
175 Years of Linear ProgrammingPart 1. The French ConnectionVijay Chandru & M.R. Rao\I don't want to bore you," Harvey said, \but you should un-derstand that these heaps of wires can practically think - linearprogramming - which means that instead of going through allthe alternatives, we have a hunch which is the right one."From The Billion-Dollar Brain (1966) by Len Deighton1 IntroductionThe scheme of computing a solution to simultaneous linear equations bysequential elimination of variables followed by back substitution is familiarto most high school students. Elimination in linear inequalities (FourierElimination), on the other hand, is intimately related to polyhedral theoryand aspects of linear programming that are not quite as familiar. In this�rst part, of a series of articles on linear programming, we will review theremarkable and prescient work on linear inequalities by Joseph Fourier [4,5] that began 175 years ago. This is yet another shining example of hiscontributions to the foundations of engineering mathematics.The two fundamental problems of linear programming (which are closelyrelated) are:� Solvability: This is the problem of checking if a system of linear con-straints on real (rational) variables is solvable or not. Geometrically,we have to check if a (convex) polyhedron, de�ned by such constraints,is nonempty.� optimisation: Linear Programming is usually de�ned as the problemof optimising a linear objective function over a polyhedron describedby a system of linear constraints.Our focus in this article will be largely on the solvability problem. InSection 3, we will see that optimisation is equivalent to solvability as aconsequence of the duality theorem of linear programming.1



2 Fourier's Elimination MethodConstraint systems of linear inequalities of the form Ax � b, where A is anm � n matrix of real numbers are widely used in mathematical modeling.Solving such a system is the essential task of linear programming. We nowdescribe an elegant syntactic method for this problem known as FourierElimination.2.1 SyntacticsSuppose we wish to eliminate the �rst variable x1 from the system Ax � b.Let us denoteI+ = fi : Ai1 > 0g I� = fi : Ai1 < 0g I0 = fi : Ai1 = 0gOur goal is to create an equivalent system of linear inequalities ~A~x � ~bde�ned on the variables ~x = (x2; x3; � � � ; xn).1. If I+ is empty then we can simply delete all the inequalities with indicesin I� since they can be trivially satis�ed by choosing a large enoughvalue for x1. Similarly, if I� is empty we can discard all inequalitiesin I+.2. For each k 2 I+; l 2 I� we add �Al1 times the inequality Akx � bkto Ak1 times Alx � bl. In these new inequalities the coe�cient of x1 iswiped out, i.e. x1 is eliminated. Add these new inequalities to thosealready in I0.3. The inequalities f ~Ai1~x � ~big for all i 2 I0 represent the equivalentsystem on the variables ~x = (x2; x3; � � � ; xn).If all the inequalities are deleted in step 1 the equivalent system ~A~x � ~bis unde�ned and we declare the original system strongly solvable. Else, werepeat this construction with ~A~x � ~b to eliminate another xj and so on untilall variables are eliminated. If the �nal ~b (after eliminating all n variables) isnon-negative we declare the original (and intermediate) inequality systemsas being solvable. Otherwise ~b 6� 0 and we declare the system unsolvable.2



