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Abstract

The effect of strain due to lattice mismatch and of ferromagnetic (FM) exchange field on su-

perconductivity (SC) in NbN-CoPt bilayers is investigated. Two different bilayer systems with

reversed deposition sequence are grown on MgO (001) single crystals. While robust superconduc-

tivity with high critical temperature (Tc ≈ 15.3 K) and narrow transition width (∆Tc ≈ 0.4 K)

is seen in two types of CoPt-NbN/MgO heterostructures where the magnetic anisotropy of CoPt

is in-plane in one case and out-of-plane in the other, the NbN-CoPt/MgO system shows markedly

suppressed SC response. The reduced SC order parameter of this system, which manifests itself

in Tc, temperature dependence of critical current density Jc (T), and angular (φ) variation of

flux-flow resistivity ρf is shown to be a signature of the structure of NbN film and not a result

of the exchange field of CoPt. The ρf (H,T,φ) data further suggest that the domain walls in the

CoPt film are of the Néel type and hence do not cause any flux in the superconducting layer. A

small, but distinct increase in the low-field critical current of the CoPt-NbN couple is seen when

the magnetic layer has perpendicular anisotropy.
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I. INTRODUCTION

Hybrid superconductor-ferromagnet (SC-FM) structures have generated a considerable

amount of interest in recent years as these provide model systems to understand the an-

tagonism between superconductivity and ferromagnetism1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19.

A rich variety of phenomena such as π-phase shift1,2, triplet pairing2,3, field enhanced

superconductivity4,5, domain wall superconductivity6 and enhanced flux pinning7,8,9,10,11 etc.

have been reported in SC-FM structures. An important issue that needs to be considered

while addressing the physics of SC-FM-SC and FM-SC-FM heterostructures is the difference

in the crystallographic structure and the degree of strain in the top and bottom SC or FM

layers, and interdiffusion at interfaces which could impart different physical properties to

the top and bottom layers. The other issue related to the physics of SC-FM junctions is

the choice of materials. Thus far most of the studies in this area have been carried out on

heterostructures of elemental superconductors such as Pb and Nb made in conjunction with

3d transition metal ferromagnets4,6,11,12,13,14. It is expected that the competition between

the SC and FM orders will have a different flavor if hard superconductors characterized by

a short coherence length and large magnetic penetration depth are used. The nature of
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magnetic layers is also not less important as field enhanced superconductivity and vortex

pinning depend greatly on the domain structure and dynamics of domain wall motion in the

magnetic layer10.

Here we report investigations of domain wall superconductivity, flux pinning and gran-

ularity issues in a strongly type-II superconductor placed in close proximity of a magnetic

thin film. The system investigated consists of a bilayer of A1 phase (fcc) or L10 phase

(fct) CoPt ferromagnet and NbN (rocksalt) superconductor grown on MgO (001). NbN and

CoPt were chosen as constituents of the SC-FM bilayer since their respective superconduct-

ing and magnetic properties can be modified in a controlled way by altering the deposition

conditions21,22,23. Two different bilayer systems with reversed deposition sequence have been

investigated to address superconductivity and magnetism vis-a-vis crystallographic structure

and exchange field-induced proximity effects. We note that while the lattice mismatch has

a minor effect on superconductivity of the bottom NbN layer in CoPt-NbN/MgO system, in

the NbN-CoPt/MgO bilayer it makes the NbN film to adopt a strain-induced granular struc-

ture, which has interesting repercussions on its superconducting response. We see a small

but distinct enhancement in the low-field critical current density (Jc) of the CoPt-NbN/MgO
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bilayer when the CoPt has perpendicular magnetic anisotropy.

II. EXPERIMENTAL

The CoPt-NbN/MgO and NbN-CoPt/MgO bilayers with 50 nm thick CoPt and NbN

layers in each case were deposited on (001) MgO in the temperature range of 600 to 700

0C by pulsed laser ablation of Nb and CoPt targets in 99.9999 % pure nitrogen environ-

ment. A distinctly different magnetic state of the CoPt is realized when the deposition

temperature is elevated from 600 to 700 0C. At the lower temperature, the CoPt is in the

disordered fcc phase (A1) with in-plane magnetization whereas, at 700 0C it acquires the

ordered L10 structure with out-of-plane magnetic anisotropy20. Further details of CoPt and

