

will give

(9.47) my (9% gj; v o™ = g,

We shall prove (2). Let u be an eigenvalue of the problem (7.15) which is diffe-
rent from ! with eigenvector w satisfying

Aw = uw in Q,

u # ut for any |,

J W= 1fme (89,

A‘ wot = 0 for each [ > 1.

(9.48)

We can choose [ such that
(9.49) pu< @t
Now, we define we a3 follows :
e
(950) a(gc s we ”)=.u(¢€; w,v)Vve Ve
The proof of Theorem (9.1) shows that
(9.51) PI' we — w in Hj (Q) weak.
Set
~ L . N
9:52)  ¥e = We = 243 we v 0
We see easily that
(9.53) (§°; wevd)=0fori=12...1
and as a consequence

9.5 a(¢c; M;e, We) = Ut (¢° 5 ﬁ’es We)
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© We can prove

- 0.5% {a(;be;we,we)—»u,

(8° ;3 We, We) = my (93 Jwe=1.

Hence (9.54) implies that
(9.56)  p = pH,

which is in contradiction with (9.49). This completes the proof of (2). In the
same way, one can prove ve L2(Q), [ v o' =0 for all / implies » = 0. This
Q

proves that »' is the /th eigenvalue of the problem (7.15).

To prove (iv). We note, first, that 4L is simple for e sufficiently small. In fact,
since we have gt — g for all [, the multiplicity of 4 is less than or equal to that
of 4. So, there are only two vectors vk, o and — v, o Which satisfy (5.12).
We choose one which satisfies ‘

(9.57) (9% ;0% 0, 00) > 0,
and this sequence must satisfy (9.44).

Part B; Stekloff eigenvalue problem

10. Problem to be treated

With the notations introduced in § 2, we consider the following eigenvalue problem ;
'Find (ue, Ac) € We x R such that

- A”e = 0 il’l Qea
10.1) (g -
dve

ué # 05
where 9/dv, is the exterior normal derivative to Se and
(10.2) W.={veH (Q);v =0on o2},

Problems of the type (10.1) have been studied by Bergmann and Schiffer [4]
and Bramble and Osborn [6]. This problem can be put in the variational form
as follows : Consider the following problem for ge L*(S,) :

{ae(we,v)r—- | gv for ve W,

= J¢ Ug ON Se¢,

Se
We € We. |
Set G¢ 8 = Weys, Then G, is self-adjoint, compact operator in L2(S,). We can
write the eigenvalue problem

1
Gelle = He Ugs he = Z
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as follows :

a® (e, v) = Ae | uev for v in W,
Se
(10.2) {uce W,
ue # 0.

We danote by {i};2; the sequence of eigenvalues and by {#}} corresponding
sigsnvestors of this problem. We remark that {ug} form an orthogonal basis
in L*(S¢). Our aim, in this part, is to study the asymptotic behaviour of 1% and
{ul} as € — 0. We prove that {e* 1!} — /th eigenvalue of the * homogenized
problem . A vary useful tool in this study will be a test function which will
be defined in §11.

11. Test function

We define y as the solution of the following variational problem :

| a(y,v)=—c¢, [ v+ [vdy for veW,
i Sy s

D Ayew,

E’ where

3 (11.2) W ={veH'(Y*); v is Y periodic}, and

_ 1S]
(11.3} Cy = l—)—;*“‘.

We define

o e e
e e R e R A

SR
ey

R

emmmmasre

(11.49) yw*(x) =w(x|e) for xe Q,,
and this will satisfy

e

- AWG = Cp €“2 in QE:
(11.5) {av = ¢l on S,
€

and so, by Green’s formula we obtain

v 92 -
(11.6) s{ gdy —A’e I (x/e) 7%, (x) + ¢ e 1n_feg for ge W..

