
175 Years of Linear ProgrammingPart 2. Pivots in Column SpaceVijay Chandru & M.R. RaoThe simplex method has been the veritable workhorse of linearprogramming for �ve decades now. An elegant geometric inter-pretation of the simplex method can be visualised by viewingthe animation of the algorithm in a column space representation.In fact, it is this interpretation that explains why it is called thesimplex method. The extreme points of the feasible region (poly-hedron) of the linear programme can be shown to correspond toan arrangement of simplices in this geometry and the pivotingoperation to a physical pivot from one simplex to an adjacentone in the arrangement. This paper introduces this vivid de-scription of the simplex method as a tutored dance of simplicesperforming \pivots in column space".1 IntroductionIn part one of this series (The French Connection, Resonance, October 1998),we saw the simple but powerful idea in Joseph Fourier's syntactic rule forelimination of a variable from a system of linear inequalities. Recursive ap-plication of the rule computes the projections of convex polyhedra to lowerdimensional subspaces and thus solves linear programming problems. Wealso saw how this could be used to develop the duality theory of linearprogramming problems. We ended with a technique for generating all theextreme points and extreme rays of a polyhedron using the Fourier elimina-tion method.Consider a polyhedron K = fx 2 <n : Ax = b; x � 0g. Now K cannotcontain an in�nite (in both directions) line since it lies within the non-negative orthant of <n. Such a polyhedron is called a pointed polyhedronsince its underlying recession cone is pointed (has an apex). Given a pointedpolyhedron K we observe that� If K 6= ; then K has at least one extreme point.� If minfcx : Ax = b; x � 0g has an optimal solution then it has anoptimal extreme point solution.1



These observations together are sometimes called the fundamental theo-rem of linear programming since they suggest simple �nite tests for bothsolvability and optimisation by examining the �nite number of extremepoints. To generate all extreme points of K, in order to �nd an optimalsolution, is an impractical idea (see Box 1 for a reason).However, we may try to run a partial search of the space of extremepoints for an optimal solution. A simple local improvement search strategyof moving from one extreme point to an adjacent extreme point until we getto a local optimum is nothing but the simplex method of linear program-ming. Note that if none of the edges leaving the extreme point are improvingdirections of movement then there can be no direction of movement fromthe extreme point, pointing into the feasible region, that is improving inobjective value. Hence this extreme point is a true local optimum of thelinear programme.The local optimum also turns out to be a global optimum because of theconvexity of the polyhedron K and linearity of the objective function cx. Theproof is really simple. If a local optimum is not global then all solutions onthe line segment, between this local solution and any global solution, strictlyimprove on the objective value of the local optimum. Since, by convexity,the line segment is entirely within the polyhedron, we have a contradictionof the local optimality assumption.2 The Simplex MethodLet us consider the following linear programming problem:maximise 15x1 + 5x2 + 13:5x3 + 8x4 + 11x5(P ) s:t 3x1 + 6x2 + 4:5x3 + x4 + 8x5 + x6 = 5x1 + x2 + x3 + x4 + x5 + x6 = 1x1; x2; x3; x4; x5; x6 � 0The special feature of (P ) is that P6j=1 xj = 1; xj � 0 (j = 1; :::; 6) issatis�ed by all feasible solutions. (More about this later.) Therefore,we can multiply the r.h.s coe�cient 5, of the �rst constraint, with P6j=1 xjto obtain (P ) max 15x1 + 5x2 + 13:5x3+ 8x4 + 11x5s:t: 2x1 � x2 + 0:5x3 + 4x4 � 3x5 + 4x6 = 02



x1 + x2 + x3 + x4 + x5 + x6 = 1xj � 0(j = 1; � � � ; 6)We now have a linear programme of the form(P ) maxfXj cjxj : Xj ajxj = 0; Xj xj = 1; xj � 0 8jgwhich can have an arbitrary number of variables, with two equality con-straints and all variables constrained to be non-negative. The feasible regionis a convex polytope with extreme points de�ned by a suitable number ofhyperplanes of the form xj = 0 such that their common intersection with thea�ne set de�ned by the two equations is a unique point, the extreme point.If there are n variables and the equations are reduced to be of full linearrank m, then every extreme point, of the feasible region, is determined bysetting exactly (n�m) variables, called the Non-Basic Variables, to zero. Ifwe were to arbitrarily choose the (n�m) non-basics, the remaining m vari-ables, called the Basic Variables, are evaluated by solving the non-singularresidual m�m linear system. If the basic variables evaluate to non-negativevalues, we have an extreme point and we call it a Basic Feasible Solution.If not, the basic solution (with non-basics set to zero) is not feasible in thelinear programme.Now let us apply all this to our example. Here n is six and m is two. Ifwe were to take fx1; x3; x4; x5g to be the non-basic set and fx2; x6g to bethe basics, we get x2 = 0:8 and x6 = 0:2. We display the solved form of thisbasic feasible solution in a tableaux or a dictionary as follows. The �rst twoequations display the basic variables in solved form. The objective function,displayed below the line, is expressed only in terms of the non-basics sincethe basics have been substituted by their solved forms.x2 = 0:8� 0:4x1 � 0:7x3 �1:4x5x6 = 0:2� 0:6x1 � 0:3x3 �x4 +0:4x5 (1)z = 4:0 + 13x1 + 10x3 +8x4 +4x5From the bottom row of the above dictionary it is evident that the objectivevalue of the current basic feasible solution is 4 and if we increase the valueof the non-basic x1, the objective value would increase. (Here this would be3