NbN growth have been reported earlier21,22,23. The crystal structure of bilayer films was

investigated by X-ray diffraction (XRD) measurements performed on a θ - ω diffractometer

with CuKα1,α2 radiation. The surface topography of the bilayers was analyzed using high

resolution scanning electron microscopy (SEM), which showed a smooth morphology for the

CoPt-NbN/MgO system but a granular structure with typical feature size of 75 to 100 nm

in NbN-CoPt/MgO bilayer. Measurements of AC susceptibility were performed with a Hall-

probe-based ac susceptometer, which is described in detail elsewhere24. For measurements of

4



magnetoresistance and critical current density (Jc), samples were processed using standard

photolithography and Ar+ ion milling to produce 500 µm long and 160 µm wide bridges.

After removing the photoresist, silver pads for electrical contact were deposited in a four-

probe configuration by thermal evaporation. The resistance of the samples in the flux flow

regime was also measured as a function of the angle φ between the applied magnetic field

and film normal. While the angle in these measurements was changed in a step of 2 degree,

the field always remained orthogonal to the current direction. A commercial magnetome-

ter (Quantum Design MPMS-XL5) was used for measurements of in-plane and out-of-plane

isothermal magnetization above and below the superconducting transition temperature of

the bilayers.

III. RESULTS AND DISCUSSION

A. Bilayers with in-plane magnetic anisotropy

In Fig. 1(a) we have plotted the temperature dependence of resistance of the two bilayers,

deposited at 600 0C along with data for a pure NbN film for comparison. The latter shows

a sharp transition (∆Tc ≈ 0.4 K) with the onset of superconductivity at 15.5 K. The CoPt-

NbN/MgO bilayer also displays a sharp transition of width ≈ 0.4 K with Tc onset at 15.3
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K. The other bilayer (NbN-CoPt/MgO), however, has a substantially reduced Tc (≈ 13.7

K) and a sizeable broadening of the transition (≈ 1.4 K).

Fig. 1(b) shows the real and imaginary components of the fundamental susceptibility of

the same samples. The frequency, and amplitude of the ac field applied perpendicular to the

plane of the film, in these experiments are 121 Hz and 1 Oe, respectively. The real part χ
′

(T)

of the complex susceptibility χ (T) = χ
′

(T) + iχ
′′

(T) reflects the strength of the induced

shielding currents, while the imaginary part χ
′′

(T) is connected to energy dissipation in

the material. The drop of χ
′

(T) whose onset corresponds to the temperature where the

resistance (R) goes to zero is reasonably sharp for both pure NbN film as well as for the CoPt-

NbN/MgO bilayer, indicating a homogeneous superconductor. However, for the bilayer

where the NbN is deposited on top of CoPt, both χ
′

and χ
′′

show significant broadening.

For inhomogeneous superconductor with distinctly different intergrain and intragrain critical

currents, the χ
′′

peak generally splits into two components each corresponding to peak

dissipation in superconducting grains and in intergranular material25. The fact that we do

not see two distinct peaks in the χ
′′

data for NbN-CoPt/MgO system suggests insignificant

suppression of the order parameter in the intergrain material of the NbN layer. However, the
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overall suppression of Tc seen here compared to the Tc of the bilayer where NbN is deposited

first, seems to indicate a perturbation of the electronic structure by stress or chemical doping

which lowers the critical temperature. In order to address these issues, we have undertaken

X-ray diffraction studies of the bilayer films.

Fig. 2 (Panel ‘a’ and ‘b’ respectively) shows the diffraction profiles of NbN-CoPt/MgO

and CoPt-NbN/MgO along with the profiles of single layer CoPt (panel ‘c’), NbN (panel ‘d’)

and bare MgO substrate (panel ‘e’). The single layer CoPt film shows only one peak at 2θ =

48.130 which corresponds to the (200) reflection of the disordered A1 (fcc) phase. Single layer

NbN also shows the characteristic (200) and (400) reflections of the fcc phase indicating a

highly textured growth along [001] direction of MgO. While all these characteristic reflections

of the [001] growth are seen in CoPt-NbN/MgO bilayer (panel ‘b’) as well, the NbN peaks

are not discernible in the reverse bilayer geometry (panel ‘a’), where NbN was grown on

CoPt, suggesting a granular structure of the nitride. These results reveal that film growth

dynamics is greatly controlled by the amount of interfacial strain induced by the cubic (100)

