175 YEARS OF LINEAR PROGRAMMING

Part 2. Pivots in Column Space

Viiay CHANDRU & M.R. Rao

The simplex method has been the veritable workhorse of linear
programming for five decades now. An elegant geometric inter-
pretation of the simplex method can be visualised by viewing
the animation of the algorithm in a column space representation.
In fact, it is this interpretation that explains why it is called the
simplex method. The extreme points of the feasible region (poly-
hedron) of the linear programme can be shown to correspond to
an arrangement of simplices in this geometry and the pivoting
operation to a physical pivot from one simplex to an adjacent
one in the arrangement. This paper introduces this vivid de-
scription of the simplex method as a tutored dance of simplices
performing “pivots in column space”.

1 Introduction

In part one of this series (The French Connection, Resonance, October 1998),
we saw the simple but powerful idea in Joseph Fourier’s syntactic rule for
elimination of a variable from a system of linear inequalities. Recursive ap-
plication of the rule computes the projections of convex polyhedra to lower
dimensional subspaces and thus solves linear programming problems. We
also saw how this could be used to develop the duality theory of linear
programming problems. We ended with a technique for generating all the
extreme points and extreme rays of a polyhedron using the Fourier elimina-
tion method.

Consider a polyhedron K = {z € R": Az = b, 2 > 0}. Now K cannot
contain an infinite (in both directions) line since it lies within the non-
negative orthant of ®”. Such a polyhedron is called a pointed polyhedron
since its underlying recession cone is pointed (has an apex). Given a pointed
polyhedron K we observe that

o If K # 0 then K has at least one extreme point.

e If min{cz : Az = b, * > 0} has an optimal solution then it has an
optimal extreme point solution.



These observations together are sometimes called the fundamental theo-
rem of linear programming since they suggest simple finite tests for both
solvability and optimisation by examining the finite number of extreme
points. To generate all extreme points of K, in order to find an optimal
solution, is an impractical idea (see Box 1 for a reason).

However, we may try to run a partial search of the space of extreme
points for an optimal solution. A simple local improvement search strategy
of moving from one extreme point to an adjacent extreme point until we get
to a local optimum is nothing but the simplex method of linear program-
ming. Note that if none of the edges leaving the extreme point are improving
directions of movement then there can be no direction of movement from
the extreme point, pointing into the feasible region, that is improving in
objective value. Hence this extreme point is a true local optimum of the
linear programme.

The local optimum also turns out to be a global optimum because of the
convexity of the polyhedron K and linearity of the objective function cz. The
proof is really simple. If a local optimum is not global then all solutions on
the line segment, between this local solution and any global solution, strictly
improve on the objective value of the local optimum. Since, by convexity,
the line segment is entirely within the polyhedron, we have a contradiction
of the local optimality assumption.

2 The Simplex Method

Let us consider the following linear programming problem:

mazximise 15x1 + dxg + 13.5x3 4+ 8x4 + 1las
(P) s.t 31+ 62y + 4523+ 24+ 8x5+26=5
ity t+astagt+arst+as=1

L1, L2, T3, T4, L5, L6 Z 0

The special feature of (P) is that Z?:l z; =1y 2; >0(j = 1,...,6) is
satisfied by all feasible solutions. (More about this later.) Therefore,
we can multiply the r.h.s coefficient 5, of the first constraint, with Z?:l T
to obtain

(P) max 1521 4 5xg + 13.5254 84 + 1lzs
st. 2x1 —22+4+0.5x3+424— 325+ 426 =10



1+ ay+ w3+ a4+ a5 +we =1
9@20(]’21,---,6)

We now have a linear programme of the form

(P) maX{Zijj : Zajxj =0, ij =1, z; >0V}
J J J

which can have an arbitrary number of variables, with two equality con-
straints and all variables constrained to be non-negative. The feasible region
is a convex polytope with extreme points defined by a suitable number of
hyperplanes of the form z; = 0 such that their common intersection with the
affine set defined by the two equations is a unique point, the extreme point.
If there are n variables and the equations are reduced to be of full linear
rank m, then every extreme point, of the feasible region, is determined by
setting exactly (n—m) variables, called the Non-Basic Variables, to zero. If
we were to arbitrarily choose the (n —m) non-basics, the remaining m vari-
ables, called the Basic Variables, are evaluated by solving the non-singular
residual m x m linear system. If the basic variables evaluate to non-negative
values, we have an extreme point and we call it a Basic Feasible Solution.
If not, the basic solution (with non-basics set to zero) is not feasible in the
linear programme.

