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Abstract

The form of the halo mass function is a basic ingredient in any semi-analytical
galaxy formation model. We study the existing forms of the mass functions
in the literature and compare their predictions for semi-analytical galaxy
formation models. Two methods are used in the literature to compute the
net formation rate of halos, one by simply taking the derivative of the halo
mass function and the other using the prescription due to Sasaki (1994). For
the historically used Press-Schechter (PS) mass function, we compare var-
ious model predictions, using these two methods. However, as the Sasaki
formalism cannot be easily generalized for other mass functions, we use the
derivative while comparing model predictions of different mass functions.
We show that the reionization history and UV luminosity function of Lyman
break galaxies (LBGs) predicted by the PS mass function differs from those
using any other existing mass function, like Sheth-Tormen (ST) mass func-
tion. In particular the reionization efficiency of molecular cooled halos has
to be substantially reduced when one uses the ST and other mass functions
obtained from the simulation instead of the PS mass function. Using χ2-
minimization, we find that the observed UV luminosity functions of LBGs at
3.0 ≤ z ≤ 7.4 are better reproduced by models using the ST mass function
compared to models that use the PS mass function. On the other hand, the
volume filling factor of the metals expelled from the galaxies through super-
novae driven outflows differs very little between models with different mass
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functions. It depends on the way we treat merging outflows. We also show
that the porosity weighted average quantities related to the outflow are not
very sensitive to the differences in the halo mass function.

Key words: cosmology: theory - early universe, galaxies: abundances -
evolution - formation galaxies - high-redshift - intergalactic medium -
luminosity function, mass function - stars: winds, outflows

1. Introduction

The formation of galaxies and their influence on the physical state of the
inter-galactic medium (IGM) is often studied using semi-analytical models
of structure formation (for example White & Frenk 1991; Kauffmann, White
& Guiderdoni 1993; Cole et al. 1994; Somerville & Primack 1999; Chiu &
Ostriker 2000; Madau, Ferrara, & Rees 2001; Somerville, Primack, & Faber
2001; Scannapieco 2005). Such studies will allow one to extensively explore
the unknown parameter space related to physical conditions in a high red-
shift galaxy and its star formation, with limited computational resources.
Semi-analytical models together with available observations can be used to
understand the evolution of our universe while putting tight constraints on
various physical processes associated with the high redshift universe. In
Samui et al. (2007, 2008) (hereafter Paper I and Paper II) we used semi-
analytical models to predict the ionization history of the universe, the high
redshift (z ≥ 3) UV luminosity functions of LBGs and also the global effect
of galactic outflows.

In any semi-analytical galaxy formation model, one needs to assume some
form of the halo mass function giving the number density of dark matter ha-
los as a function of mass and redshift. The first halo mass function in an
analytical form was given by Press & Schechter (1974). The Press-Schechter
(PS) mass function has been widely employed in semi-analytical models of
galaxy formation and in understanding the high redshift universe. It is im-
portant to note that one needs not just the dark halo mass function at any
redshift, but also their formation rate and survival probability. For the PS
mass function, Sasaki (1994) proposed a method to find the formation rate
of halos and their survival probability at later epochs. Note that one can
also find this rate through N-body simulations, or by constructing a large
number of merger trees. However, it turns out that we need to resolve halo
masses over a wide dynamic range from 107M� to 1012M�, to model both
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the effect of outflows and the galactic luminosity function. One also needs
to have a large enough number of halos in the simulation or a large number
of realizations of the merger trees, to obtain good statistics of the range of
galaxy properties. Therefore, to have a preliminary look at this challenging
problem, in Paper I and II, we focused on analytical methods. In particu-
lar we used the PS mass function and the Sasaki formalism, to predict the
ionization history of the universe, the high redshift (z ≥ 3) UV luminosity
functions and also the global effect of galactic outflows.

In Paper I, we concluded that the observed redshift evolution of the lu-
minosity function of Lyman break galaxies (LBGs) at z ≥ 3 requires evolu-
tion in physical properties that govern the star formation activity on top of
the evolution in the number density of dark matter halos coming from the
structure formation model. We found that the required amount of redshift
evolution in the star formation activities depends on the redshift evolution
of the number density of dark matter halos and hence on the assumed form
of the halo mass function.

In Paper II, we showed that galactic scale outflows originating predom-
inantly from small mass halos with mass 107 − 109 M� can pollute 60% of
the IGM with metals at z ∼ 3 with a metallicity floor of 10−3Z�. Inclusion
of star formation in even smaller mass halos which cool due to the presence
of H2 or HD molecules, helps more in spreading the metals. This is because
they are more abundant and hence their mean separation is smaller. In these
models, even at z = 8, more than 60% of IGM is being polluted with metals.
These conclusions may crucially depend on the choice of the adopted form
of the mass function.