MgO whose lattice parameter ‘a’ is 4.21 Å. NbN is also cubic with a = 4.39 Å. The magnetic

alloy CoPt, when grown on (100) MgO at ≤ 600 0C has a disordered fcc structure with a
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lattice parameter of 3.772 Å26. The lattice mismatch for epitaxial growth of ‘A’ on ‘B’ can

be characterized in terms of the strain parameter ǫ defined as ǫ = dA−dB

dA

×100 where, dA and

dB are the lattice parameters of ‘A’ and ‘B’ respectively. This gives ǫ of ≈ 4.1 %, ≈ - 11.6

%, ≈ - 16.4 % and ≈ 14.1 % for NbN-MgO, CoPt-MgO, CoPt-NbN and NbN-CoPt systems

respectively. In Fig. 3 we sketch the stacking of the unstrained unit cells in NbN, CoPt and

MgO starting with MgO at the bottom. Dotted lines in the figure represents ideal coherent

epitaxy in conformity with the substrate. The origin of in-plane tensile strain on CoPt and

compressive strain on NbN under coherent epitaxy can be visualized from this figure.

It is interesting to note that in spite of a large strain parameter (ǫ ≈ - 16.4 %), CoPt

prefers to grow epitaxially with a slight change (≈ 0.2 %) in lattice parameter from bulk

when deposited on NbN [Fig. 2(b)]. The peak shift [∆θ ≈ 0.10] of the (200) reflection

of CoPt grown on NbN/MgO can be attributed to an improper growth due to mismatch.

On the other hand, the large compressive strain (∼ 14.1 %) experienced by NbN, when

deposited on CoPt as compared to only ≈ 4.1 % when grown directly on MgO, forces a

highly disordered growth of NbN. We believe that the rough surface texture of CoPt films

on MgO as seen in our scanning electron microscopy studies and originating presumably
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from strain (ǫ ≈ - 11.6 %) makes the subsequent growth of NbN disordered.

In Fig. 4 (a & b) we have shown isothermal magnetization at 20 K as a function of

in-plane magnetic field for the bilayers, along with the data for resistance. We note that at

20 K the coercive field (Hc) of the CoPt-NbN/MgO system is ≈ 250 Oe, which is lower than

the Hc of the NbN-CoPt/MgO bilayer (≈ 500 Oe) as seen in the M-H loop of Fig. 4(b).

This can be understood in the following way. During the growth of the 50 nm thick NbN

using the deposition conditions mentioned before, the bottom CoPt layer gets annealed for

roughly about 7 - 8 minutes, which leads to a better ordering of the structure as evidenced

by the enhanced intensity of (200) reflection of the A1 phase (see Fig.2 patterns ‘a’ and ‘b’).

This observation is consistent with previous studies on CoPt system which reveal that the

600 0C deposited films consist of only the fcc phase and their coercive field increases with

the duration of postdeposition annealing22.

The isothermal resistance of the samples in the normal state (20 K) when a dc field aligned

parallel to the plane of the film and directed perpendicular to current was scanned between

+ 3.5 kOe and - 3.5 kOe is also shown in Fig. 4. Arrows in the figure mark the increasing

and decreasing branches of the field. For the CoPt-NbN/MgO bilayer (Fig. 4(a)) upon
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reducing the field from 3.5 kOe, where the magnetization reaches saturation and the sample

is presumably in a single domain state, the resistance decreases smoothly with field, i.e.,

dR/dH is positive. This behavior gives way to a sudden jump in resistance when the sample

reaches a truely demagnetized state at H = Hc. We attribute this effect to enhanced domain

wall scattering of charge carriers which presumably also leads to the observed superlinear

dependence of R on the increasing |H| branch till the saturation field Hs is reached. For H

> Hs, the resistance rises in a sublinear fashion. In the other bilayer, where CoPt is at the

bottom, the hysteresis in the resistivity is much more pronounced.

The M-H curves of the bilayers change dramatically on entering the superconducting state

as seen in Fig. 5. These data were taken at 5 K with in-plane field. For the CoPt-NbN/MgO

bilayer, the M-H curve is dominated by the diamagnetic response of the superconducting

NbN layer, showing a hysteresis loop typical of a type-II superconductor. However, for the

NbN-CoPt/MgO bilayer, the ferromagnetic component of magnetization is distinctly seen.