12. Estimates on the ejgenvalues

Proposition (12.1). Let {1} be the sequence of eigenvalues of the problem
(10.1). Then there exists a constant ¢; > 0 independent of e, such that

(12.1) O0< X < ¢efor e >0.
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Proof. We make use of the mini-max principle for the eigenvalues :

[ Vv .Vo
. g,
(12.2) AL = Min {M?:—‘ [ o2 ’ angsze}
‘ S

€

As in Proposition (6.1), we take S,to be the space spanred by the first l-eigen-
vectors of the problem — Aw = ww in Q, wle =0. We get

[ »®
(12.3) A <v Max 8

H
ves; SJ' v >
€

where ¥ is the Ith eigenvalue of the problem (6.5).
We prove now that there exists ¢, such that

s
(124) %ag: ;’——2—’? < €.
€

Suppose (12.4) is not true. Then we can extract a subsequence of e (again
denoted by ¢) and v.e S; such that

(12.5) ﬁr P2 =1,
(12.6) e [ »2-0.
S

€

Since S, is of finite dimension, the sequence {v.} remains bounded in H; () also
and it follows from (11.6) that

12.7) | wi-0.
Qe

If v — v, in L?(Q) strong, then on the one hand (12.5) implies that
[ vi=1,
Q

and on the other (12.7) implies

[ vi=0.
o}

This contradiction proves (12.4) and hence the Proposition.

13. Asymptotic expansion

Taking into account the estimates we obtained in § 12, we normalize the eigen-
vector of the problem (10.1) as follows :

(13.1) [ ut= ¢
Se

Then we will have the following estimate :
(13.2) | VuVu < ¢, independent of e.
Qe
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Considering all these estimaies, we propose the following Ansatz to the problem
(10.1). '

(13.3) u(X)=uC, )+, () + ...¥ =X,

(13.4) Ae=¢€d +e2lp+ ...,

Each u; is defined on 2 X Y* and it is ¥ pericdic in y. We put the expressions
{13.3) (13.4) in equation (10.1). We get

(13.5) — (€2 A,+ 262 A+ A) (W + ety + ...) =0,

: :
13.0 (Fgg + M0 )@ +ant )

=(€A-1+ 6212‘}‘ ---)(uo+u€1+ ---)

where v = (v;) is the outer normal to S. For the notations used in this section
see §7. Now, we equate like powers of e in the above relations and we solve the
resulting equations. We obtain the following results :

(13.7) u, is independent of y : u, (x, ¥) =y, (x).
N ~
(13.8) w(xy)=—70)5° @ +u@),
,

where y are as defined below and u is to be determined :
a(,v) = [ vov dky for ve W,

(13.9) S
PeW.

We get the following equation satisfied by u, :

2 U,

0 )
(13.10) —ry %0, = M4 in 2,

with
(13.11)  ry =—-—l—§7! a(t = yp ¥ —y)fori,j=1,2...,N.

Tt follows from (13.11) that (r;;) is a symmetric, positive definite matrix and sc
the following eigenvalue problem (called homogenized problera in this case) is
well posed : ‘

Find (4, A) e H:(2) x R such that

oy, 00H
Y 0x,0%,

u#0.

(13.12) = Juin Q,

The formal analysis so far shows that ¢ 1, — to aneigenvalue of the problem
(13.12). We prove this result in the later sections.
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14. Results of homogenization

We denote by P, the prolongation operator constructed from the hole T, and P,
satisfies (9.1). The following Theorem is analogous to Theorem (9.1).

Theorem (14.1). Let I >1 be an integer. Let i be the /th eigenvalue of the
problem (10.1) with u} be the corresponding eigenvector, Then {e AL} converges
to an eigenvalue A of the problem (13.12) and there exists a subsequence of
(denoted by €) such that

(14.1) P — u in Hj (2) weak,

where u is an eigenvector of the problem (13.12) corresponding to 4.
Proof.

Step 1. Weset A, = A, ue = 4t and

(14.2) 55_%1 Q. fori=12...N

We put &€ = 0 in the holes. Because of the estimates (12.1) and (13.2), we can
extract a subsequence of e (denoted by e again) such that
(14.3) & — & in L2 (D weak for i =1,2, ... N.
(14.4) P, — uin H}(Q) weak,
(14.5) €the—> A
Step 2. It follows from (10.1) that
(14.6) & .ve = A ue on S,
(14.7) div &€ =0 in 2.
We multiply equation (10.1) with n € D(Q) :
) VeV = e I uen

= 2 f 3"’<x/e>—a—;(uen)+co 1, f el

and the passage to the limit will give us
s{ EV 1 =coisf20uv),
which is equivalent to
(14.8) —divé = ¢y A0 uin Q.
Step 3. We introduce w as solution to the following problem :

a(w,v) =0forveW

(14.9) {w _ew

where TIL(y) is' a homogeneous polynomial of degree 1, We put
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(14.10) n=Ywin Y*
Then 7 satisfies

div gy =0in Y%
(14.11) {n .v=00nS.