Now let us apply all this to our example. Here n is six and m is two. If
we were to take {xy, 23, 24,25} to be the non-basic set and {z3, 26} to be
the basics, we get 25 = 0.8 and zg = 0.2. We display the solved form of this
basic feasible solution in a tableaux or a dictionary as follows. The first two
equations display the basic variables in solved form. The objective function,
displayed below the line, is expressed only in terms of the non-basics since
the basics have been substituted by their solved forms.

2y =0.8—-0.427 —0.7z3 —1l.4zs
re = 0.2 - 06$1 - 03$3 — &4 —|—04$5

(1)
z=4.04 1321 4+ 10x3 +8x4 +4das

From the bottom row of the above dictionary it is evident that the objective
value of the current basic feasible solution is 4 and if we increase the value
of the non-basic #1, the objective value would increase. (Here this would be



true of any of the non-basics, not just z;. Dantzig’s Rule dictates that we
choose x1 because it has the largest positive coefficient in the bottom row
of the dictionary.) So we increase zy from its slumber at value 0 and the
first two equations indicate that as soon as x; reaches % the values of x3
hits % and xg hits 0. We declare {z3, 21} the basics, i.e. we have swapped
x1 and zg. This is called a pivot and the new dictionary after the pivot,
representing the new basic feasible solution, is given by

2 5 2

2 1
$2=§—§$3+§$4—§9€5+§9€6

1 1 5 _|_2 5
Ty =< — =T3— =T Ty — X
R

( )

Now the objective value has improved to 8% and we check if we can
improve further. Dantzig’s Rule picks z5, the non-basic with the largest
positive coefficient in the objective row of the dictionary, as the variable to
enter the basis and x5 leaves. The resulting dictionary is then,

rs = 0.4 — 06$2 - 03$3 + 04$4 + 04$6
rT = 0.6 — 04$2 - 07$3 - 14$4 - 14$6
z = 13.4—7.6x9 — 0.323 — 8.6x4 — 16.624

We have found an extreme point solution (0.6,0,0,0,0.4,0) with a corre-
sponding basis {x5, x1} such that none of the non-basics are worth increasing
any more. Thus we have located a local maximum, and by arguments made
above, a global maximum for the linear programme.

Our illustration of the simplex method with dictionaries of an example
should motivate the reader to generalise the method to work on any linear
programming problem. A few assumptions implicit in the example need
some comment.

REMARKS:

1. The form of the linear programme assumed here is non-standard but
we now show that this form is completely general. If a linear pro-
gramme has a finite optimum, the values of the variables are finite.



Consequently, the constraint >°% ; x; < M where M is a sufficiently
large positive constant, can be appended to the original linear pro-
gramme, to obtain a bounded problem. Now consider a bounded linear
programme:

maX{Zijj : Z(liﬁj =b; Vi, ij +a29g=M;z; >0Vj}
=1

i=1 i=1

If the artificial variable z¢ goes to zero at optimality in the linear
programme, it is an indication that the original problem might have
no finite optimum. The transformation u; = ﬁx]‘, 7=12,---,n+1
together with the right hand side coefficients b; replaced by b; Xzyill uj
gives the form of the linear programme assumed here.

2. We assumed that an extreme point (a basic feasible solution) of the
polyhedron is available. This presupposes that the solvability of the
constraints has been established. These assumptions are reasonable
since we can formulate the solvability problem as an optimisation prob-
lem, with a self-evident extreme point, whose optimal solution either
establishes unsolvability of Az = b, x > 0, or provides an extreme
point of K. Such an optimisation problem is usually called a Phase
I model. The point being, of course, that the simplex method, as de-
scribed above, can be invoked on the Phase I model and if successful,
can be invoked once again to carry out the intended maximisation of
cx. There are several different formulations of the Phase I model that
have been advocated. Here is one.

min{vg : Az +bvg=0b, 2 >0, v9 >0}

The solution (z,v9)" = (0,---,0,1) is a self-evident extreme point
and vg = 0 at an optimal solution of this model is a necessary and
sufficient condition for the solvability of Az = b, 2 > 0.

