175 YEARS OF LINEAR PROGRAMMING
Part 1. The French Connection

Viiay CHANDRU & M.R. Rao

“I don’t want to bore you,” Harvey said, “but you should un-
derstand that these heaps of wires can practically think - linear
programming - which means that instead of going through all
the alternatives, we have a hunch which is the right one.”
From The Billion-Dollar Brain (1966) by LEN DEIGHTON

1 Introduction

The scheme of computing a solution to simultaneous linear equations by
sequential elimination of variables followed by back substitution is familiar
to most high school students. Elimination in linear inequalities (Fourier
Elimination), on the other hand, is intimately related to polyhedral theory
and aspects of linear programming that are not quite as familiar. In this
first part, of a series of articles on linear programming, we will review the
remarkable and prescient work on linear inequalities by Joseph Fourier [4,
5] that began 175 years ago. This is yet another shining example of his
contributions to the foundations of engineering mathematics.

The two fundamental problems of linear programming (which are closely
related) are:

e SOLVABILITY: This is the problem of checking if a system of linear con-
straints on real (rational) variables is solvable or not. Geometrically,
we have to check if a (convex) polyhedron, defined by such constraints,
is nonempty.

® OPTIMISATION: Linear Programming is usually defined as the problem
of optimising a linear objective function over a polyhedron described
by a system of linear constraints.

Our focus in this article will be largely on the solvability problem. In
Section 3, we will see that optimisation is equivalent to solvability as a
consequence of the duality theorem of linear programming.



2 Fourier’s Elimination Method

Constraint systems of linear inequalities of the form Az < b, where A is an
m X n matrix of real numbers are widely used in mathematical modeling.
Solving such a system is the essential task of linear programming. We now
describe an elegant syntactic method for this problem known as Fourier
Elimination.

2.1 Syntactics

Suppose we wish to eliminate the first variable zy from the system Az <.
Let us denote

IT"={i: A1 >0} I"={i:A4;7<0} I°={i:A4;=0}

Our goal is to create an equivalent system of linear inequalities A < b
defined on the variables # = (22,23, -+, 2,).

1. If I'T is empty then we can simply delete all the inequalities with indices
in I~ since they can be trivially satisfied by choosing a large enough
value for xy. Similarly, if I~ is empty we can discard all inequalities
in IT.

2. For each k € It,] € I~ we add —Aj; times the inequality Apz < by
to Apq times A;x < b;. In these new inequalities the coefficient of x4 is
wiped out, i.e. xq is eliminated. Add these new inequalities to those
already in I°.

3. The inequalities {%Lli < b;} for all @ € I° represent the equivalent
system on the variables & = (22,23, -, %y,).

If all the inequalities are deleted in step 1 the equivalent system AZ < b
is undefined and we declare the original system strongly solvable. Else, we
repeat this construction with Az < b to eliminate another z; and so on until
all variables are eliminated. If the final b (after eliminating all n variables) is
non-negative we declare the original (and intermediate) inequality systems
as being solvable. Otherwise b # 0 and we declare the system unsolvable.



Proposition 2.1 Fourier Elimination is correct.

Proof: It suffices to show that  is a solution for A7z < b if and only if there
is some x1 such that (z1,Z) is a solution for Az < b. But this is evident
from the following reformulation of Az < b.

2y > %%{(—An)—l(; Ay — b))

ry < ,523&{(%)‘1(—2%1% + br)}}

J=2
ZAZ']w]‘ < b; ViEIO
J=2

Now the elimination of xy is achieved by setting the maximum above to be
no larger than the minimum. Thus for any & solving AZ < b, it is ensured
that we will obtain a non-empty range for 21 (since the greatest lower bound
on zq is forced to be no larger than the least upper bound in Ai < IN)) O

Note that the proof of Proposition 2.1 gives us a simple way of actu-
ally constructing a solution to the original system Az < b by tracing back
through the elimination method as demonstrated in the example below.
Also, the proof indicates that elimination as an algebraic technique imple-
ments the geometric operation of projection, a theme that we expand on in
Section 4.