It is known that the PS mass function does not provide a good fit to the
number density of dark matter halos determined from recent high resolution
simulations of galaxy formation. From such simulations a number of differ-
ent fitting formulae for the halo mass function have been suggested (see for
example Sheth & Tormen 1999; Jenkins et al. 2001; Reed et al. 2003, 2007
and Warren et al. 2006). Note that there is no direct way to scale the re-
sults obtained by assuming the PS mass function to results which would arise
from these other mass functions. Therefore it is important to revisit various
issues discussed in Paper I and II considering the mass functions determined
from the simulations. This forms the basic motivation of this paper. We
will mainly concentrate, as in Paper I and II, on high redshift (i.e. z ≥ 3)
UV luminosity function of Lyman break galaxies (LBGs) and the effect of
galactic outflows on the IGM adopting a self consistent reionization history.
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Note that the Sasaki formalism, used in Paper I and II, is not easily gen-
eralisable to other mass functions (Ripamonti, 2007 and also see discussion
in section 2). An alternative is to simply take the derivative of the mass
function under the assumption that it is sufficiently close to the net forma-
tion rate of objects in the mass range that is of interest to the semi-analytic
models. This approach is widely used in several semi-analytical models in
the literature (for example Haehnelt & Rees 1993, Scannapieco 2005). The
derivative includes not only the formation rate of halos, but also their de-
struction rate at the same redshift. Therefore it is not guaranteed to be
positive definite. This is the disadvantage of using the derivative of the mass
function. Nevertheless, in the range of halo masses that we will be interested
in at different redshifts, we will see that the derivative of the mass function is
indeed positive definite. Therefore, for other mass functions consider in this
work, we simply use its derivative to model the net formation rate of dark
matter halos. We will also compare results obtained using the derivative as
an alternative to the Sasaki formalism for the PS mass function.

The paper is organized as follows. In section 2 we review different pro-
posals for the halo mass function that we wish to study and also compare
the net formation rate of collapsed halos predicted by these mass functions.
The star formation and reionization models are described in section 3. In
section 4 we show the effect of the halo mass function on the predicted UV
luminosity functions of high redshift LBGs. In particular, we use the χ2-
minimization technique to discriminate between models using different mass
functions. The feedback of galactic outflows on the IGM is discussed in sec-
tion 5. Finally section 6 gives our conclusions. In this work we use the
cosmological parameters consistent with the recent WMAP 5th year data re-
lease i.e. Ω = 1, Ωm = 0.26, ΩΛ = 0.74, Ωb = 0.044, h = 0.72, σ8 = 0.80 and
ns = 0.96 (Dunkley et al. 2008). Also we use a Salpeter stellar initial mass
function (IMF) in the mass range 1− 100 M� unless otherwise mentioned.

2. Comparing halo mass functions

The halo mass function is defined to be the number density of collapsed
dark matter halos in the mass range M and M + dM at a given redshift z.
The differential halo mass function is defined as

dN

dM
=
ρ0

M

d lnσ−1

dM
f(σ) (1)
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where ρ0 is the average density of the universe at that redshift. The rms
density fluctuations, σ, of the smooth density field with a top-hat window
function is defined as

σ2 = D2(z)σ2
0 = D2(z)

1

2π2

∞∫
0

k2P (k)W 2(k,M)dk (2)

where, P (k) is the linear power spectrum of the density fluctuations at z =
0, W (k,M) is the Fourier transform of the real-space top-hat filter, and
D(z) is the growth factor of linear perturbations normalized to unity at
z = 0 (Peebles 1993, Padmanabhan 2002). The idea of representing the
mass function in the form of Eq. 1 is that different analytical forms of the
halo mass function can be represented with different forms of the function
f(σ) in that equation. For example, f(σ) for the PS mass function is given
by

fPS(σ) =

√
2

π

δc
σ

exp

(
− δ2

c

2σ2

)
(3)

where δc is the critical over density for collapse, usually taken to be equal
to 1.686. The simple form of PS mass function has been widely used in the
semi-analytical models of galaxy formation (Chiu & Ostriker 2000, Barkana
& Loeb 2001, Nagamine et al 2006).

The deviation of the PS mass function from numerical simulations was
pointed out by Sheth & Tormen (1999). The discrepancy is larger for high
mass rare objects, the PS mass function always predicting a smaller number
of rare objects compared to numerical simulations. Sheth & Tormen (1999)
proposed a modification of the PS mass function which provides a better fit
to the numerical simulation data. The Sheth-Tormen (ST) mass function
takes the following form:

fST (σ) = A

√
2a

π

[
1 +

(
σ2

aδ2
c

)p]
δc
σ

exp

(
−aδ

2
c

2σ2

)
. (4)

Choosing A = 0.3222, a = 0.707 and p = 0.3 in Eq. 4 provides a better
fit to mass functions obtained from numerical simulations over a wide range
of masses and redshifts compared to the PS formula. Note that, if we take
A = 0.5, a = 1.0 and p = 0.0 in Eq. 4 then the ST mass function reduces to
the PS mass function.

5



Further, Jenkins et al. (2001) found deviation from the ST mass function
in their simulations of the τCDM and ΛCDM cosmologies. They proposed
another f(σ) which fits better their own simulations over more than four
orders of magnitude in mass, ∼ 3 × 1011 to ∼ 5 × 1015 h−1M�. This mass
function, referred to here as Jenkins & White (JW) mass function is given
by

fJW = 0.315 exp
[
−| lnσ−1 + 0.61|3.8

]
. (5)

Another study of f(σ) was made by Reed et al.(2003). They used high-
resolution ΛCDM numerical simulations to calculate f(σ) of dark matter
halos down to the scale of dwarf galaxies, back to a redshift of 15. They
showed that the ST mass function provides a good fit to their data except
for redshift 10 or higher where it over predicts halo numbers by more than
50%. In a later work, Reed et al. (2007) developed a new method for
compensating the effects of finite simulation volume. This allowed them
to find an approximation to the true global mass function. They proposed
another fitting formula given by

fR(σ) = A

√
2a

π

[
1 +

(
σ2

aδ2
c

)p
+ 0.6G1 + 0.4G2

]
δc
σ

exp

[
−caδ

2
c

2σ2
− 0.03

(neff + 3)2

(
δc
σ

)0.6
]

(6)

where

G1 = exp

[
− [lnσ−1 − 0.4]2

2(0.6)2

]
(7)

G2 = exp

[
− [lnσ−1 − 0.75]2

2(0.2)2

]
(8)

and
neff + 3

6
=

d log σ−1

d logM
(9)

The values of constants which require to fit the numerical simulations are
c = 1.08, ca = 0.764, and A = 0.3222.