3 The Column Space Geometry

The simplex method after its initial formulation was shelved by George
Dantzig because he felt that it would be terribly ineflicient as it wandered
about the boundary of higher dimensional polyhedra (see Figure 1). How-
ever, a fresh look at the simplex method in the “column space geometry”
indicated to Dantzig that the simplex method may be efficient after all.



To realise the column space interpretation in our example we identify
the column (%?) with each variable 2;. Thus,
J

T T9 T3 T4 T5 Te

G G (5 @ G) ©
which can be plotted as six points {[1], [2], ..., [6]} on (a, ¢) plane as indicated
by the annular marks in Figure 2. For any feasible solution z we know that

6 6
D=5 200 = 1,2,,6); Y az; =0
j=1 =

Since {z;} is a set of convex multipliers, the convex combination of the points
[1],]2], ..., [6] must result in a point on the ¢ axis. The value of the ordinate
(c-intercept) indicates the objective value attained by this particular convex
combination. If some of the 7 are zero, it just means that the corresponding
points are not involved.

In a basic feasible solution all but two of the z; are zero. The two basic
variables define a line segment in Figure 2 that must cross the ¢ axis. A line
segment is also called a 1-simplex since it is the affine hull of two affinely
independent points. Thus the pairs ([2],[6]), ([2],[1]) and ([5],[1]) correspond
to three basic feasible solutions - exactly the same three that we saw as
dictionaries in the previous section.

Now it is easy to bring to life the machinations of the simplex method.
We grasp the simplex ([2],[6]), notice that [1] is the point most vertically
above this simplex. let go of [6] (since [6] and [1] are on the same side of
the c-axis) and pivot to the simplex ([2],[1]). Now, [5] is the point most
vertically above ([2],[1]). We drop [2] and pivot to ([5],[1]). We need go no
further since all points are below ([5],[1]) and we declare the basis {z5,21}
optimal. The c-intercept (ordinate) of the optimal simplex is 13.4 which is
the optimal value of the linear programme.

WHERE ARE DUAL MULTIPLIERS?

Recall from Part 1 of this series that associated with any linear pro-
gramme is a dual linear programme and the two attain the same objective
value. In our example, this turns out to be

(P) z=max 15z1+ bay+ 13.525+ 8xy + 11z5



s.t. 201 — 22+ 0523+ 424 — 325 + 426 =0
ritaytarst+agstarst+awe=1
T1,T9,%3%T4,T5,Tg > 0
2* =1(0.6,0,0,0,0.4,0); z = 13.4 optimal

(D) w=min y

s.t. 209 +y2 > 15
—ht+y225
0.5y1 + y2 > 13.5
dyp +y2 > 8
=3y +y2 2 11
dpp +y2 20
1, Y2, unrestricted
y" =(0.8,13.4); w = 13.4 optimal

A natural question to ask is if the column space representation of the
simplex method allows us to infer the optimal solution to the dual problem
(D) as well. Indeed it does. The equation of line determined by the final
simplex ([5],[1]) is given by

c=0.8a+ 134 =yja+ 75

Notice that the optimal solution and objective value of (D) can be read off
as coefficients of this equation.

Remark:

We note that this simplex interpretation of the simplex method carries
over to linear programmes that have an arbitrary (say m) equality con-
straints along with the simplex constraints. In this case we can visualise in
(m + 1)- dimensional space coordinatised by aq,az, -+, an,c. Fach column
x; gives a point (a1, -, G, C]‘)T in this coordinate frame. The correspon-
dences are as indicated in the table:



Algebraic
Basic Feasible Solution
Updated Objective Coeflicients

Simplex Pivot

Dual Variables

Optimality Test

Degeneracy

Geometric
m-simplex spanning c-axis
Vertical (c-direction)
distances to m-Simplex
+ve if point above simplex
-ve if point below simplex
Choose point above
the hyperplane defined
by the simplex. Pivot to a
new simplex while
continuing to span c-axis.
Coeflicients of hyperplane
equation determined by
m-simplex.
All points on or below
the hyperplane.
A proper face of the
m-simplex spans the c-axis.

Degeneracy in a linear programme occurs when in a basic feasible solu-

Consider the following example.

tion, one or more of the basic variables evaluate to zero. The next section
is devoted to the study of degeneracy.