true of any of the non-basics, not just x1. Dantzig's Rule dictates that wechoose x1 because it has the largest positive coe�cient in the bottom rowof the dictionary.) So we increase x1 from its slumber at value 0 and the�rst two equations indicate that as soon as x1 reaches 13 the values of x2hits 23 and x6 hits 0. We declare fx2; x1g the basics, i.e. we have swappedx1 and x6. This is called a pivot and the new dictionary after the pivot,representing the new basic feasible solution, is given byx2 = 23 � 12x3 + 23x4 � 53x5 + 23x6x1 = 13 � 12x3 � 53x4 + 23x5 � 53x6 (2)z = 813 + 312x3 � 1323x4 + 1223x5 � 2123x6Now the objective value has improved to 813 and we check if we canimprove further. Dantzig's Rule picks x5, the non-basic with the largestpositive coe�cient in the objective row of the dictionary, as the variable toenter the basis and x2 leaves. The resulting dictionary is then,x5 = 0:4� 0:6x2� 0:3x3 + 0:4x4 + 0:4x6x1 = 0:6� 0:4x2� 0:7x3 � 1:4x4 � 1:4x6z = 13:4� 7:6x2 � 0:3x3 � 8:6x4 � 16:6x6We have found an extreme point solution (0:6; 0; 0; 0; 0:4; 0) with a corre-sponding basis fx5; x1g such that none of the non-basics are worth increasingany more. Thus we have located a local maximum, and by arguments madeabove, a global maximum for the linear programme.Our illustration of the simplex method with dictionaries of an exampleshould motivate the reader to generalise the method to work on any linearprogramming problem. A few assumptions implicit in the example needsome comment.Remarks:1. The form of the linear programme assumed here is non-standard butwe now show that this form is completely general. If a linear pro-gramme has a �nite optimum, the values of the variables are �nite.4



Consequently, the constraint Pnj=1 xj � M where M is a su�cientlylarge positive constant, can be appended to the original linear pro-gramme, to obtain a bounded problem. Now consider a bounded linearprogramme:maxf nXj=1 cjxj : nXj=1 aijxj = bi 8i; nXj=1 xj + x0 = M ; xj � 0 8jgIf the arti�cial variable x0 goes to zero at optimality in the linearprogramme, it is an indication that the original problem might haveno �nite optimum. The transformation uj = 1M xj ; j = 1; 2; � � � ; n+ 1together with the right hand side coe�cients bi replaced by bi�Pn+1j=1 ujgives the form of the linear programme assumed here.2. We assumed that an extreme point (a basic feasible solution) of thepolyhedron is available. This presupposes that the solvability of theconstraints has been established. These assumptions are reasonablesince we can formulate the solvability problem as an optimisation prob-lem, with a self-evident extreme point, whose optimal solution eitherestablishes unsolvability of Ax = b; x � 0, or provides an extremepoint of K. Such an optimisation problem is usually called a PhaseI model.The point being, of course, that the simplex method, as de-scribed above, can be invoked on the Phase I model and if successful,can be invoked once again to carry out the intended maximisation ofcx. There are several di�erent formulations of the Phase I model thathave been advocated. Here is one.minfv0 : Ax+ bv0 = b; x � 0; v0 � 0gThe solution (x; v0)T = (0; � � � ; 0; 1) is a self-evident extreme pointand v0 = 0 at an optimal solution of this model is a necessary andsu�cient condition for the solvability of Ax = b; x � 0.3 The Column Space GeometryThe simplex method after its initial formulation was shelved by GeorgeDantzig because he felt that it would be terribly ine�cient as it wanderedabout the boundary of higher dimensional polyhedra (see Figure 1). How-ever, a fresh look at the simplex method in the \column space geometry"indicated to Dantzig that the simplex method may be e�cient after all.5