The sudden jump in magnetization at ± 500 Oe coincides exactly with the coercive field

(Hc) seen in the M-H loop taken at 20 K (Fig. 4(b)). Since the moment of CoPt is not

expected to change below 20 K because of its large Curie temperature (≈ 710 K)27, the true
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diamagnetic response of the superconductor can be extracted by subtracting the 20 K data

from the 5 K data. The continuous M-H curves in Fig. 5 (a & b) are the true diamagnetic

response. We can use the Bean critical state model25 to extract the screening critical current

density Jc form these M-H data. At field H ≈ 550 Oe which is larger than the coercive field

of both type of bilayers, the Jc of CoPt-NbN/MgO system is larger by a factor of ≃ 3.5

compared to the Jc of the NbN-CoPt/MgO heterostructure. The large suppression of Jc in

the latter structure suggests a granular character of its NbN layer. It is worth pointing out

that the actual flux density in these films of thickness (≈ 50 nm) smaller than the London

penetration depth (≈ 200 - 250 nm) will be lower due to the dipolar field of the CoPt layer

which induces reverse flux. However, the presence of the ferromagnetic layer will not affect

the relative magnitude of Jc in the two cases as long as the field is greater than the coercive

field.

Now we discuss how the superconductivity in a granular and a homogeneous film is af-

fected when it is placed in proximity of a ferromagnet with in-plane magnetization through

measurement of transport critical current density and its temperature and angular depen-

dence. Fig. 6(a) presents the Jc measured with a voltage criterion of 10 µV/cm as a function
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of reduced temperature (T/Tc) for both the bilayers and a single layer NbN film. Here Tc

denotes the temperature corresponding to the zero resistance state of the samples. For the

bilayer sample CoPt-NbN/MgO, the Jc at T/Tc ≥ 0.9 is same (≈ 6.0×105 A/cm2) as that

of a single layer NbN film and below T/Tc = 0.9, it exceeds the limit of our measurement

which is set by the maximum output of our current source (∼ 100 mA). For the other bilayer

film (NbN-CoPt/MgO) however, the Jc is highly suppressed. For example, at T/Tc = 0.8 it

is only ≈ 1.5×105 A/cm2. Fig. 6 also shows the Jc vs. T/Tc plots of the two bilayers when a

300 Oe field is applied perpendicular to the plane of the film. We note that the field-induced

suppression of Jc is marginally higher in the case of NbN-CoPt/MgO heterostructure. The

temperature dependence of Jc is generally expressed by a phenomenal expression of the type,

Jc = J0(1 − T/Tc)
β, (1)

where J0 and β are used as fitting parameters. In the Ginzburg-Landau (GL) mean-field

description of Jc, the prefactor J0 is a measure of the depairing current and the exponent

β is 3/228. For a highly granular system where superconducting grains are separated by

insulating material, the Ambegaokar-Baratoff model can be used to describe the Jc (T)

data28. Here J0 is related to superconducting gap parameter and the exponent β ≈ 1 at low
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temperatures. The data shown in Fig. 6 have been fitted to Eq. 1. The J0 and β for the

NbN/MgO, CoPt-NbN/MgO and NbN-CoPt/MgO in zero field are (≈ 7.81×106 A/cm2,

0.93), (≈1.65×107 A/cm2, 1.19) and (≈ 1.64×106 A/cm2, 1.40) respectively. For the first

two samples, since the fitting has been done over a very limited range of T/Tc, too much

significance can not be given to J0 and β. However, for NbN-CoPt/MgO excellent fitting is

seen for T/Tc ranging from 0.5 to ≈ 1. It is interesting to note that while the NbN in this

sample has a substantially reduced Jc, the β remains close to the GL value. The large value

of β here suggests a robust coupling between NbN grains28.

In order to examine how the state of magnetization of the CoPt film affects supercon-

ductivity in NbN, we have measured the temperature dependence of Jc with in-plane field

[Fig. 6(b)] corresponding to points A and B of the hysteresis loop as shown in the inset of

Fig. 6(b). Since at point A of the loop the sample is fully saturated, it should behave like

a single domain magnetic entity. Point B of the loop corresponds to a fully demagnetized

state where the sample consists of randomly oriented domains. The direction of magnetiza-

tion from one domain to the next can change either by out-of-plane rotation of spins, which

constitutes a Bloch wall or by in-plane rotation as in the case of a Néel wall29. Obviously,
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a Bloch wall will lead to magnetic flux into the NbN layer where as for a Néel wall the flux

remains confined in the ferromagnetic film. A Bloch wall is therefore expected to reduce

the Jc of the film. The Jc of the NbN-CoPt/MgO and CoPt-NbN/MgO films measured at

positions A and B of the hysteresis loop is shown in Fig. 6(b). No discernible difference in

the critical current in the two cases is seen suggesting that in these 50 nm CoPt films the

domain walls are of Néel type.