Proposition 2.1 Fourier Elimination is correct.Proof: It su�ces to show that ~x is a solution for ~A~x � ~b if and only if thereis some x1 such that (x1; ~x) is a solution for Ax � b. But this is evidentfrom the following reformulation of Ax � b.x1 � maxl2I�f(�Al1)�1( nXj=2Aljxj � bl)ggx1 � mink2I+f(Ak1)�1(� nXj=2Akjxj + bk)ggnXj=2Aijxj � bi 8 i 2 I0Now the elimination of x1 is achieved by setting the maximum above to beno larger than the minimum. Thus for any ~x solving ~A~x � ~b, it is ensuredthat we will obtain a non-empty range for x1 (since the greatest lower boundon x1 is forced to be no larger than the least upper bound in ~A~x � ~b). 2Note that the proof of Proposition 2.1 gives us a simple way of actu-ally constructing a solution to the original system Ax � b by tracing backthrough the elimination method as demonstrated in the example below.Also, the proof indicates that elimination as an algebraic technique imple-ments the geometric operation of projection, a theme that we expand on inSection 4.Example 2.2 Let S denote the system of linear inequalitiesf�x1 + 2x2 � 3; 2x1 � 7x2 � �15; �x1 � 0; �x2 � 0gLet us eliminate variable x1. This results in the systemf�7x2 � �15; �3x2 � �9; �x2 � 0gIf we take x2 = 5 (which satis�es all three inequalities) and back substitutethis value in S we obtain maxf0; 7g � x1 � minf10g as the correspondingrange of feasible values for x1.In the worst case, the Fourier elimination method can be quite ine�cient.Let k be any positive integer and n the number of variables be 2k + k + 2.3



If the input inequalities have lefthand sides of the form �xr � xs � xt forall possible 1 � r < s < t � n it is easy to prove by induction that afterk variables are eliminated, by Fourier's method, we would have at least 2n2inequalities. This explosion in the number of inequalities can be observed ona wide variety of problems in practice and is a manifestation of the problemof intermediate swell that plagues many algorithms in symbolic computation.Let us re-examine the stopping conditions of Fourier Elimination in termsof the �nal ~b.� (~b 6� 0): The system Ax � b is unsolvable.� (Undefined ~b): The system Ax � b is strongly solvable.� (mini ~bi > 0): The system Ax � b is (simply) solvable and the poly-hedron fx 2 <n : Ax � bg is full-dimensional.� (mini ~bi = 0): The system Ax � b is solvable and contains implicitequations.We will now take a closer look at these stopping conditions and see that theyeach provide useful insights on the structure of the underlying polyhedronfx 2 <n : Ax � bg.2.2 Unsolvability and Farkas LemmaThe celebrated Farkas Lemma [3] is a simple consequence of analysing thestopping condition of Fourier Elimination when presented with an unsolvablesystem of linear inequalities. The lemma states the remarkable property thatthe unsolvability of a system of linear inequalities is directly related to thesolvability of a \dual" system.Farkas Lemma Exactly one of the alternativesI: 9 x 2 <n : Ax � b II: 9 y 2 <m+ : ytA = 0; ytb < 0is true for any given real matrices A; b (where <m+ denotes the non-negativeorthant of <m).Proof: Let us analyse the case when Fourier Elimination provides a proofof the unsolvability of a given linear inequality system Ax � b. The methodclearly converts the given system into RAx � Rb where RA is zero andRb has atleast one negative component. Therefore there is some row of thenon-negative matrix R, say r 2 <m+ , such that rA = 0 and rb < 0. Thus :I4



implies II . It is easy to check that I and II cannot both be simultaneouslytrue for �xed A; b. 2Remark 2.3 An alternate form of Farkas Lemma that we will have occa-sion to use in Section 3 states that:Exactly one of the alternativesI: 9 x 2 <n+ : Ax � b II: 9 y 2 <m+ : ytA � 0; ytb < 0is true for any given real matrices A; b.2.3 Strong SolvabilityA solvable system of inequalities is said to be strongly solvable if any modi�-cation of the right-hand side constants of the inequalities results in a solvableset. This is a valuable property to detect since in one fell swoop we wouldhave the answer to an entire family of solvability problems.In the Fourier elimination method, the �nal ~b may not be de�ned if allthe inequalities are deleted by the monotone sign condition of step 1 whiletrying to eliminate some variable. In such a situation we declare the systemAx � b strongly solvable. This is a valid conclusion since, regardless of whatb in <m is chosen, the last variable, say xj , to be eliminated has only upper(lower) bounds depending on whether it appears with a positive (negative)coe�cient in all the remaining inequalities. Thus for any values assignedto the other uneliminated variables, we can always choose a small (large)enough value for xj that solves the system.A geometric characterisation of strong solvability states that a systemof linear inequalities S = fAx � bg is strongly solvable if and only if thepolyhedron P = fx : Ax � bg contains spheres of unbounded radii. Theproof of this characterisation is left to the reader as an exercise.Example 2.4 In Example 2.2 if we try to carry out one more iteration ofthe Fourier method we see that x2 is monotone negative in all three inequal-ities. Hence the system is actually strongly solvable. It is not di�cult to seethat the original system de�nes a two-dimensional cone that admits circulardisks of arbitrary radius. 5