Example 2.2 Let S denote the system of linear inequalities
{—21 4229 <3, 20y — Tag < =15, —21 <0, —22 <0}
Let us eliminate variable x1. This results in the system
{—Tay < =15, =329 < =9, —z5 < 0}

If we take x3 = 5 (which satisfies all three inequalities) and back substitute
this value in S we obtain max{0,7} < z1 < min{10} as the corresponding
range of feasible values for x4.

In the worst case, the Fourier elimination method can be quite inefficient.
Let k be any positive integer and n the number of variables be 2k L k49,



If the input inequalities have lefthand sides of the form +z, + =, + 2 for
all possible 1 < r < s <t < n it is easy to prove by induction that after
k variables are eliminated, by Fourier’s method, we would have at least 23
inequalities. This explosion in the number of inequalities can be observed on
a wide variety of problems in practice and is a manifestation of the problem
of intermediate swellthat plagues many algorithms in symbolic computation.

Let us re-examine the stopping conditions of Fourier Elimination in terms

of the final b.
o (b #0): The system Az < b is unsolvable.
o (Undefined b): The system Az < b is strongly solvable.

e (min;b; > 0): The system Az < b is (simply) solvable and the poly-
hedron {z € R" : Az < b} is full-dimensional.

e (min; bNZ = 0): The system Az < b is solvable and contains implicit
equations.

We will now take a closer look at these stopping conditions and see that they
each provide useful insights on the structure of the underlying polyhedron

{z e R": Az < b}.

2.2 Unsolvability and Farkas Lemma

The celebrated Farkas Lemma [3] is a simple consequence of analysing the
stopping condition of Fourier Elimination when presented with an unsolvable
system of linear inequalities. The lemma states the remarkable property that
the unsolvability of a system of linear inequalities is directly related to the
solvability of a “dual” system.

Farkas Lemma Exactly one of the alternatives
I. 3z2eR": Az <) II. 3yeRy :y'A=0,yb<0

is true for any given real matrices A, b (where R7' denotes the non-negative
orthant of ).

Proof: Let us analyse the case when Fourier Elimination provides a proof
of the unsolvability of a given linear inequality system Az < b. The method
clearly converts the given system into RAzx < Rb where RA is zero and
Rb has atleast one negative component. Therefore there is some row of the
non-negative matrix R, say r € R7, such that rA = 0 and rb < 0. Thus —~/
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implies I1. It is easy to check that I and I1 cannot both be simultaneously
true for fixed A,b. O

Remark 2.3 An alternate form of Farkas Lemma that we will have occa-
ston to use in Section 3 states that:

Eractly one of the alternatives
I. 3z eR} : Az <D II. 3yeRy :y'A>0,y'b<0

s true for any given real matrices A, b.

2.3 Strong Solvability

A solvable system of inequalities is said to be strongly solvable if any modifi-
cation of the right-hand side constants of the inequalities results in a solvable
set. This is a valuable property to detect since in one fell swoop we would
have the answer to an entire family of solvability problems.

In the Fourier elimination method, the final b may not be defined if all
the inequalities are deleted by the monotone sign condition of step 1 while
trying to eliminate some variable. In such a situation we declare the system
Az < b strongly solvable. This is a valid conclusion since, regardless of what
bin R is chosen, the last variable, say x;, to be eliminated has only upper
(lower) bounds depending on whether it appears with a positive (negative)
coeflicient in all the remaining inequalities. Thus for any values assigned
to the other uneliminated variables, we can always choose a small (large)
enough value for x; that solves the system.

A geometric characterisation of strong solvability states that a system
of linear inequalities S = {Axz < b} is strongly solvable if and only if the
polyhedron P = {z : Az < b} contains spheres of unbounded radii. The
proof of this characterisation is left to the reader as an exercise.

Example 2.4 In Fxample 2.2 if we try to carry out one more ileration of
the Fourier method we see that xo is monotone negative in all three inequal-
ities. Hence the system is actually strongly solvable. It is not difficult to see
that the original system defines a two-dimensional cone that admits circular
disks of arbitrary radius.



2.4 Implicit Equations

An important problem in symbolic computation with linear constraints is
the identification of implicit equations in a system of linear inequalities. In
geometric terms, we need the affine hull of the convex polyhedron repre-
sented by the linear inequalities. Jean-Louis Lassez and Michael Maher [6]
made the interesting observation that the detection of implicit equations
by Fourier elimination is easily accomplished. Run the Fourier method un-
til all variables have been eliminated. The implicit equalities are exactly
those original constraints used in producing b; = 0. This is best illustrated
through an example.