In order to address further the likely perturbation of superconductivity in NbN by mag-

netic domain structure of CoPt layer, we show in Fig. 7 the angular dependence of flux flow

resistivity at three points of the hysteresis loop measured at a temperature where resistance

drops by ≈ 95 % of its normal state value in zero-field. The orientation of current ~I, mag-

netization ~M and magnetic field ~H vectors are shown in the inset of the figure. The angle φ

is between ~H and film normal n̂. At saturation points A and D of the loop the ~M vector is

always perpendicular to ~J , either along + ŷ or - ŷ. The flux flow resistivity of both bilayers

at H = ± 1500 Oe (points A and D of hysteresis) is characterized by two sharp cusps at

φ = ± 900 and maximum dissipation at φ = 00, i.e., when the field is normal to the film

surface. If we attribute the flux flow resistivity only to the normal component of the field
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(Hcosφ), then ρf must go linearly in Hcosφ following the relation for flux flow resistance

ρf/ρN ≈ H/Hc2, where ρN is the normal state resistance and Hc2 the upper critical field30.

In the right inset of Fig. 7 we show variation of ρf vs. Hcosφ for CoPt-NbN/MgO and

NbN-CoPt/MgO bilayers. In the former case, where superconductivity is robust in NbN,

the flux-flow resistance shows a linear dependence on Hcosφ. For the sample where NbN is

on the top, however, the scaling of ρf with Hcosφ is poor, indicating that this film can not

be treated as an infinite superconducting plane. In Fig. 7 we have also plotted the angular

dependence of Rf at points B and C of the hysteresis loop. The large dissipation seen at the

coercive field in NbN-CoPt/MgO over a range of angles around φ = 0 again points towards

the granular nature of the NbN.

B. Bilayers with out-of-plane magnetic anisotropy

Equiatomic CoPt films deposited at 700 0C on MgO stabilize into the L10 (tetragonal)

ordered structure with a strong out-of-plane anisotropy energy (≈ 5×106 J/m3)31. It is

expected that the magnetic domain structure of such films can lead to strong pinning of

vortices in a field range below the coercive field of the ferromagnet8,10. We have compared

the relative influence of L10 and A1 disordered CoPt layers on flux pinning in NbN in a
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controlled experiment in which a 50 nm NbN film was first grown at 700 0C on three MgO

substrates mounted side-by-side in the deposition chamber. On one of such films a 50 nm

CoPt was deposited at 700 0C followed by annealing in high vacuum for 30 minutes while on

the other the CoPt layer of the same thickness was deposited at 600 0C, but after annealing

the NbN at 700 0C for a time equal to the postannealing time used for L10 CoPt growth (≈

30 minutes). The third film was also annealed for 40 minutes at 700 0C under the identical

conditions to ensure the same metallurgical state of the NbN in all three samples. In Fig. 8

we show superconducting transition of these films measured resistively. While the Tc onset

of the bare NbN is ≈ 15.5 K, a suppression of the critical temperature by ≈ 0.2 K is seen on

deposition of the two-types of CoPt. This lowering of Tc perhaps derives contribution from

exchange-field-induced pair-breaking in NbN. From the X-ray diffraction pattern shown in

inset ‘a’ of Fig. 8, it becomes clear that CoPt films grown at 600 and 700 0C on NbN are in

the A1 (fcc) and L10 (tetragonal) polytypes with their (001) direction normal to the plane

of the film. Inset ‘b’ of Fig. 8 shows magnetic hysteresis loop of these two bilayers measured

at 20 K with the external field directed perpendicular to the film plane. The square loop

of the film deposited at 700 0C clearly indicates out-of-plane magnetic anisotropy axis with
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coercivity ≈ 5 kOe. Having established the distinct magnetic and crystallographic structure

of the CoPt, we address the issue of flux pinning in these bilayers. In Fig. 9 we compare

the critical current density of the NbN films with A1 and L10 CoPt capping layer at three

temperatures very close to Tc (T/Tc ≥ 0.92) and in a field range H ≪ Hc of the L10 film.