Meanwhile Warren et al. (2006) performed simulations where they cor-
rected a systematic error in halo-mass determination by the friends-of-friends
halo finder. They also measured the shape and quantified the uncertainty
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in the predicted theoretical mass function of dark matter halos in ΛCDM
cosmology and showed that the canonical ST and JW forms of the mass
function are inconsistent with the ΛCDM mass function at a ∼ 10% level at
intermediate masses, and > 30% at the highest masses. They provided an
analytical fit to f(σ) given by

fW (σ) = 0.7234
(
σ−1.625 + 0.2538

)
exp

[
−1.1982

σ2

]
. (10)

Thus we have a set of halo mass functions which gives a better fit to
the numerical simulations of galaxy formation compared to the classical PS
formula. Here, we consider these set of f(σ) to examine how sensitive the
predictions of semi-analytical models are to the assumed form of the halo
mass function.

We begin by comparing the net formation rate of dark matter halos for
different halo mass functions described above. This is the most fundamental
ingredient in any semi-analytical model of galaxy formation. In Paper I & II
we used Sasaki formalism of the PS mass function to get the formation rate.
Following the same steps for the ST mass function we obtain

Ns(M, z, zc) =
ρ0

M

(
− 1

σ

dσ

dM

)
fST (σ)

(
1

D(zc)

dD(zc)

dzc

)
[

d ln fST (σ)

d lnσ
+ (1− 2p)

] [
D(zc)

D(z)

]1−2p

(11)

where Ns(M, z, zc) is the formation rate of the dark matter halos collapsed at
zc and survive till some observed redshift, z ≤ zc. The survival probability is
given by [D(zc)/D(z)](1−2p). Note that putting A = 0.5, a = 1.0 and p = 0 in
above equation gives back the Sasaki formalism of the PS mass function (see
eq. 1 of Paper I). It is clear from the above equation that due to the presence
of −2p term, it is not guaranteed that the formation rate will always be
positive. As formation rate being negative is unphysical the generalization
of Sasaki formalism for the ST mass function is incorrect. Therefore, as
mentioned in section 1, we rather model the net formation rate of collapsed
dark matter halos, by taking the redshift derivative of the halo mass function,
N (M, zc) = d2N/dMdzc.

In Fig. 1 we show the ratio of the redshift derivatives for different halo
mass functions to that obtained for the PS mass function. In panels with
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Figure 1: The net formation rate of dark matter halos, N , for different halo mass functions
at different redshifts. We compare the redshift derivative of different mass functions with
the derivative of the PS mass function (shown by the solid line). We show the derivative of
ST (long dashed, red), JW(dot long dashed, magenta), Warren (dot short dashed, cyan)
and Reed (short dashed, dark green) mass functions. The vertical dashed line in each
panel shows the mass of typical collapsing objects from 3σ fluctuations. The solid (red)
and dashed (blue) arrows in redshift 3 ≤ z ≤ 6 indicate the halo masses correspond to
circular velocities vc = 35 km s−1 and 95 km s−1 respectively.
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3 ≤ z ≤ 6 we show three characteristics masses related to our star forma-
tion model at that redshift. The dotted vertical lines show the mass that
collapsed from 3σ fluctuations at that redshift. In addition with solid (red)
and dashed (blue) arrows we show the masses corresponding to halos with
circular velocity vc = 35 km s−1 and 95 km s−1 respectively. This is the
mass range where radiative feedback from the metagalactic UV background
becomes important (Thoul & Weinberg 1996, also see in Sec. 3). In this red-
shift range the process of reionization is believed to be already over (Fan et
al. 2006) and hence the radiative feedback is well constrained in our model
(indeed we will see in the next section that all our models predict redshift of
reionization zre ≥ 6). We do not show these arrows for z > 6 as the exact
radiative feedback will depend on the history of reionization. Thus, for z > 6
we only show the mass that collapsed from a 3σ fluctuations by dotted lines.

It is clear from the figure that for higher mass objects which are rare, the
PS mass function always predicts a smaller net halo formation rate compared
to any other mass function. For smaller mass objects the trend is opposite.
This will lead to different slope in the luminosity function derived from dif-
ferent halo mass function. At z ≥ 6 all the mass functions predict similar
halo formation rate (within 10%) around the characteristic mass which cor-
responds to 3σ fluctuations. However, at the typical halo masses that will
be detected as galaxies (≥ 1010M�) PS underpredicts the net halo formation
rate upto an order of magnitude.

For z . 5 the 3σ fluctuations are above 1012 M� and the predictions
of other mass functions compared to that of PS mass function are upto an
order of magnitude higher. However, in our modelling of star formation, we
assume a sharp cut off in the star formation for halos of mass above 1012 M�,
attributed to the AGN feedback (see section 2 of Paper I). This reduces the
difference in the prediction of our semi-analytical modelling of star formation
arising due to different halo mass functions at these redshifts. Hence, for
z . 5 all the mass functions predict a halo formation rate within a factor 2
of each other, for typical masses which contribute to the star formation.