Example 2.5 Consider the system S of linear inequalities
201 —2p + 23 <2, 21— 302 < =2, —21 422 <0, 29 <1}

While eliminating x1 the second and third inequalities generate the fifth in-
equality (—2z4 < —2). While eliminating x4, the fourth and the fifth inequal-
ity generate 0 < 0 which results in mini{bNi} = 0. Thus the second, third and
fourth inequalities are actually implicit equations and the affine hull of P,
the polyhedron corresponding to S, is given by {x € R* : z1 = 29 = 1} as
seen in Figure 1.

Figure 1. Implicit Equations of a Polyhedron

3 The Linear Programming Duality Theorem

Building on polarity in cones and polyhedra, duality in linear programming
is a fundamental concept which is related to both the complexity of linear
programming and to the design of algorithms for solvability and optimisa-
tion. If we take the primal linear programme to be

i : >
(P) ;25%111{036 Az > b}

there is an associated dual linear programme

(D) max{bly: Aty =c,y>0}

and the two problems are related through several properties that we now
recount.



Proposition 3.1 (Weak Duality): For any & and § feasible in (P) and
(D) (i.e. they satisfy the respective constraints), we have ¢ > b1j.

Proof: ¢i = 7 Aé > b where the first (equality) relation holds from
(D)-feasibility of g and the second (inequality) follows from (P )-feasibility
of £ and non-negativity of ¢§. O

The weak duality condition gives us a technique for obtaining lower
bounds for minimization problems and upper bounds for maximization prob-
lems. Hence,

Corollary 3.2 The linear programme (P) has a finite optimal solution if
and only if its dual (D) does.

If the linear programmes have finite optima, the inequality of the weak
duality relation can be strengthened to an equality.

Theorem 3.3 (Strong Duality): z* and y* are a pair of optimal solu-
tions for (P) and (D) respectively, if and only if * and y* are feasible in
(P) and (D) (i.e. they satisfy the respective constraints) and ca™ = bl y*.

Proof: Let 2* and y* be a pair of feasible solutions to (P) and (D) respec-
tively that satisfy ca* = bTy*. It follows from the weak duality proposition
that 2* and y* are a pair of optimal solutions for (P) and (D) respectively.

To prove the “only if” direction of the theorem we assume that (P) and
(D) are optimised by z* and y* respectively. Consider the two inequality
systems.

(I {Az <b, —ATy < =T, bTy—ex <0, —2 <0, —y <0}

(IN {ATa = TX >0, —AB+bA>0, bTa—cf<0,a>0,3>0,A>0}

From Farkas Lemma we know that (I) or (II) must be solvable but not both.
We demonstrate below that (I) must be solvable since (1I) is unsolvable. But
then it follows that (z*, y*) must solve (I) for if it does not and (z,y) does
then ¢z would get above ca* or b7y would get below b7y*. Since Z and ¥
are (P) and (D) feasible, this would contradict the optimality of z* and y*.

It therefore remains to show that the inequality system (II) is unsolvable.
Suppose otherwise, i.e. (a, 3, A) is a solution to (II) and let us consider two
cases.



e (A =0):In this case ATa >0, —43 >0, bla—c3 <0, >0, 3> 0.
If b7 > 0 then ¢ > 0 and the maximum of (P) is unbounded above
which is impossible. Conversely if b7a < 0 then the minimum of (D)
is unbounded below which is also impossible. This rules out this case.

e (A>0): Since system (II) is homogeneous (right hand side constants
are all 0) we may as well take A = 1. But then (8, a) are feasible in
(P),(D) with bTa — ¢ < 0 which is impossible since it violates weak
duality. Hence this case is also ruled out.O

Remark 3.4 From the above proof it is evident that we can simultaneously
optimise (P) and (D) by solving the system of inequalities (I). Therefore the
solvability of linear inequalities subsumes linear optimisation.

Remark 3.5 The strong duality condition above gives us a good stopping
criterion for optimisation algorithms. It would be useful to have construc-
tions for moving from dual to primal solutions and vice-versa. The necessary
and sufficient conditions for optimality (which follow from Theorem 3.3) as
given below, provide just that.