The magnetic field was directed perpendicular to the plane of the film. It is very clear that

the L10 CoPt-NbN couple has a small but distinctly larger Jc as compared to that of the

A1 CoPt-NbN in a field range H < 1 kOe (≪ Hc). To emphasize this increase, in the inset

of Fig. 9 we plot ∆Jc = [Jc (L10) - Jc(A1)]. This enhancement of critical current can be

explained qualitatively in the framework of the model of Bulaevskii, Chudnovsky and Maley

(BCM)17 which shows that a flux line in superconducting film capped with a magnetic layer

of perpendicular anisotropy experiences a spatially modulated pinning barrier of the type

Ump(x)∼ Φ0 M(x) ds, where Φ0 is the flux quantum, M(x), the magnetization of the FM

domain and ds the superconducting film thickness. This behavior is relevant when the vortex

motion is perpendicular to domain wall, and the width of the domain l is large compared

to ds and magnetic penetration depth λL ≪ l. Both these conditions are satisfied by the

CoPt film. The Jc expected from such domain wall pinning is ∼ c M0/l; with M0 ≈ 450
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emu/cc for our L10 CoPt film, and l ≈ 1000 nm, we get Jc ∼ 4.5×107 A/cm2 for vortex

motion perpendicular to domain walls. In real samples, however, the domains have arbitrary

geometry in which vortices gliding along domain walls will experience no pinning force and

thus a much smaller increase in Jc would result. For the A1 CoPt film, the perpendicular

component of magnetization at H = 1 kOe, where a detectable enhancement in Jc is seen,

is very small and we do not expect any magnetic pinning in this case.

In summary, we have studied the crystallographic structure, magnetic ordering and su-

perconducting properties of ferromagnet-superconductor bilayers made of CoPt and NbN

grown on single crystal MgO in two different geometries, with either NbN or CoPt in con-

tact with the substrate. In the case of bilayers where CoPt is deposited over NbN, a further

distinction has been realized by selecting ordered (L10) or disordered (A1) polytypes of CoPt

showing in-plane and perpendicular magnetic anisotropy respectively. By comparing the SC

response of bilayers where the CoPt magnetization is in the plane of the structure with that

of a plane NbN film, we conclude that the ferromagnetism of CoPt has no discernible effect

on the bulk SC properties of the NbN. This also leads us to believe that the magnetic domain

walls in A1 CoPt of both bilayers are of the Néel type. While the ferromagnetism of CoPt
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has no deleterious effects, the polycrystalline nature of NbN deposited on CoPt imparts it

a granular character which reflects itself in a reduced Tc, in the temperature dependence of

Jc, and in the variation of flux-flow resistance as a function of the angle between applied

field and film normal. A comparison of critical current density in CoPt-NbN/MgO bilayers

show a distinctly higher Jc in samples where the CoPt magnetization is out-of-plane. Since

this gain is seen only at fields smaller than the coercivity of the CoPt layer, we attribute it

to domain wall pinning of flux lines.

This research has been supported by grants from the Department of Science & Technology

under its Nanoscience & Nanotechnology Initiative and by the Board for Research in Nuclear

Science. S. K. Bose acknowledges financial support from the Council for Scientific and

Industrial Research, Government of India. We also acknowledge Mr. Pooran C. Joshi for

his technical assistance.

∗ Electronic address: rcb@iitk.ac.in

1 V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J.

Aarts, Phys. Rev. Lett. 86, 2427 (2001).

2 A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

3 A. F. Volkov, F. S. Bergeret, and K. B. Efetov, Phys. Rev. Lett. 90, 117006 (2003).

4 M. Lange, M. J. Van Bael, Y. Bruynseraede, and V. V. Moshchalkov, Phys. Rev. Lett. 90,

19

mailto:rcb@iitk.ac.in


197006 (2003).

5 J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Y. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett.

89, 267001 (2002).