The abrupt cut-off seen in the formation rate at z = 3 around M =
108 M� is due to the fact the derivative of the PS mass function is becoming
negative. This shows the unphysical behavior in calculating the net formation
rate by taking derivative of the mass function. However, star formation in
such low mass halos (M . 109 M�) at z = 3 are suppressed by the radiative
feedback (see below). It is interesting to note that all the mass functions
other than the PS mass function predict similar N . This clearly shows that
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semi-analytical models using different mass functions (except the PS mass
function), will all give similar results.

It is a nontrivial exercise to demonstrate the difference between the for-
mation rate obtained from the Sasaki formalism of the PS mass function,
(Ns(M, z, zc)), to that calculated by taking the derivative (N (M, zc)). This is
because in the Sasaki formalism one needs two redshifts, namely the collapse
redshift (zc) of the halo and the observed redshift (z) in order to calculate
the formation rate weighted by the survival probability. On the other hand
the derivative contains only one redshift, the collapse redshift. However, we
will try to show the difference between these two approaches in the specific
context of outflows in Section 5.

In the following sections we will show how the predictions of semi-analytic
galaxy formation models change with the mass function used. We begin with
a brief overview of our prescriptions for star formation and reionization as in
Paper I and II.

3. Star formation and Reionization

The star formation rate of an individual dark matter halo of mass M
collapsed at redshift zc and observed at redshift z is modelled by (Chiu &
Ostriker 2000),

ṀSF(M, z, zc) = f∗

(
Ωb

Ωm

M

)
t(z)− t(zc)
κ2 t2dyn(zc)

exp

[
−t(z)− t(zc)
κ tdyn(zc)

]
. (12)

Here, f∗ is the fraction of total baryonic mass that goes into stars in the
entire lifetime of the halo and κ is a parameter which governs the duration
of the star formation activity in the halo. As in Papers I and II we take
κ = 1 unless stated otherwise. Further, t(z) is the age of the universe at
redshift z; thus t(z)− t(zc) is the age of the galaxy and tdyn is the dynamical
time at that epoch. The star formation rate is converted to luminosity at
1500 Å assuming an initial mass function (IMF) of the stars formed [see
Eq. (6)-(8) of Paper I]. Only a fraction (1/η) of this UV luminosity would
come out from the galaxy due to the absorption by dust.

The minimum critical mass of a halo (Mlow) which can sustain star forma-
tion at a given epoch is decided by the cooling efficiency of the gas and also
by radiative feedback in ionized regions. We consider models with Mlow cor-
responding to a virial temperature, Tvir = 104 K ( as “atomic cooled model”)
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and 300 K (“molecular cooled model”). For ionized regions of the universe,
our models assume complete suppression of star formation in halos below a
circular velocity vc = 35 km s−1, no suppression above circular velocity of
95 km s−1 and a linear fit from 1 to 0 for the intermediate masses (as in
Bromm & Loeb 2002 ; also see Benson et al. 2002; Dijkstra et al. 2004).
We have already indicated these characteristic masses in Fig. 1 with solid
(red) and dashed (blue) arrows. The star formation in the high mass halos
are also reduced by a suppression factor [1 + (M/1012M�)3]−1 to incorporate
possible AGN type feedback in massive halos as in Paper I (also see Bower et
al. 2005; Best et al. 2006). Given the luminosity evolution for an individual
galaxy, and their abundance from the halo mass function, one can then easily
estimate the UV luminosity function at any redshift (Eq. (8) of Paper I).

Ionization history of the universe is required to self-consistently incor-
porate radiative feedback for each model. We compute it following again
the method set out in Paper I (section 2.4). In Table 1 we summarize the
reionization history in terms of the electron scattering optical depth to the
reionization (τe) and the redshift of reionization (zre) for some of our models.
Note that zre is the redshift when the hydrogen ionization fraction becomes
unity. In all these calculations we have assumed only 10% of the created UV
photons escape into the IGM. Table 1 shows that there is negligible differ-
ence in τe and zre if one uses the derivative of the PS mass function or the
Sasaki formalism to calculate the net formation rate of collapsed halos. For
a range of κ = 0.1 − 4, we find these differences to remain within 4%. This
also turns out to be the case for molecular cooled models. Indeed the reion-
ization histories are also almost identical. However, the ST and other mass
functions predict slightly different reionization histories compared to the PS
mass function though they do not differ greatly amongst themselves. It is
interesting that even if f∗ is larger for the model with the PS mass function
compared to that with other mass functions, τe is smaller in this model. Thus
to get the same τe we need a smaller efficiency (or f∗) for models with ST and
other mass functions compared to models using the PS mass function. This
basically reflects the smaller abundance of rare high mass collapsed halos for
the PS halo mass function at high z.

However for ‘molecular cooled’ models, one needs to lower f∗ considerably
in the molecular cooled objects, to be consistent with the observed value of τe
for the ST and other mass functions. This can be seen in Table 1, that to be
consistent with the observed τe, one needs to adopt a value of f∗ < 0.05 for
molecular cooled halos. Also note that zre is less in molecular cooled models
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Table 1: Reionization history

Mass Function fA∗
†

fM∗
‡

zre τe
Atomic Cooled Models

PS (Sasaki) 0.30 - 7.2 0.085
PS (derivative) 0.30 - 7.2 0.085

ST 0.25 - 7.6 0.096
JW 0.25 - 7.8 0.096

Warren 0.25 - 7.6 0.095
Reed 0.25 - 7.4 0.093

Molecular Cooled Models
PS (Sasaki) 0.30 0.10 6.2 0.120
PS (Sasaki) 0.30 0.05 5.9 0.105

ST 0.25 0.10 6.5 0.134
ST 0.25 0.05 6.4 0.116

† fA∗ is the f∗ in atomic cooled halos.
‡ fM∗ is the f∗ in molecular cooled halos.

though τe is higher. This is because of radiative feedback: more UV photons
are generated by the molecular cooled objects which increase the degree of
ionization of the IGM at a given redshift compared to atomic cooled models,
and causes early suppression of star formation in halos with a circular velocity
less than 95 km s−1. Hence it takes longer time to get complete reionization
of the IGM making zre less in molecular cooled models.