2.4 Implicit EquationsAn important problem in symbolic computation with linear constraints isthe identi�cation of implicit equations in a system of linear inequalities. Ingeometric terms, we need the a�ne hull of the convex polyhedron repre-sented by the linear inequalities. Jean-Louis Lassez and Michael Maher [6]made the interesting observation that the detection of implicit equationsby Fourier elimination is easily accomplished. Run the Fourier method un-til all variables have been eliminated. The implicit equalities are exactlythose original constraints used in producing ~bi = 0. This is best illustratedthrough an example.Example 2.5 Consider the system S of linear inequalitiesf2x1 � x2 + x3 � 2; x1 � 3x2 � �2; �x1 + x2 � 0; x2 � 1gWhile eliminating x1 the second and third inequalities generate the �fth in-equality (�2x2 � �2). While eliminating x2, the fourth and the �fth inequal-ity generate 0 � 0 which results in minif~big = 0. Thus the second, third andfourth inequalities are actually implicit equations and the a�ne hull of P ,the polyhedron corresponding to S, is given by fx 2 <3 : x1 = x2 = 1g asseen in Figure 1.Figure 1. Implicit Equations of a Polyhedron3 The Linear Programming Duality TheoremBuilding on polarity in cones and polyhedra, duality in linear programmingis a fundamental concept which is related to both the complexity of linearprogramming and to the design of algorithms for solvability and optimisa-tion. If we take the primal linear programme to be(P ) minx2<nfcx : Ax � bgthere is an associated dual linear programme(D) maxy2<mfbTy : ATy = cT ; y � 0gand the two problems are related through several properties that we nowrecount. 6



Proposition 3.1 (Weak Duality): For any x̂ and ŷ feasible in (P) and(D) (i.e. they satisfy the respective constraints), we have cx̂ � bT ŷ.Proof: cx̂ = ŷTAx̂ � ŷT b where the �rst (equality) relation holds from(D)-feasibility of ŷ and the second (inequality) follows from (P)-feasibilityof x̂ and non-negativity of ŷ. 2The weak duality condition gives us a technique for obtaining lowerbounds for minimization problems and upper bounds for maximization prob-lems. Hence,Corollary 3.2 The linear programme (P) has a �nite optimal solution ifand only if its dual (D) does.If the linear programmes have �nite optima, the inequality of the weakduality relation can be strengthened to an equality.Theorem 3.3 (Strong Duality): x� and y� are a pair of optimal solu-tions for (P) and (D) respectively, if and only if x� and y� are feasible in(P) and (D) (i.e. they satisfy the respective constraints) and cx� = bTy�.Proof: Let x� and y� be a pair of feasible solutions to (P) and (D) respec-tively that satisfy cx� = bTy�. It follows from the weak duality propositionthat x� and y� are a pair of optimal solutions for (P) and (D) respectively.To prove the \only if" direction of the theorem we assume that (P) and(D) are optimised by x� and y� respectively. Consider the two inequalitysystems.(I) fAx � b; �AT y � �cT ; bTy � cx � 0; �x � 0; �y � 0g(II) fAT�� cT� � 0; �A� + b� � 0; bT�� c� < 0; � � 0; � � 0; � � 0gFrom Farkas Lemma we know that (I) or (II) must be solvable but not both.We demonstrate below that (I) must be solvable since (II) is unsolvable. Butthen it follows that (x�, y�) must solve (I) for if it does not and (�x; �y) doesthen c�x would get above cx� or bT �y would get below bTy�. Since �x and �yare (P) and (D) feasible, this would contradict the optimality of x� and y�.It therefore remains to show that the inequality system (II) is unsolvable.Suppose otherwise, i.e. (�; �; �) is a solution to (II) and let us consider twocases. 7