To realise the column space interpretation in our example we identifythe column �ajcj � with each variable xj . Thus,x1� 215� x2��15 � x3� 0:513:5� x4�48� x5��311� x6�40�which can be plotted as six points f[1], [2], ..., [6]g on (a; c) plane as indicatedby the annular marks in Figure 2. For any feasible solution �x we know that6Xj=1 �xj = 1; �xj � 0 (j = 1; 2; � � � ; 6); 6Xj=1 aj �xj = 0Since f �xjg is a set of convex multipliers, the convex combination of the points[1], [2], ..., [6] must result in a point on the c axis. The value of the ordinate(c-intercept) indicates the objective value attained by this particular convexcombination. If some of the �xj are zero, it just means that the correspondingpoints are not involved.In a basic feasible solution all but two of the �xj are zero. The two basicvariables de�ne a line segment in Figure 2 that must cross the c axis. A linesegment is also called a 1-simplex since it is the a�ne hull of two a�nelyindependent points. Thus the pairs ([2],[6]), ([2],[1]) and ([5],[1]) correspondto three basic feasible solutions - exactly the same three that we saw asdictionaries in the previous section.Now it is easy to bring to life the machinations of the simplex method.We grasp the simplex ([2],[6]), notice that [1] is the point most verticallyabove this simplex. let go of [6] (since [6] and [1] are on the same side ofthe c-axis) and pivot to the simplex ([2],[1]). Now, [5] is the point mostvertically above ([2],[1]). We drop [2] and pivot to ([5],[1]). We need go nofurther since all points are below ([5],[1]) and we declare the basis fx5; x1goptimal. The c-intercept (ordinate) of the optimal simplex is 13.4 which isthe optimal value of the linear programme.Where are Dual multipliers?Recall from Part 1 of this series that associated with any linear pro-gramme is a dual linear programme and the two attain the same objectivevalue. In our example, this turns out to be(P ) z = max 15x1 + 5x2 + 13:5x3+ 8x4 + 11x56



s:t: 2x1 � x2 + 0:5x3 + 4x4 � 3x5 + 4x6 = 0x1 + x2 + x3 + x4 + x5 + x6 = 1x1; x2; x3x4; x5; x6 � 0x� = (0:6; 0; 0; 0; 0:4; 0) ; z = 13:4 optimal(D) w = min y2s:t: 2y1 + y2 � 15�y1 + y2 � 50:5y1 + y2 � 13:54y1 + y2 � 8�3y1 + y2 � 114y1 + y2 � 0y1; y2; unrestrictedy� = (0:8; 13:4) ; w = 13:4 optimalA natural question to ask is if the column space representation of thesimplex method allows us to infer the optimal solution to the dual problem(D) as well. Indeed it does. The equation of line determined by the �nalsimplex ([5],[1]) is given byc = 0:8a+ 13:4 = y�1a+ y�2Notice that the optimal solution and objective value of (D) can be read o�as coe�cients of this equation.Remark:We note that this simplex interpretation of the simplex method carriesover to linear programmes that have an arbitrary (say m) equality con-straints along with the simplex constraints. In this case we can visualise in(m+ 1)- dimensional space coordinatised by a1; a2; � � � ; am; c. Each columnxj gives a point (a1j; � � � ; amj ; cj)T in this coordinate frame. The correspon-dences are as indicated in the table: 7



Algebraic GeometricBasic Feasible Solution  ! m-simplex spanning c-axisUpdated Objective Coe�cients  ! Vertical (c-direction)distances to m-Simplex( +ve if point above simplex-ve if point below simplexSimplex Pivot  ! Choose point abovethe hyperplane de�nedby the simplex. Pivot to anew simplex whilecontinuing to span c-axis.Dual Variables  ! Coe�cients of hyperplaneequation determined bym-simplex.Optimality Test  ! All points on or belowthe hyperplane.Degeneracy  ! A proper face of them-simplex spans the c-axis.Degeneracy in a linear programme occurs when in a basic feasible solu-tion, one or more of the basic variables evaluate to zero. The next sectionis devoted to the study of degeneracy.4 Degenerate Linear ProgrammesIt is possible to have linear programmes for which an extreme point is geo-metrically over-determined (degenerate) i.e., there are more than d inequal-ities of the linear programme which hold as equalities at the extreme point,where d is the dimension of the feasible polyhedron, and several combina-tions of the equations are of rank d. In such a situation, there would beseveral feasible bases corresponding to the same extreme point. When thishappens, the linear programme is said to be degenerate.Consider the following example.max x1 + x2 + 4x3s:t: x1 + 4x3 + x4 = 4x2 + 4x3 + x5 = 4x1; x2; � � � ; x5 � 08