Hence we conclude that the ST and other mass functions leads to higher
τe compared to the PS mass function even when we use lower f∗. Thus to
reproduce observed τe, the models using other mass functions require less
efficiency for star formation and/or UV escape compared to that of models
using the PS mass function. If stars are formed with ‘top-heavy’ IMF in the
molecular cooled low mass halos then one has to further reduce the f∗ in
those halos, to have a consistent τe. In particular the reionization efficiency
of molecular cooled halos has to be substantially reduced when one uses the
ST and other mass functions obtained from the simulation instead of the PS
mass function.
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4. UV Luminosity Functions

4.1. Comparison between different halo mass functions

In this section we turn our attention to the UV luminosity function. First
we illustrate the differences between results from different mass functions for
fixed model parameters (see Fig. 2). Here, we do not make any attempt to
fit the observed luminosity function. This will be done in the latter part of
this section.

In our model we assume f∗ = 0.3, κ = 1.0 with cosmological parameters
mentioned in the introduction. We apply a constant dust reddening correc-
tion of factor η = 4.5 for all redshifts and masses. It is clear from this figure
that at z & 4, the PS halo mass function (solid lines) predicts lower number
of LBGs compared to any other mass functions in the observed luminosity
range. This is simply a manifestation of the fact that the PS mass func-
tion predicts less number of rare high mass halos compared to other mass
functions. But at the low mass end the PS mass function predicts a higher
number density of collapsed objects. This effect can be seen at z = 3 where
the UV luminosity function at MAB & −19 is slightly higher for the models
with PS mass function. The difference between the PS mass function and
other mass functions are mass dependent which leads to a different slope in
the luminosity function calculated from different mass functions. As expected
all the other halo mass functions obtained from the simulation predict almost
the same luminosity function at all redshifts. It is interesting to see that all
the mass functions predict almost similar luminosity function at z = 3 even
though they are different at higher redshifts. As we pointed out before the
slopes of the luminosity functions coming from different mass functions are
indeed different.

In the right panels of Fig. 2 we show the ratio of luminosity function
obtained from the PS mass function to that from the ST mass function. It is
clear from the figure that there is a characteristics luminosity (or in turn the
halo mass) for each redshift where the amplitude of the luminosity function
derived from the PS and ST mass functions match with each other. However
this characteristic luminosity increases with decreasing redshift. At z ∼ 3,
in the mass range of halos where star formation takes place the PS mass
function over produces halos compared to the ST mass function (see Fig. 1).
At the low mass range the excess is roughly a factor 2. The excess seen at the
low end of the luminosity function produced by the PS mass function is due
to this. At M ∼ 1012 M� all the models produce same number density at
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Figure 2: Left panels: The UV luminosity functions of LBGs at different redshifts. The
observed data points are taken from Reddy & Steidel (2008) (triangles at z = 3), Bouwens
et al. (2007) (triangles at z = 4, 5 & 6) and Bouwens et al. (2008) (triangles at z = 7.4).
The upper limit at z = 7.4 is taken from Mannucci et al. (2007) (the circle with an arrow).
The solid (black) lines are for the PS mass function with Sasaki formalism. We have also
shown the luminosity functions as predicted from ST (dotted blue), JW (short dashed
magenta), Warren (long dash cyan) and Reed (dot short dash dark green) mass functions.
Right panels: We show the ratio of the luminosity functions derived from the PS mass
function to that from the ST mass function.
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z = 3. As star formation in halos above this mass are suppressed we do not
see order of magnitude deviation in the high luminosity end as we would have
expected from Fig. 1. However at z ∼ 5, compared to the PS mass function
the ST mass function produces a factor ∼ 2 excess at M = 1012 M� and
similar number of halos at the mass corresponding to vc = 95 km s−1. Thus
we see a much better matching at the low luminosity end of the luminosity
function (see Fig. 2) and a very strong deviation at the high luminosity end
for z & 5.

Thus the reasonable match in the luminosity function at z = 3 and strong
disagreement at high-z could be attributed to the fact that as one moves to
higher and higher redshifts a given luminosity range is contributed by rarer
and rarer objects (or higher σ fluctuations; see Fig. 1) and the PS mass
function is known to predict less number of rare objects compared to the ST
mass function or other mass functions derived from simulations.

We find that the luminosity functions calculated using the derivative of
the PS mass function and that obtained from the Sasaki formalism, differ
negligibly for κ = 1. However for κ = 0.1 the Sasaki formalism predicts
larger abundances by about 30%, in the observed luminosity range. The
reason is as follows: first, the Sasaki formalism for z = zc gives the formation
rate of halos, while the derivative gives the formation minus the destruction
rate, and hence a lower net formation rate. Second, for any κ we detect
galaxies whose ages are ta ∼ κtdyn, when they shine the maximum. In the
Sasaki formalism, only a fraction of halos p = D(t − ta)/D(t) formed at
(t − ta) survive at the observed time t. For small κ, we have ta/t � 1, and
thus p ∼ 1 and the luminosity function predicted by the Sasaki formalism is
higher, as its formation rate is higher. However as κ increases, ta increases,
p decreases, and hence luminosity functions computed by the two methods
first approach each other for κ ∼ 1, after which the derivative method starts
to produce a larger luminosity function. Nevertheless, since tdyn is much
smaller than the Hubble time, we find the differences between the luminosity
function calculated by these two methods, are less than 30% for all z. This
difference is much smaller than the difference between luminosity functions,
that are obtained using PS and other mass functions for z > 3.