� (� = 0) : In this case AT� � 0; �A� � 0; bT��c� < 0; � � 0; � � 0.If bT� � 0 then c� > 0 and the maximum of (P) is unbounded abovewhich is impossible. Conversely if bT� < 0 then the minimum of (D)is unbounded below which is also impossible. This rules out this case.� (� > 0) : Since system (II) is homogeneous (right hand side constantsare all 0) we may as well take � = 1. But then (�; �) are feasible in(P),(D) with bT� � c� < 0 which is impossible since it violates weakduality. Hence this case is also ruled out.2Remark 3.4 From the above proof it is evident that we can simultaneouslyoptimise (P) and (D) by solving the system of inequalities (I). Therefore thesolvability of linear inequalities subsumes linear optimisation.Remark 3.5 The strong duality condition above gives us a good stoppingcriterion for optimisation algorithms. It would be useful to have construc-tions for moving from dual to primal solutions and vice-versa. The necessaryand su�cient conditions for optimality (which follow from Theorem 3.3) asgiven below, provide just that.(Complementary Slackness): x� and y� are a pair of optimal solu-tions for (P) and (D) respectively, if and only if x� and y� are feasible in (P)and (D) (i.e. they satisfy the respective constraints) and (Ax� � b)Ty� = 0. Note that the properties above have been stated for linear programmesin a particular form. The reader should be able to check, that if for examplethe primal is of the form(P 0) minx2<nfcx : Ax = b; x � 0gthen the corresponding dual will have the form(D0) maxy2<mfbTy : AT y � cTgThe tricks needed for seeing this is that any equation can be written as twoinequalities, an unrestricted variable can be substituted by the di�erence oftwo non-negatively constrained variables and an inequality can be treatedas an equality by adding a non-negatively constrained variable to the lesserside. Using these tricks, the reader could also check that dual constructionin linear programming is involutory (i.e. the dual of the dual is the primal).8



4 Projection: The Geometry of EliminationWe saw earlier that Fourier elimination of a variable in a linear inequalitysystem actually constructs the projection or shadow of the convex poly-hedron in the space that is diminished in dimension by one. Not surpris-ingly, the projection of a convex polyhedron is another convex polyhedronas described by the system of linear inequalities produced by the Fourierconstruction.Figure 2. Variable Elimination and ProjectionIt is natural to wonder if elimination of a block of variables can beexceuted simultaneously - rather than one variable at a time. Indeed this ispossible and in fact leads to a technique that is a much improved eliminationmethod.First let us identify the set of variables to be eliminated. Let the inputsystem be of the formP = f (x; u) 2 <n1+n2 j Ax+ Bu � b gwhere u is the set to be eliminated. The projection of P onto x or equiva-lently the e�ect of eliminating the u variables isPx = f x 2 <n1 j 9 u 2 <n2 such thatAx+Bu � b gNow W , the projection cone of P , is given byW = fw 2 <m j wB = 0; w � 0g:A simple application of Farkas Lemma yields a description of Px in terms ofW .Projection Lemma Let G be any set of generators (eg. the set of extremerays) of the cone W . Then Px = f x 2 <n1 j (gA)x � gb 8 g 2 G g.The lemma, sometimes attributed to �Cernikov [1], reduces the compu-tation of Px to enumerating the extreme rays of the cone W or equivalentlythe extreme points of the polytope W \ fw 2 <m jPmi=1 wi = 1 g. We willsee in the next section that Fourier Elimination can be used to solve thisproblem. 9