Figure 3 is the feasible polyhedron visualised in x1x2x3-space. The fourplanes at the extreme point (0; 0; 1) correspond to setting x1, x2, x4 and x5to zero respectively. This extreme point is overdetermined. It can be shownthat the simplex method with Dantzig's Rule would pivot from basis fx3; x5gto fx3; x2g while standing at this extreme point (a degenerate pivot).There are two sources of non-determinism in the primal simplex proce-dure. The �rst involves the choice of the entering variable in a pivot. At atypical iteration there may be many candidates that are improving in thesense that the coe�cient in the objective row of the corresponding dictio-nary is of the right sign. Dantzig's Rule, Maximum Improvement Rule, andSteepest Descent Rule are some of the many rules that have been used tomake this choice of entering variable in the simplex method. There is, un-fortunately, no clearly dominant rule and successful implementations exploitthe empirical and analytic insights that have been gained over the years toresolve the edge selection (entering variable) nondeterminism in the simplexmethod.The second source of non-determinism arises from degeneracy. Whenthere are multiple feasible bases corresponding to an extreme point, thesimplex method has to pivot from basis to adjacent basis by picking anentering basic variable (a psuedo edge direction) and by dropping one of theold ones. The degeneracy may force the entering variable to enter the basisbut take a value of zero, indicating that we are still at the same extremepoint. Now, if there are several old basic variables at value zero, there is achoice as to which one should leave the basis. Pathological examples havebeen constructed to show that a wrong choice of the leaving variables maylead to cycling in the sequence of feasible bases generated at this extremepoint.Near-cycling is a serious problem when linear programmes are highlydegenerate as in the case of linear relaxations of many combinatorial opti-misation problems. The Lexicographic Rule (Perturbation Rule) for choiceof leaving variables in the simplex method is a provably �nite method inwhich small (symbolic) perturbations of the r.h.s. co�cients force out thegeometric overdetermination of a degenerate extreme point.A clever methodproposed by Robert Bland preorders the columns of the matrix A. In caseof non-determinism in either entering or leaving variable choices, Bland'sRule just picks the lowest index candidate. All cycles are avoided by thisrule also. 9



5 Long Isotonic Simplex PathsV. Klee and G.L. Minty exploited the sensitivity of the original simplexmethod of Dantzig, to projective scaling of the data, and constructed expo-nential examples for it. These examples were simple projective distortionsof the hypercube to embed long isotonic (improving objective value) pathsin the graph. Scaling is used in the Klee-Minty construction, to trick thechoice of entering variable (based on most positive objective coe�cient) inthe simplex method and thus keep it on an exponential path. Later, severalvariants of the entering variable choice (best improvement, steepest descent,etc.) were all shown to be susceptible to similar constructions of exponentialexamples. Figure 4 shows the projectively distorted unit cube of the Klee-Minty construction with the long isotonic path marked on it. The �gurecorresponds to the formulation:max 100x1 + 1000x2 + 10000x3s:t: x1 � 10:2x1 + x2 � 10:02x1 + 0:2x2 + x3 � 1x1; x2; x3 � 0While known variants of the simplex method can be tricked into followinglong paths, all these polyhedra also exhibit short paths (in the distortedcube, for example, a clairvoyant choice would move to the optimal cornerin one step). An interesting question is whether they exist polyhedra whichhave no short simplex paths at all. This question is related the unresolveddiameter conjecture for convex polytopes (see Box 2).Despite its worst-case behaviour, the simplex method has been the ver-itable workhorse of linear programming for �ve decades now. This is be-cause both empirical and probabilistic analyses indicate that the \average"number of iterations of the simplex method is just slightly more than lin-ear in the dimension of the polyhedron. Also, hundreds of man-years havebeen devoted to optimising the engineering details in implementations of thesimplex method - exploiting sparsity, matrix factorisations, parallelism andpivot rules (see the article by Bixby for some details).The ellipsoid method was devised to overcome poor scaling in convexprogramming problems and therefore turned out to be the natural choiceof an algorithm to �rst establish polynomial-time solvability of linear pro-gramming. Later, a young scientist of Indian origin, N.K. Karmarkar took10