It is also clear from Fig. 2 that the shape of the UV luminosity functions
(the slope and characteristic luminosity) and its redshift evolution, does de-
pend on the assumed form of the halo mass function. This is expected as we
have seen in Fig. 1 that the difference of halo formation rate coming out from
different mass functions are mass dependent. Hence it suggests that, in prin-
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Figure 3: UV Luminosity functions of LBGs at different redshifts for the ST (solid lines)
and PS (dashed lines) mass function. We fit the observed data points by changing f∗/η
using a χ2-fit. We ignore few data points in the low luminosity end (open triangles) while
fitting as they suffer from completeness problem.
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ciple we would be able to constrain the form of the halo mass function, just
by fitting the luminosity functions. In what follows we use χ2 minimization
to address this issue.

4.2. Best fit models: χ2 minimization

We use χ2 minimization technique to quantify how well the models using
different mass functions reproduce the observed luminosity functions. For
each redshift bin we have used the most recent measurement of the lumi-
nosity function that covers a wide range in luminosity. It is known that the
estimations of luminosity function of LBGs suffer from the lack of redshift
information and cosmic variance much more than typical Poisson errors (for
example see Beckwith et al. 2006; Reddy et al. 2008; Bouwens et al. 2007;
2009). As χ2 minimization technique is sensitive to the errors, in our analysis
we use errors that take care of the cosmic variance in addition to the Poisson
error. We consider f∗/η as the only free parameter. As this is assumed to be
constant over the whole mass range, varying f∗/η is like changing the mass
to light ratio. Note that the observed luminosity functions are also given
at different rest wavelength. For example at z = 3, 4, 5, 6 and 7.4 the ob-
served data points are obtained at λ = 1700 Å, 1600 Å, 1600 Å, 1350 Å and
1900 Å respectively. In our models we take care of this aspect by calculating
the intrinsic luminosity at appropriate wavelengths. The observed data and
the best fit LF for the ST (solid line) and PS (dashed line) mass functions
are given Fig. 3. The best fit parameters are summarized in Table 2.

For z ∼ 3 we use the observed luminosity function given by Reddy & Stei-
del (2008) which covers the low luminosity end well. As this LF is obtained
using several independent fields, the errors take into account the cosmic vari-
ance very well. As can be seen from the Table 2 the model using the ST
mass function provides a good fit to the data (with a reduced χ2

ν = 0.93).
Whereas the reduced χ2 for the model using the PS mass function is high
(χ2

ν = 3.90). This is mainly because the PS mass function overpredicts low
luminosity objects and under predicts high luminosity objects. This together
with the incompleteness in the observational data used in Paper I prompted
us to say in Paper I that one needs additional feedback to suppress the star
formation in low mass halos that contribute to LF at the low luminosity end.
However, it is clear now that for models with ST mass function, no addi-
tional feedback is needed to fit the luminosity function at z ∼ 3. We also
tried to fit the data by changing the characteristic mass scale for the AGN
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feedback. Even then the reduced χ2 for the best fitted models with the PS
mass function are always larger than 2.

Table 2: The best fit values of f∗/η for different redshifts. We show best fit parameters
and χ2 per degree of freedom for models with both ST and PS halo mass functions.

ST PS
z

f∗/η
† χ2

ν (f∗/η)‡1500 f∗/η
† χ2

ν (f∗/η)‡1500

3 0.066± 0.001 0.97 0.055 0.053± 0.001 3.90 0.044
4 0.049± 0.001 1.09 0.042 0.053± 0.001 2.32 0.046
5 0.040± 0.001 4.85 0.034 0.049± 0.001 8.28 0.042
6 0.036± 0.001 0.63 0.050 0.058± 0.002 1.19 0.081

7.4 0.111± 0.005 1.42 0.100 0.207± 0.009 2.27 0.186

† f∗/η obtained at the observed wavelength
‡ f∗/η calculated at λ = 1500 Å considering a dust model similar to

that of our Galaxy or large Magellanic clouds (Gordon et al., 2003)

We now consider the luminosity functions for z ∼ 4. The observed lumi-
nosity function at this redshift covers a much wider luminosity range, thanks
to the Hubble Ultra deep field (HUDF) and GOODS (The Great Observa-
tories Origins Deep Survey) data. Tabulated luminosity functions based on
HUDF and GOODS are available in Beckwith et al. (2006) and Bouwens et
al. (2007). We use Bouwens et al’s data for our analysis. They estimate rms
due to cosmic variance to be ∼ 22%. This fractional uncertainty is added
to the Poisson error in quadrature (as done in Beckwith et al. 2006 and
Bouwens et al 2009). We find that this is essential to get χ2

ν ∼ 1 while fitting
even their best fitted Schechter function to the UV LF given in Table 5 of
Bouwens et al. (2007). Also we ignore the last two data points at the low
luminosity end (shown by the open triangles in Fig. 3) while fitting as these
points are affected by incompleteness of the survey (Bouwens et al., 2007).
Even for this redshift bin the model using the ST mass function provides
better fit to the data than the one that uses the PS mass function. It is also
interesting to note that f∗/η is nearly constant for the model that uses the
PS mass function between z ∼ 3 and z ∼ 4 but decreases for models using
ST mass function.
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The observed luminosity functions for z ∼ 5 using HUDF are available in
Oesch et al. (2007) and Bouwens et al. (2007). We use Bouwens et al’s data
for our analysis. A fractional uncertainty of ∼ 18% (Bowens et al. 2007) is
added to the Poisson error in quadrature. We ignore the last two data points
at the low luminosity end due to incompleteness (Bouwens et al., 2007). It
is clear from Table 2 and Fig. 3 that the observed LF at this redshift is not
reproduced well either by models using ST mass function or PS mass function.
Observed points in the lower luminosity end are systematically lower than
model predictions. In particular the discontinuity seen at MAB = −18.6
contribute appreciably to the χ2. Note such a structure in LF, if true, can
not be reproduced by our models. However, what is interesting is that for
this redshift bin the model using the ST mass function provides better fit to
the data than the one that uses the PS mass function.