5 Implicit and Parametric RepresentationsA system of linear inequalities of the form Ax � b represents a convexpolyhedron K, implicitly. It is implicit in that we are given the bound-ing halfspaces and the representation does not directly provide a schemefor generating points in K. An explicit or parametric representation of Kwould require the lists of extreme points fp1; p2; � � � ; pKg and extreme raysfr1; r2; � � � ; rLg of K. And then the convex multipliers f�1; �2; � � � ; �Kg andthe positive cone multipliers f�1; �2; � � � ; �Lg are the parameters that giveus the representation:K = fx 2 <n : x = PKi=1 �ipi + PLj=1 �jrjPKi=1 �i = 1;�i � 0 8i; �j � 0 8j gAn organic role of Fourier Elimination is in obtaining an implicit rep-resentation of a convex polyhedron from a parametric representation. Theparametric representation above is a system of linear equations and inequal-ities in x; � and �. If we eliminate the � and � variables from this system,we would obtain an implicit representation.The converse problem of generating a parametric representation froma given implicit representation of a polyhedron can also be attacked withFourier Elimination. In an intriguing paper, Paul Williams [8] shows that adual interpretation of Fourier Elimination yields a scheme for enumeratingthe extreme rays and extreme points of a polyhedron de�ned by a systemof linear constraints fAx � b; x � 0g.Picking an arbitrary cT 2 <n, we start with the dual pair of linearprogrammes (P ) maxfcx : Ax � b; x � 0g(D) minfbTy : ATy � cT ; y � 0gNow introduce a new variable z in (D) to get(D0) minfz : z� ATy � cT; y � 0gThe linear programme dual to (D') is given by(P0) maxfcx : Ax� b�+ � = 0; � = 1; x � 0; � � 0; � � 0g10



Using Fourier Elimination on the constraints of (D') we eliminate all y vari-ables and are left with bounds (lower and upper) on z. Fourier Elimina-tion on (D') takes positive combinations of the constraints to eliminate yvariables but at the cost, in general, of many new constraints. In (P') thiscorresponds to column operations to eliminate rows (constraints) at the costof generating many new columns (variables).At the completion of the elimination of y variables in (D'), we have allconstraints of (P') eliminated except for the transformed equation represent-ing the original normalizing constraint � = 1 and nonegativity restrictionson the transformed variables. The extreme points and rays of the polyhedronde�ned by a single equation on nonnegative variables can be simply read o�.If we revert the column operations to interpret these extreme points and raysin terms of the original x variables we will obtain the extreme points andrays of the polyhedron de�ned by the constraints of (P). Unfortunately, asseen in the example below, we may also obtain some non-extreme solutionswhich need to be recognized and discarded. (Exercise: Devise a test forrecognizing non-extreme solutions).Example 5.1 To get the extreme points of the polyhedronK = f(x1; x2) : �x1 + 2x2 � 3; 2x1 � 7x2 � �15; x1 � 0; x2 � 0gwe de�ne the pair of linear programs (P') and (D') as described above. UsingFourier's method to eliminate the y variables in (D') we end up with thetransformed version of (P') whose constraints have the formf2v1 + v2 + 0v3 + 0v4 = 1; vj � 0; j = 1; 2; 3; 4gWe read o� the two extreme points(12 ; 0; 0; 0) and (0; 1; 0; 0)and two extreme rays (0; 0; 1; 0) and (0; 0; 0; 1)Inverting the column operations (transformations) we obtain (3; 3) & (10; 5)as the candidate extreme points of K, and (7; 2) & (2; 1) as the candidateextreme rays of K. From Figure 3, it is evident that the candidate extremepoint (10; 5) is the only spurious candidate since it is not a corner point ofK. 11