care of both projection and scaling simultaneously and arrived at a superioralgorithm. His algorithm will be subject of the next article in this series.6 Suggested ReadingR.E.Bixby, Progress in Linear Programming, ORSA Journal on Com-puting, Vol. 6, No. 1, (1994) 15-22.K.H. Borgwardt,The Simplex Method: A Probabilistic Analysis, Springer-Verlag, Berlin Heidelberg (1987).V. Chvatal, Linear Programming, Freeman Press, New York (1983).G.B.Dantzig, Linear Programming and Extensions, Princeton Univer-sity Press, Princeton (1963).V. Klee and G.J. Minty, How good is the simplex algorithm?, in In-equalities III, edited by O. Shisha, Academic Press (1972).M.W.Padberg and M.R.Rao, The travelling salesman problem and aclass of polyhedra of diameter two, Mathematical Programming, 7,(1974) 32-45.A.Schrijver, Theory of Linear and Integer Programming, John Wiley,1986.G.M.Ziegler, Lectures on Polytopes, Springer Verlag, 1995.
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Box 1: Number of Extreme PointsThe simplex method walks along edge paths on the combinatorial graph structure de�nedby the boundary of convex polyhedra. These graphs are quite dense. Balinski's theorem(cf. Ziegler) states that the graph of d-dimensional polyhedron must be d-connected. Apolyhedral graph can also have a huge number of vertices. We know that for any linearprogramme of dimension d and de�ned by k inequalities can have no more than �kd� extremepoints. However, ingenious arguments due to David Gale and McMullen (cf. Ziegler) showthat the number of extreme points can be as large as, but no larger than, k � bd+12 cm� n !+  k � bd+22 cm� n !for a polytope in d dimensions de�ned by k linear inequalities.
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Box 2. The Diameter ConjectureA polyhedral graph is a graph in which the extreme points of the polyhedron are representedas vertices of the graph and edges of the polytope are represented as edges of the graph.The distance between two vertices of the graph is the minimum number of edges connectingthe two vertices. The diameter of the graph and equivalently the diameter of the polytopeis the maximum of the distances between all pairs of vertices of the graph. A polynomialbound on the diameter of polyhedral graphs is not known. The best bound obtained todate is O(k1+log d) of a polytope in d dimensions de�ned by k constraints. Hence it is nosurprise that there is no known variants of the simplex method with a worst-case polynomialguarantee on the number of iterations.The unresolved Hirsch conjecture is that the diameter of a convex polytope isless than or equal to m � d where d is the dimension of the polytope de�nedby m facets. Recall that facets are proper faces of a polyhedron that are ofdimension one less than the polyhedron itself.The unit hypercube of dimension d has 2d facets and hence satis�es the conjecture. D. Nad-def has shown that the Hirsch conjecture is true for 0� 1 polytopes, i.e. polytopes whosevertex co-ordinates are 0 or 1. If the diameter of the polytope is large, the simplex methodmay require a large number of iterations. However, even if the diameter is small, the pres-ence of degeneracy may force a large number of pivots in the simplex method. Polytopesassociated with combinatorial problems tend to have a small diameter. For instance, Pad-berg and Rao have shown that the diameter of the travelling salesman polytope (hull ofthe incidence vectors of traveling salesman tours) is only two although the problem is verydi�cult to solve. In fact, given any system of linear inequalities, it is easy to constructthe quasi-dual polytope (a pyramid) with diameter 2 such that solvability of the linearinequality system is equivalent to linear optimisation on the quasi-dual.
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A Glossary� Convex Polyhedron: The set of solutions to a �nite system of linearinequalities on real-valued variables. Equivalently, the intersection ofa �nite number of linear half-spaces in <n.� Polyhedral (Convex) Cone: A special convex polyhedron which isthe set of solutions to a �nite system of homogeneous linear inequalitieson real-valued variables.� Extreme Ray: Any direction vector in which we can move and stillremain in the polyhedron is called a ray. A ray is extreme if it cannotbe expressed as a strict positive combination of two or more rays ofthe polyhedron.� Extreme Point: A point in the polyhedron is extreme if it cannotexpressed as a strict convex combination of two or more points of thepolyhedron.� Dimension: The dimension of a polyhedron is the a�ne rank of thepolyhedron minus one. Equivalently, it is equal to dimension of thesmallest a�ne space that contains it.� d-Simplex: A simplex of d dimensions is the convex hull of d + 1a�nely independent points. A 1-simplex is a line segment, a 2-simplexa triangle, a 3-simplex a tetrahedron, and so on.� Basic Feasible Solution: An algebraic representation of an ex-treme point for a linear programme with equality constraints and allnon-negative variables.� Dictionary: A tableaux of coe�cients displaying a basic feasible so-lution of the linear programme.
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