6 W. Gillijns, A. Y. Aladyshkin, M. Lange, M. J. Van Bael, and V. V. Moshchalkov, Phys. Rev.

Lett. 95, 227003 (2005).
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FIG. 1: Panel (a) shows the temperature dependence of resistance for pure NbN, NbN-CoPt/MgO

and CoPt-NbN/MgO bilayer systems. χ
′

and χ
′′

for all the three systems as a function of temper-

ature have been plotted in panel (b).
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FIG. 2: (a) X-ray diffraction profiles collected with a Seifert (model 3000P) diffractometer of

(a) NbN-CoPt/MgO, (b) CoPt-NbN/MgO, (c) CoPt, (d) NbN thin films deposited at 600 0C on

single crystal (001) cut MgO. The diffraction profile of single crystal MgO (001) is also shown at

the bottom panel. In panel (c) and (d) peaks of A1 phase CoPt and rocksalt NbN respectively are

identified with miller indices.
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FIG. 3: Schematic illustration of strained NbN-CoPt/MgO heterostructure. Dotted lines in the

figure represents ideal coherent epitaxy. Lattice mismatch is exaggerated for clarity.
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FIG. 4: Panel (a) shows isothermal magnetization and resistance as a function of magnetic field

applied in-plane for CoPt-NbN/MgO system measured at 20 K. Panel (b) shows the dependence

of magnetization and resistance on in-plane magnetic field for NbN-CoPt/MgO system measured

at 20 K. Arrows in the figure mark the behavior of resistance on increasing and decreasing field

sweeps.
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FIG. 5: Panels (a) and (b) show the in-plane magnetization as a function of applied magnetic field

measured at 5 K for CoPt-NbN/MgO and NbN-CoPt/MgO system respectively. Contribution of

superconducting NbN to total magnetization is extracted by subtracting 5 K data from 20 K data

and is shown in the figures as continuous line.
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FIG. 6: (a) Plot of critical current density Jc calculated from current-voltage characteristics using

a field criterion of 10 µV/cm of NbN, CoPt-NbN/MgO and NbN-CoPt/MgO as a function of

reduced temperature. Open symbols and solid symbols represent the data for zero-field and 300 Oe

perpendicular field ( ~H ‖ n̂) measurements respectively, where n̂ is unit vector normal to the plane

of the film. (b) Temperature dependence of Jc with in-plane magnetic field for both the bilayers.

In the inset letters A and B mark the points on a typical M-H loop at which the measurements of

Jc were carried out. While open symbols in panel (b) represent data taken at point A, Jc values

for fully demagnetized state (point B) are plotted as solid symbols.
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FIG. 7: The resistance of both CoPt-NbN/MgO (right Y-axis) and NbN-CoPt/MgO (left Y-axis)

systems in the flux flow regime as a function of the angle φ between the applied magnetic field and

film normal (n̂) at a temperature in the transition region, where the sample resistance is 5 % of the

zero-field normal state resistance. Magnetic field direction was changed in a step of 2 degree while

it remained always orthogonal to the current direction ( ~H ⊥ ~J). Zeroes on the X-axis correspond

to field angle normal to the film surface. A constant bias current of 1 µA was used for all the

measurements. Right inset shows schematically the direction of current flow ( ~J), magnetization

vector ( ~M) and the direction of magnetic field ( ~H) which makes angle φ with n̂. The letters A,

B, C and D in the middle panel mark the points on a typical M-H loop at which R was measured.

Left inset shows the dependence of resistance extracted from the data presented in the main panel

(curves A and D) as a function of normal component of the applied field for both the samples.
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FIG. 8: Temperature dependence of resistance of CoPt-NbN/MgO bilayers with both A1 and L10

phase CoPt is compared with that of pure NbN film. Unlike the R(T) plot presented in Fig. 1(a),

here the NbN layer was deposited at 700 0C for all the three systems. X-ray diffraction profiles

collected with X’Pert PRO MPD diffractometer of the same set of bilayer samples are shown in the

inset (a). Peaks of rocksalt NbN, and A1 and L10 phase CoPt are identified with miller indices. The

diffraction peak arises from the substrate is marked with asterisk. Inset (b) shows the isothermal

magnetization with perpendicular magnetic field measured at 20 K for both the bilayers.
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FIG. 9: Plot of critical current density Jc of (L10)-CoPt-NbN/MgO (solid symbols) and (A1)-

CoPt-NbN/MgO (open symbols) at three different temperatures (T/Tc = 0.99, 0.95 and 0.92) as

a function of magnetic field. The magnetic field was directed perpendicular to the plane of the

film. The first data point corresponds to 60 Oe remanent field of the electromagnet. Inset shows

the plot of ∆Jc [= Jc (L10) - Jc(A1)] derived from the data shown in the main panel.
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