4 Degenerate Linear Programmes

It is possible to have linear programmes for which an extreme point is geo-
metrically over-determined (degenerate) i.e., there are more than d inequal-
ities of the linear programme which hold as equalities at the extreme point,
where d is the dimension of the feasible polyhedron, and several combina-
tions of the equations are of rank d. In such a situation, there would be
several feasible bases corresponding to the same extreme point. When this
happens, the linear programme is said to be degenerate.

maxr 1+ v + 4x3
st. a1 t4dastays=4
ro+ 4wz 4 25 =4

L1y, T2y

K ZO



Figure 3 is the feasible polyhedron visualised in @jz523-space. The four
planes at the extreme point (0,0, 1) correspond to setting 1, @2, x4 and 5
to zero respectively. This extreme point is overdetermined. It can be shown
that the simplex method with Dantzig’s Rule would pivot from basis {z3, x5}
to {23, 22} while standing at this extreme point (a degenerate pivot).

There are two sources of non-determinism in the primal simplex proce-
dure. The first involves the choice of the entering variable in a pivot. At a
typical iteration there may be many candidates that are improving in the
sense that the coeflicient in the objective row of the corresponding dictio-
nary is of the right sign. Dantzig’s Rule, Maximum Improvement Rule, and
Steepest Descent Rule are some of the many rules that have been used to
make this choice of entering variable in the simplex method. There is, un-
fortunately, no clearly dominant rule and successful implementations exploit
the empirical and analytic insights that have been gained over the years to
resolve the edge selection (entering variable) nondeterminism in the simplex
method.

The second source of non-determinism arises from degeneracy. When
there are multiple feasible bases corresponding to an extreme point, the
simplex method has to pivot from basis to adjacent basis by picking an
entering basic variable (a psuedo edge direction) and by dropping one of the
old ones. The degeneracy may force the entering variable to enter the basis
but take a value of zero, indicating that we are still at the same extreme
point. Now, if there are several old basic variables at value zero, there is a
choice as to which one should leave the basis. Pathological examples have
been constructed to show that a wrong choice of the leaving variables may
lead to cycling in the sequence of feasible bases generated at this extreme
point.

Near-cycling is a serious problem when linear programmes are highly
degenerate as in the case of linear relaxations of many combinatorial opti-
misation problems. The Lexicographic Rule (Perturbation Rule) for choice
of leaving variables in the simplex method is a provably finite method in
which small (symbolic) perturbations of the r.h.s. cofficients force out the
geometric overdetermination of a degenerate extreme point.A clever method
proposed by Robert Bland preorders the columns of the matrix A. In case
of non-determinism in either entering or leaving variable choices, Bland’s
Rule just picks the lowest index candidate. All cycles are avoided by this
rule also.



5 Long Isotonic Simplex Paths

V. Klee and G.L. Minty exploited the sensitivity of the original simplex
method of Dantzig, to projective scaling of the data, and constructed expo-
nential examples for it. These examples were simple projective distortions
of the hypercube to embed long isotonic (improving objective value) paths
in the graph. Scaling is used in the Klee-Minty construction, to trick the
choice of entering variable (based on most positive objective coefficient) in
the simplex method and thus keep it on an exponential path. Later, several
variants of the entering variable choice (best improvement, steepest descent,
etc.) were all shown to be susceptible to similar constructions of exponential
examples. Figure 4 shows the projectively distorted unit cube of the Klee-
Minty construction with the long isotonic path marked on it. The figure
corresponds to the formulation:

max 100z1 + 100025 4+ 1000023
st. x1 <1

02214+ 22<1

0.0221 4+ 0229+ 25< 1

T1,T2,23 Z 0

While known variants of the simplex method can be tricked into following
long paths, all these polyhedra also exhibit short paths (in the distorted
cube, for example, a clairvoyant choice would move to the optimal corner
in one step). An interesting question is whether they exist polyhedra which
have no short simplex paths at all. This question is related the unresolved
diameter conjecture for convex polytopes (see Box 2).

Despite its worst-case behaviour, the simplex method has been the ver-
itable workhorse of linear programming for five decades now. This is be-
cause both empirical and probabilistic analyses indicate that the “average”
number of iterations of the simplex method is just slightly more than lin-
ear in the dimension of the polyhedron. Also, hundreds of man-years have
been devoted to optimising the engineering details in implementations of the
simplex method - exploiting sparsity, matrix factorisations, parallelism and
pivot rules (see the article by Bixby for some details).