The observed luminosity function at z ∼ 6 are from Bouwens et al. (2007).
A fractional uncertainty of ∼ 22% (Bowens et al. 2007) is added to the
Poisson error in quadrature. Models with both PS and ST mass functions
provide acceptable fits to the data, with the latter having better reduced χ2.
The observed luminosity function at z ∼ 7 are from (Bouwens et al. 2009)
and the published errors already account for the uncertainty due to small
volume sampled. As the number of constraints are less models with both the
mass function reproduce the data well.

The interesting result that emerges from the analysis presented till now
is that the models with the ST mass function reproduce the observed LF
much better than the ones that use the PS mass function. We also checked
whether this result is valid if we use different observed luminosity functions.
We find our best fit value of f∗/η depends very much on the observed lumi-
nosity function we use (similar to what one finds for the Schechter function
parameters). For example, for 4 ≤ z ≤ 6 the observed luminosity functions
lack high precision measurements in the high luminosity end due to the small
volume probed. Thus our best fit f∗/η is decided by how well we fit the low
luminosity end of the luminosity functions. However, ground based measure-
ments which sample the high luminosity end well, tend to have slightly higher
f∗/η. Ideally one should merge the ground and space based measurements
by carefully accounting for all the possible biases. This is a non-trivial exer-
cise and beyond the scope of this present work. However, irrespective of the
data we used, we find invariably that the models with the ST mass function
provide a better fit to the observed data. At least for z ∼ 3, where the LF is
well defined in the high luminosity end, we find that even changing the AGN
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feed back in model that uses PS mass function does not help in producing a
χ2 better than that obtained for models with ST mass function.

We now consider the best fit values of f∗/η at different redshifts. Columns 2
and 5 of Table 2 list the best fit values of f∗/η obtained at the observed wave-
length for which the luminosity function has been measured, for the models
with the ST and PS mass functions respectively. Note that in principle, the
amount of dust reddening correction depends very much on the wavelength.
Hence, in order to compare the best fit values of f∗/η at different redshifts
we use the dust model like that applicable to the Galaxy or large Magellanic
clouds (Gordon et al., 2003), and bring all the f∗/η values to the wavelength
of 1500 Å. These values are also tabulated in Table 2 (in Column 4 and 7 for
the models with the ST and PS mass functions respectively). It is clear from
the table that no particular trend emerges at 3 ≤ z ≤ 5 though for higher
redshifts an increase of f∗/η may be needed. As already mentioned, the best
fit values of f∗/η very much depend on the observed luminosity function we
have used. Also the nature of dust in the high redshift galaxies is very uncer-
tain. Hence at this stage it is difficult to predict any trend on the values of
f∗/η and hence on the evolution of star formation in the high redshift galax-
ies. Future improved luminosity function measurements with reduced errors
are needed to probe the redshift evolution of f∗/η. Nevertheless, as we noted
above, it is heartening to find that a fairly simple model incorporating some
of the physically motivated feedback effects and one free parameter f∗/η does
allow us to explain reasonably the observed UV luminosity function of high
redshift LBGs.

Note that in Paper I we showed that the inclusion of star formation in
the molecular cooled objects does not affect the UV luminosity function in
the redshift range considered here. Hence we do not show any results of UV
luminosity function for molecular cooled models. However, the molecular
cooled objects play an important role in setting up the metallicity floor in the
IGM at high redshift as shown in Paper II. Therefore, we will also consider the
models with star formation in molecular cooled objects for galactic outflows.

5. Galactic outflows and the IGM

We turn now to models of galactic outflows and their feedback into the
IGM, an issue that was addressed in detail in Paper II. Note that the metals
detected in the IGM can only have been synthesized by stars in galaxies, and
galactic outflows are the primary means by which they can be transported
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from galaxies into the IGM (Silk, Wyse & Shields, 1987, Tegmark, Silk &
Evrad 1993, Miralda-Escude & Rees, 1997, Nath & Trentham, 1997, Madau,
Ferrara, Rees 2001, Furlanetto & Loeb 2003, Scannapieco 2005, Bertone,
Stoehr & White 2005, Oppenheimer & Dave 2006, Bertone, De Lucia &
Thomas 2007). The mechanical energy that drives outflows arises from the
supernovae (SNe) explosions associated with the star formation activities in
the galaxy. We concentrate on how much of the IGM can be polluted by
the outflows from galaxies and also what would be the metallicity of those
polluted regions. We follow Paper II in modelling galactic outflows and their
feedback effects. Here we briefly outline this procedure.