We extend 5 by zero in the hole and we put
(14.12) 7¢(x) =n(x/e) in Q.

Then we will have

(14.13) divye =0 in 2.

Next we define

(14.14) we(x) = ew(x/e).

As before (see Step 3, Theorem (9.1)), we get
(14.15) w¢ —TI in L*(Q) strong.

Step 4. Let g € D(2). Multiply (14.7) by gwe® and (14.13) by g P, v, and
subtract :

(14.16) —~f c;‘; w +f11, 2~ Peuc + fﬂ ue g W€ = 0.
Qe

We can pass to the limit directly in the first two terms. For the third we use the
formula (11.6). We got

i [ [
. II b =
(14.17) f«; + t 2V E v cio [ugm=o
2
which gives

oI WA Su -
(14.18) &5 =my (Xgﬁ>5_m

Step 5. Now w= take Il =y, (j=1,2 ... N}, The corresponding test func-
tion w = —-x(’) +y; where x\v is defined by (13.9). So we get

oy
(14 19) é’ lYl f( = ayt ax@

_ 13l o
h l Yl Y ox;
Combining this with (14.8) we obtain
02%u
(14.20) —ry T 0%, Au.
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Step 6. To complete the proof, we have to show that u # 0, To see this, we take
g=u2in (11.6) : .

oy ‘ 0

2 = (142

€ f u = ¢, f u + ef 3, (x/e€) o, (3).
Qe

Se Qe
Using (13.1), wa pass to the limit in this relation and we obtain
(14.21) 1 =¢,0 [ v,
Q

from which it follows that u # 0.

We now give our final result in the Stekloff case.

Theorem (14.2)
Let {4}, {u}} be the sequences of cigenvalues and eigenvectors of the problem
(10.1). We suppose that the eigenvectors are normalized according to
(13.1): [ wt = . Then
sé’
() 2L - A, the [th eigenvalue of the problem (13.12).
(i) there exists a subsequence of e (again denoted by ) such that
(14.22) P.ul —>u'in HI(Q) weak,
where u* satisfies (13.12) :

0%u
0x; 0x;

"‘r,u =A.lu ln Q, u‘an —'—-'—0.

(iii) If A is a simple eigenvalue of the problem (13.12) then given any eigenvector
o' associated to A satisfying (14.2), we can choose an eigenvector v% of the
problem (10.1) corresponding to AL such that

(14.23) [l =&t
se

(14.24) Pt — o' in Hj (2) weak for the whole sequence.

Proof. From the previous Theorem, we know that (ii) is true for a subsequence
of . We obtain also the orthogonality condition for the eigenvectors by means
of the method of Step 6 of Theorem (14.1) :

(w1
(14.25) J utu™ -—2—0—05;,,, for ,m>1.
Q
Finally, it remains to prove that thz limiting point A* of {i%} is the Ith eigen-
value of (13.12). For this, it suffices to verify that

(o]
(i) there is no eigenvalue other than {  for the problem (13.12).
Tl .

(14.26) i : |
(i) {3 1is an orthogonal basis in L2(£2).
=
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In the following, we verify (14.26) (i) The proof of (14.26) (ii) is analogous.
Let us suppose that there is an eigenvalue u different from 4 with eigenvector u:

2.
— r‘ji_l_l_ =’uu in Q,
0x,0%;

ue H; (Q),

(14.27)  u # 2 for all ],
| uut =0 for each /,
Q

Ju =1
Q

We can choose an integer / such that
(14.28) p < AL

We define w, as the solution of

- Aw, =01in @,
4.99 w.e W,
(14.29) aw,

v,

= euy on S,.

From the proof of Theorem (14.1), it is seen that
(14.30) P.w,— u in H}(Q) weak.

Now consider the element
1

1431) vo=w—e I [Jwadlut.
=1 e

Since
fout=0for k=1,2,...,1],
sﬁ

we have

(14.32) a*(v,vd = Al g vi.

€

We now pass to the limit in (14.32) using (11.6). We have, first

0 r
e [owat=e [ P9 vad ke [k,
S, Q, Q,

and so

e f wak > co [ Qui* = 0.
Sq Q HERNIN)

As a consequence,

(14.33) P, — u in Hj(Q) weak.