The ellipsoid method was devised to overcome poor scaling in convex
programming problems and therefore turned out to be the natural choice
of an algorithm to first establish polynomial-time solvability of linear pro-
gramming. Later, a young scientist of Indian origin, N.K. Karmarkar took

10



care of both projection and scaling simultaneously and arrived at a superior
algorithm. His algorithm will be subject of the next article in this series.
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Box 1: NUMBER OF EXTREME POINTS

The simplex method walks along edge paths on the combinatorial graph structure defined
by the boundary of convex polyhedra. These graphs are quite dense. Balinski’s theorem
(cf. Ziegler) states that the graph of d-dimensional polyhedron must be d-connected. A
polyhedral graph can also have a huge number of vertices. We know that for any linear
programme of dimension d and defined by k inequalities can have no more than (S) extreme
points. However, ingenious arguments due to David Gale and McMullen (cf. Ziegler) show

that the number of extreme points can be as large as, but no larger than,

(k—L“TlJ)+(k—L“TQJ)

for a polytope in d dimensions defined by k linear inequalities.
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Box 2. THE DIAMETER CONJECTURE

A polyhedral graph is a graph in which the extreme points of the polyhedron are represented
as vertices of the graph and edges of the polytope are represented as edges of the graph.
The distance between two vertices of the graph is the minimum number of edges connecting
the two vertices. The diameter of the graph and equivalently the diameter of the polytope
is the maximum of the distances between all pairs of vertices of the graph. A polynomial
bound on the diameter of polyhedral graphs is not known. The best bound obtained to
date is O(kl"'logd) of a polytope in d dimensions defined by k constraints. Hence it is no
surprise that there is no known variants of the simplex method with a worst-case polynomial
guarantee on the number of iterations.

The unresolved Hirsch conjecture is that the diameter of a convex polytope is
less than or equal to m — d where d is the dimension of the polytope defined
by m facets. Recall that facets are proper faces of a polyhedron that are of
dimension one less than the polyhedron itself.

The unit hypercube of dimension d has 2d facets and hence satisfies the conjecture. D. Nad-
def has shown that the Hirsch conjecture is true for 0 — 1 polytopes, i.e. polytopes whose
vertex co-ordinates are 0 or 1. If the diameter of the polytope is large, the simplex method
may require a large number of iterations. However, even if the diameter is small, the pres-
ence of degeneracy may force a large number of pivots in the simplex method. Polytopes
associated with combinatorial problems tend to have a small diameter. For instance, Pad-
berg and Rao have shown that the diameter of the travelling salesman polytope (hull of
the incidence vectors of traveling salesman tours) is only two although the problem is very
difficult to solve. In fact, given any system of linear inequalities, it is easy to construct
the quasi-dual polytope (a pyramid) with diameter 2 such that solvability of the linear
inequality system is equivalent to linear optimisation on the quasi-dual.
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A GLOSSARY

e Convex Polyhedron: The set of solutions to a finite system of linear
inequalities on real-valued variables. Equivalently, the intersection of
a finite number of linear half-spaces in £".

e Polyhedral (Convex) Cone: A special convex polyhedron which is
the set of solutions to a finite system of homogeneous linear inequalities
on real-valued variables.

e Extreme Ray: Any direction vector in which we can move and still
remain in the polyhedron is called a ray. A ray is extreme if it cannot
be expressed as a strict positive combination of two or more rays of
the polyhedron.

e Extreme Point: A point in the polyhedron is extreme if it cannot
expressed as a strict convex combination of two or more points of the
polyhedron.

e Dimension: The dimension of a polyhedron is the affine rank of the
polyhedron minus one. Equivalently, it is equal to dimension of the
smallest affine space that contains it.

o d-Simplex: A simplex of d dimensions is the convex hull of d 4+ 1
affinely independent points. A 1-simplex is a line segment, a 2-simplex
a triangle, a 3-simplex a tetrahedron, and so on.

e Basic Feasible Solution: An algebraic representation of an ex-
treme point for a linear programme with equality constraints and all
non-negative variables.

e Dictionary: A tableaux of coefficients displaying a basic feasible so-
lution of the linear programme.
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