Figure 3. Extreme Points and RaysWorking with the extreme points of the feasible region of a linear pro-gramme is important for optimisation since we know that if an optimalsolution exists then it does so at an extreme point. Searching through allpossible extreme points to pick the best one is too laborious. We want tobe able to execute a partial search to zero in on an optimal extreme point.This, in essence, is what the Simplex Method does for linear optimisationas we shall see in the next article in this series.References[1] R.N. �Cernikov, The Solution of Linear Programming Problems byElimination of Unknowns, Doklady Akademii Nauk 139 (1961) 1314-1317. [Translation in: Soviet Mathematics Doklady 2 (1961) 1099-1103.][2] V. Chandru, Variable Elimination in Linear Constraints, The Com-puter Journal, 36, No. 5, August 1993, 463-472.[3] Gy. Farkas, A Fourier-f�ele mechanikai elv alkalmaz�asai, (in Hungar-ian), Mathematikai �es Term�eszettudom�anyi �Ertesit�o 12 (1894) 457-472.[4] L.B.J. Fourier, reported in : Analyse des travaux de l'Academie Royaledes Sciences, pendant l'annee 1823, Partie mathematique, Histoire del'Academie Royale des Sciences de l'Institut de France 6 (1826) xxix-xli.[5] L.B.J. Fourier, reported in : Analyse des travaux de l'Academie Royaledes Sciences, pendant l'annee 1824, Partie mathematique, Histoire del'Academie Royale des Sciences de l'Institut de France 7 (1827) xlvii-lv(Partial English Translation in: D.A. Kohler, Translation of a Reportby Fourier on his Work on Linear Inequalities, Opsearch 10 (1973)38-42).[6] J-L. Lassez and M.J. Maher, On Fourier's Algorithm for Linear Arith-metic Constraints, IBM research report, T.J. Watson Research Center,1988. 12



[7] J.K. Lenstra, A.H.G. Rinooy Kan and A. Schrijver (editors), History ofMathematical Programming: A Collection of Personal Reminiscences,North Holland (1991).[8] Williams, H.P., Fourier's method of linear programming and its dual,American Mathematical Monthly 93 (1986) 681-695.[9] G.M.Ziegler, Lectures on Polytopes, Springer-Verlag Graduate Textsin Mathematics, 1995.A Very Brief History of Linear Programming [7]Linear programming has been a fundamental topic in the development ofthe computational sciences. The subject has its origins in the early work ofL.B.J. Fourier on solving systems of linear inequalities, dating back to the1820's. The revival of interest in the subject in the 1940's was spearheadedby G.B.Dantzig in USA and L.V.Kantorovich in the erstwhile USSR. Theywere both motivated by the use of linear optimisation for optimal resourceutilization and economic planning.The 1950's and 1960's marked the period when linear programming funda-mentals (duality, decomposition theorems, network ow theory, matrix fac-torizations) were worked out in conjunction with the advancing capabilitiesof computing machinery.The 1970's saw the realization of the commercial bene�ts of this huge in-vestment of intellectual e�ort. Many large-scale linear programmes wereformulated and solved on mainframe computers to support applications inindustry (for example: Oil, Airlines) and for the state (for example: EnergyPlanning, Military Logistics).The 1980's were an exciting period for linear programmers. The polynomialtime-complexity of linear programming had just been established. A healthycompetition between the simplex and Karmarkar's interior methods ensuedwhich ultimately led to rapid improvements in both technologies. This com-bined with remarkable advances in computing hardware and software havebrought powerful linear programming tools to the electronic desktop of the1990's. 13



A Glossary� Convex Polyhedron: The set of solutions to a �nite system of linearinequalities on real-valued variables. Equivalently, the intersection ofa �nite number of linear half-spaces in <n.� Polyhedral (Convex) Cone: A special convex polyhedron which isthe set of solutions to a �nite system of homogeneous linear inequalitieson real-valued variables.� Extreme Ray: Any direction vector in which we can move and stillremain in the polyhedron is called a ray. A ray is extreme if it cannotbe expressed as a strict positive combination of two or more rays ofthe polyhedron.� Extreme Point: A point in the polyhedron is extreme if it cannotexpressed as a strict convex combination of two or more points of thepolyhedron.
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