NS SR
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Using this and taking g = Af* 0% in (11 .6), we get

(14.34) 2 [ 02— co A0.
s

e

By similar arguments, we prove that
(14.35) a (v v = Co .

Now passing to the limit in (14.32) we get
(14.36) u =21

which contradicts (14.28).
To prove (iii), we remark that i is simple for sufficiently small « if A'is so.
Afterwards, it suffices to pick up an eigenvector vt associated to AL such that

(14.37) | ». v' > 0.
SC

Part C: Neumann eigenvalue problem

15. Problem to be studied

We consider the following ecigenvalue problem

Find (ue Ae) € We % R such that
— Au, = A.u.in @,

15 g op s,

-4

where we have used the notations of § 2 and §10. Letus denote by {A%} and {ug}
the sequences of eigenvalues and the corresponding eigenvectors of the problem
(15.1). We know that
(15.2) {A’é< R2<iE.. >
' {ut}form an orthomormal basis in L2 ().

Here, we study the asymptotic behaviour of 1 and it as ¢ —» 0. We prove that
{L} converges to the 7th eigenvalue of the “homogenized problem ”.

Since the method folllowed here is similar to Stekloff case, we do mot give
details of the proofs.

16. Estimates on the eigenvalues

Proposition (16.1). Let A; be the Ith eigenvalue of the problem (15.1). Then
there exists a constant ¢; independent of e such that

A < 6.
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Proof. Asin the proof of Proposition (12.1), by the use of mini-max principle
we get

f v?
(16.1) A < v Max 2

ves f IcH

But we saw in the course of the proof of Proposition (12.1) that the right side of
(16.1) is bounded above independently of ¢ and this completes the proof.

17. Asymptotic analysis

With the help of the estimates in §16 and the normalization condition for the

eigenvectors, we propose the following Ansatz for the problem (15.1) :
(17.1) u(X) =uo (%, ) + e (x, ) + ...,y = xle,
(17.2) A, =24 +ei +

where u;is defined on 2 x Y* and itis Y periodic in y.
We substitute these expressions in equation (15.1) :

(17.3) = (€2 Ay + 267 Agy + Ag) (g + cuy + ...)
=(/’lo +oedy + ) (U +oeuy + .00,

(17.4) ( "1——— + v, 8>(u0 +eu +...)=0.
As befow, we equate the powers of ¢ on either side and we obtain the following

results :

(17.5) u, is independent of y : u, (x, ¥) = u, (x).

11.6) w(ny) = -z (y)%?;-;(x) T iy (),

where y! are defined in (13.9), We get the following equation satisfied by u,
and 4, :

32

17.7) s,,a

-—Aoug ln Q

with

1 .
(17.8) sy = 7w 8@ =y, ¥ =) for all 4.
So, the corresponding ‘homogenized problem ’’ in this case can be formulated
as follows :

Find (u, 4) € H} (£2) x R such that
2
au_ A in Q

‘(17.9) s,,a o,
u;é 0.

. .
it Vb
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In the following section, we justify the formal calculations done above.

¢ 18. Homogenization theorem

The proof of the following result proceeds along the lines of Th
eorems (14.
and (14.2) and therefore omitted. o rems (14.1)

Theorem (18.1). Let {JL}, {u¥} be the sequences of eigenvalues and the corres-
ponding eigenvectors of the problem (15.1) satisfying (15.2). Then

(i) 2 > X, the Ith eigenvalue of the problem (17.9).

(i) there exists a subsequence of ¢ (denoted again by e) such that
P,k — v in H}(Q) weak,
where u! is an eigenvector corresponding to A%

(iii) If A is simple, then given any eigenvector v’ corresponding to Arsuch that

i 8. §of =1/,

we can choose an eigenvector v of the problem (15.1) corresponding to A% such
that P, vl — o' in H(Q) weak for the whole sequence of e.
19. Correctors and error estimates
In this paragraph, we bricfly mention a method of finding correctors of first
order for simple eigenvalue of the Neumann problem, We will also see that the
problem of error estimates is reduced to that of stationary problem for which we
refer to Lions [13]. For the study of correctors in the homogenization theory,
we refer to Bensoussan et al [3], Bourgat and Dervieux [5], Kesavan [12].