(Complementary Slackness): «* and y* are a pair of optimal solu-
tions for (P) and (D) respectively, if and only if * and y* are feasible in (P)
and (D) (i.e. they satisfy the respective constraints) and (Az* — b)Ty* = 0

Note that the properties above have been stated for linear programmes
in a particular form. The reader should be able to check, that if for example
the primal is of the form

(P méiﬁn {cx: Az =b,z >0}
rek™

then the corresponding dual will have the form

(D) max{bTy: ATy <Y
yeR™
The tricks needed for seeing this is that any equation can be written as two
inequalities, an unrestricted variable can be substituted by the difference of
two non-negatively constrained variables and an inequality can be treated
as an equality by adding a non-negatively constrained variable to the lesser
side. Using these tricks, the reader could also check that dual construction
in linear programming is involutory (i.e. the dual of the dual is the primal).



4 Projection: The Geometry of Elimination

We saw earlier that Fourier elimination of a variable in a linear inequality
system actually constructs the projection or shadow of the convex poly-
hedron in the space that is diminished in dimension by one. Not surpris-
ingly, the projection of a convex polyhedron is another convex polyhedron
as described by the system of linear inequalities produced by the Fourier
construction.

Figure 2. Variable Elimination and Projection

It is natural to wonder if elimination of a block of variables can be
exceuted simultaneously - rather than one variable at a time. Indeed this is
possible and in fact leads to a technique that is a much improved elimination
method.

First let us identify the set of variables to be eliminated. Let the input
system be of the form

P = {(z,u) e R™™™ | Az + Bu < b}

where u is the set to be eliminated. The projection of P onto z or equiva-
lently the effect of eliminating the « variables is

P, = {2zeR" | Jue R such that Az + Bu < b}
Now W, the projection cone of P, is given by
W ={weR™ | wB=0,w>0}
A simple application of Farkas Lemma yields a description of P, in terms of

w.

Projection Lemma Let G be any set of generators (eg. the set of extreme

rays) of the cone W. Then P, = {z € R™ | (gA)z < gb VgeG}.

The lemma, sometimes attributed to Cernikov [1], reduces the compu-
tation of P, to enumerating the extreme rays of the cone W or equivalently
the extreme points of the polytope W N {w e R™ | >3- w; = 1}. We will
see in the next section that Fourier Elimination can be used to solve this
problem.



5 Implicit and Parametric Representations

A system of linear inequalities of the form Az < b represents a convex
polyhedron K, implicitly. Tt is implicit in that we are given the bound-
ing halfspaces and the representation does not directly provide a scheme
for generating points in K. An explicit or parametric representation of X
would require the lists of extreme points {p*,p?,---,p"} and extreme rays
{r', 72, .., 71} of K. And then the convex multipliers {ay, ag, -+, ax} and
the positive cone multipliers {uq, p2, -+, g} are the parameters that give
us the representation:

K={{zeR": 2= Zf‘zl a;pt + Z]L:I erj
K

=1 a; = 17

a; > 0Vi, j; > 0V}

An organic role of Fourier Elimination is in obtaining an implicit rep-
resentation of a convex polyhedron from a parametric representation. The
parametric representation above is a system of linear equations and inequal-
ities in 2z, and p. If we eliminate the a and p variables from this system,
we would obtain an implicit representation.

The converse problem of generating a parametric representation from
a given implicit representation of a polyhedron can also be attacked with
Fourier Elimination. In an intriguing paper, Paul Williams [8] shows that a
dual interpretation of Fourier Elimination yields a scheme for enumerating
the extreme rays and extreme points of a polyhedron defined by a system
of linear constraints {Az < b, z > 0}.

Picking an arbitrary ¢! € R, we start with the dual pair of linear
programmes

(P) max{cz : Az <b,2 >0}

(D) min{bTy : ATy >cl y >0}

Now introduce a new variable z in (D) to get
(D) min{z : z— ATy >t y >0}
The linear programme dual to (D’) is given by

(P) max{cx : Ax—ba+8=0,a=1,x>0,a>0, 3> 0}
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Using Fourier Elimination on the constraints of (D’) we eliminate all y vari-
ables and are left with bounds (lower and upper) on z. Fourier Elimina-
tion on (D’) takes positive combinations of the constraints to eliminate y
variables but at the cost, in general, of many new constraints. In (P’) this
corresponds to column operations to eliminate rows (constraints) at the cost
of generating many new columns (variables).