We consider a simple eigenvalue A, of the problem (17.9) with eigenvector u,
satisfying

T 9.1 fou= 1/6.
Let u., Ae D& cigenvector and eigenvalue of the problem (15.1) satisfying
(19.2) Peue — U in H(®Q) weak for the whole sequence of ¢,
(19.3) Ae¢— 4o
Let us define we as the solution of
— AW, = A tig in L,
9.4 [WecWe
We
| | Tve O, on S,
5«%” The proof of Theorem (18.1) shows that

(19.5) Pewe U in H(Q) weak.
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Multiplying (19.4) by u and (15.1) by we, we obtain
(19.6) ¢ (u, We)ﬂe = Ao (thy, ue)ﬂe,

where (.,.)q_ denotes the scalar product in L% ().

‘First let us prove the following:

Theorem (19.1)

With Ay, g, A, Ue, we defined as above, we have

(19.7) A — Al =cllwe— U ll2qe»

for sufficiently small ¢ and where ¢ > 0 is a constant independent of e.
Proof. We have

de — do = o~ (U llg — Wea,.
€

But (ue, wo)q,— 1 a8 €~ 0 and so we obtain (19.7).

Now, we give a result which estimates the error between the eigenvectors by
choosing an eigenvector cerresponding to Ae. For that, we first define ze uniquely
as follows :

@ (Zg, ©) — Ae (Zes ) @, = Ae (Ues VY — Ao (Uos V) @, fOT v € W,
(19.8) { zee W,

(ze> U, = 0.
Then
(19.9) = 7e + Vo

15 an eigenvector of the problem (15.1) corresponding to 4,  We have the following
estimate for z¢:

Lemma (19.1). There is a constant ¢ > 0 independent of ¢ such that

(19.10) | ze |1 0, = cllde We — 4o th | 2 (@g)-

Proof. Suppose (19.10) is not true. Then there will be a subsequence of «
(again denoted by ¢) such that '

(19.11) |Ze |10, =1L, |

(19.12) [l Ze we = Autts 22 =0

We can pass to the limit in (19.8) as we did in equation (15.1). 'We obtain
(19.13) P, z¢ — z, in H} (Q) weak,

where z, satisfies

s 0% z,
¥ Ox,0x;

r“.zt)uo:'—'o-
Q

= )bo Zo in Q,
(19.14)
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Since 1, is simple, this implies that
(19.15) z, = 0.
On the other hand, taking v = z. in (19.18), we get
1= he (e 20 g + (he We = dotios o) g
which, at the limit, gives a contradiction.

Theorem (19.2)

Let Ao, Ae, We, U, e be defined as above. Then thereis a constant ¢ > 0 inde-
pendent of e such that

(19.16) llite — uo 2@ < cliwe — to |l 2o

Proof. We write

-~

e—-uo=Z£+Ws—u0.
The proof is completed by using (19.11) and Theorem (19.1) and the fact that
Il ze |l 2R < c|zelw (Re)-

Now we give a first order corrector for the eigenvalue 4. Weuse (19.6). We
eXpress

de=Ag+ ey + ...
u€=u0+€u1+-..
We = Uy + €Wy + ...

We put these expressions in (19.6) and identify powers of ¢ : we get

(u()’ Wl) Qe

(1917) /11 = - 2.0 m’ H
? €

where w, is the first order corrector for we. The estimate we give below is better
than that given by Theorem (19.1).

Theorem (19.3)

Let Ag, Ags Wes uo be as in the previous Theorem. Let ), be [defined by (19.17).
Then we have -

| dg — Ao — €M | < c{ellwe —tgllz2pg + | we = th 12200
+ || we — thg — Wl 2Rl

where ¢ is a constant independent of e.
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Proof. 'We have

Ao
- A — = — 0 (Ug, Uy + €W, — W
Ae = Ao — €l ".,umuo)ge( os Up T € Wy e)szs 4
(15, € W) 0 A - I
— (e — do) 77—~ — -r'[~—-~e———uw -AJ.
) (o, U @, (ut5 1o} 2, (o, We) ag ’

We only have to estimate the last term. But using (19.6), one can express the
last term as follows:
Ae
(7‘{07 uu) Qe

Ae .
(g, W@, = 40 = (Zi;tlo)sse (ty =l We — Uo) @,

RS

j*e - /10
(uy; Uo) @,

~+ (uoa Uy — 17[5) <c¢ ” We — Uy ”21'.2(525)9

by Theorems (19.1) and (19.2). This completes the proof.
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