At the completion of the elimination of y variables in (D’), we have all
constraints of (P’) eliminated except for the transformed equation represent-
ing the original normalizing constraint @ = 1 and nonegativity restrictions
on the transformed variables. The extreme points and rays of the polyhedron
defined by a single equation on nonnegative variables can be simply read off.
If we revert the column operations to interpret these extreme points and rays
in terms of the original z variables we will obtain the extreme points and
rays of the polyhedron defined by the constraints of (P). Unfortunately, as
seen in the example below, we may also obtain some non-extreme solutions
which need to be recognized and discarded. (FEzercise: Devise a test for
recognizing non-extreme solutions).

Example 5.1 To get the extreme points of the polyhedron
K = {(z1,22) : —21+ 222 <3, 200 — Tz < =15, 21 > 0, 22 > 0}

we define the pair of linear programs (P’) and (D’) as described above. Using
Fourier’s method to eliminate the y variables in (D’) we end up with the
transformed version of (P’) whose constraints have the form

{201+ v+ 003+ 00y =1, v; >0, j =1,2,3,4}
We read off the two extreme points
(5:0.0,0) and (0,1,0,0)
and two extreme rays
(0,0,1,0) and (0,0,0,1)

Inverting the column operations (transformations) we obtain (3,3) & (10,5)
as the candidate extreme points of K, and (7,2) & (2,1) as the candidate
extreme rays of K. From Figure 3, it is evident that the candidate extreme
point (10,5) is the only spurious candidate since it is not a corner point of

K.
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Figure 3. Extreme Points and Rays

Working with the extreme points of the feasible region of a linear pro-
gramme is important for optimisation since we know that if an optimal
solution exists then it does so at an extreme point. Searching through all
possible extreme points to pick the best one is too laborious. We want to
be able to execute a partial search to zero in on an optimal extreme point.

This,

in essence, is what the Simplex Method does for linear optimisation

as we shall see in the next article in this series.
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A VERY BRIEF HISTORY OF LINEAR PROGRAMMING [7]

Linear programming has been a fundamental topic in the development of
the computational sciences. The subject has its origins in the early work of
L.B.J. Fourier on solving systems of linear inequalities, dating back to the
1820’s. The revival of interest in the subject in the 1940’s was spearheaded
by G.B.Dantzig in USA and L.V.Kantorovich in the erstwhile USSR. They
were both motivated by the use of linear optimisation for optimal resource
utilization and economic planning.

The 1950’s and 1960’s marked the period when linear programming funda-
mentals (duality, decomposition theorems, network flow theory, matrix fac-
torizations) were worked out in conjunction with the advancing capabilities
of computing machinery.

The 1970’s saw the realization of the commercial benefits of this huge in-
vestment of intellectual effort. Many large-scale linear programmes were
formulated and solved on mainframe computers to support applications in
industry (for example: Oil, Airlines) and for the state (for example: Energy
Planning, Military Logistics).

The 1980°s were an exciting period for linear programmers. The polynomial
time-complexity of linear programming had just been established. A healthy
competition between the simplex and Karmarkar’s interior methods ensued
which ultimately led to rapid improvements in both technologies. This com-
bined with remarkable advances in computing hardware and software have
brought powerful linear programming tools to the electronic desktop of the
1990’s.
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A GLOSSARY

e Convex Polyhedron: The set of solutions to a finite system of linear
inequalities on real-valued variables. Equivalently, the intersection of
a finite number of linear half-spaces in £".

e Polyhedral (Convex) Cone: A special convex polyhedron which is
the set of solutions to a finite system of homogeneous linear inequalities
on real-valued variables.

e Extreme Ray: Any direction vector in which we can move and still
remain in the polyhedron is called a ray. A ray is extreme if it cannot
be expressed as a strict positive combination of two or more rays of
the polyhedron.

e Extreme Point: A point in the polyhedron is extreme if it cannot
expressed as a strict convex combination of two or more points of the
polyhedron.
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