First, the star formation rate of an individual galaxy is converted to the
rate of SNe. This depends on the assumed IMF. For the IMF used in this
work, one SNe is produced per 50 solar mass of star formation. A single SNe
is assumed to produce 1051 erg of energy out of which a fraction εw = 0.1
goes into the outflow. The outflow is taken to be spherically symmetric and
its dynamics is followed using a thin-shell approximation (see Eqs. (5)-(16)
of Paper II for the details). The dark matter potential of the halo is assumed
to be in NFW profile and a fraction (fh = 0.10) of the total baryonic mass
is taken to be in thermal equilibrium at virial temperature in this potential.
The amount of mass coming out of the star forming region is assumed to be
proportional to the mass of stars formed with the proportionality constant
ηw = 0.3. We also assume that 90% of the shocked IGM/halo gas is concen-
trated in the thin-shell region and rest 10% is incorporated in the hot bubble.
The initial radius of the shell is taken to be 1/10 the virial radius, and the
outflow is frozen to the Hubble flow when its peculiar velocity drops to the
sound speed of the surrounding IGM.

The extent Rs, to which an individual outflow can propagate into the
IGM, depends mainly on the rate of SNe productions and the energy effi-
ciency of the outflow, εw. In Paper II, we showed that Rs is fairly indepen-
dent of other parameters as long as the outflow escapes the halo potential.
Note that we have already constrained f∗/η by fitting the UV luminosity
functions of LBGs. However, we need some specific values of f∗ to calculate
the effect of outflow. For the PS mass function we take f∗ = 0.30 and for ST
and other mass functions f∗ = 0.25 for the whole z range.

After calculating the evolution of a suite of individual outflow models, we
can study several global properties of the wind affected regions. One simple
quantity is the porosity Q(z), which is a measure of the (volume) fraction
of the universe affected by outflows. This is calculated by adding up the
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outflow volumes around all the sources at any redshift:

Q(z) =

∞∫
Mlow

dM

∞∫
z

dzc N (M, zc)
4

3
π [RS(1 + z)]3 . (13)

Here, Rs(M, z, zc) is the radius of an outflow at redshift z, arising from a halo
of mass M which collapsed at redshift zc. This comes from solving for the
outflow dynamics. Note that in the Sasaki formalism as applied to the PS
mass function, one has to replace N (M, zc) by Ns(M, z, zc) (see Paper II).
For Q < 1 the porosity gives the probability that a randomly selected point
in the universe at z lies within an outflow region. For Q ∼ 1, it is more useful
to define the associated filling factor of the outflow regions, which if outflows
are randomly distributed is given by, F = 1 − exp[−Q(z)]. One can also
calculate porosity weighted averages of various physical quantities associated
with the outflows, and their probability distribution functions (PDFs). In
our models, we compute the metallicity of the outflowing gas and the global
average metallicity assuming instantaneous metal mixing within the galaxy
(see appendix A of Paper II).

In Fig. 4 we show the filling factor of the universe as predicted by us-
ing different halo mass functions. The different models considered are: the
ST (long dashed green), JW (short dashed blue), Warren (dot dot dashed
magenta) and Reed (dotted dashed violet) halo mass functions. In all these
models we assume f∗ = 0.25. For comparison we also show the filling factor
as calculated from the the PS mass function using both the Sasaki formalism
(thick solid black line) and by taking the derivative to compute the net for-
mation rate (the short dashed red line). Recall that in these models we take
f∗ = 0.30. It is clear that all the models which employ the derivative N to
characterise the net halo formation rate, predict similar results for the vol-
ume filling factor (with in 10%), with F of order 0.7− 0.8 at z = 3. However
the model using the Sasaki formalism and the PS mass function predicts a
lower volume filling factor (F = 0.55 at z = 3). At z & 6 the difference in
F is like 30% where as at z . 3 the difference is about 50%. We find as
in Paper II that outflows from halos in the mass range M ∼ 107 − 109 M�
dominate the volume filling factor.

It is interesting that for the PS mass function, the volume filling factor
is different for the two ways of calculating the net formation rate, namely
the derivative and the Sasaki formalism. This obtains although there was
hardly any difference in the UV luminosity function calculated from these
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Figure 4: The volume filling factor of the IGM by the outflows for models with different
halo mass functions. The dotted (red), long dashed (green), short dashed (blue), dot dot
dashed (magenta) and dotted dashed(violet) curves are for the model with the derivative
of the PS, ST, JW, Warren and Reed mass function respectively. We also show the filling
factor calculated using the Sasaki formalism of the PS mass function with thick solid
(black) line. The thin solid (black) line is obtained assuming no destruction of outflows,
and the formation rate of halos from the Sasaki formalism applied to the PS mass function.
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two methods. The reason behind this can be understood as follows. In case
of Sasaki formalism whenever a halo is destroyed, one implicitly assumes that
the outflowing material no longer contributes to the volume filling factor. But
in the models with the derivative of the PS mass function once an outflow
is formed it contributes to the volume filling factor for ever ; although the
derivative itself gives the net (formation minus destruction) rate, at zc. And
thus leads to a smaller formation rate of halos at zc. The net difference
between Sasaki formalism and the derivative of the PS mass function can be
seen from Fig. 5.

In this figure we show Ns(M, z, zc) and N (M, zc) as a function of zc for
108 M� and 109 M� halos, while fixing z = 3.0. Note that Ns(M, z, zc)
and N (M, zc) come as a part of the integrand over zc while calculating the
porosity of the galactic outflows at a given z (Eq. 13). We choose these
values of M as outflowing material from halos with such masses dominate
the volume filling factor of IGM, as mentioned above. It is clear from the
figure that at typical collapsed redshifts for such halos (as indicated with the
arrows) the derivative of the PS mass functions predicts about a factor of 3
higher net formation rate compared to that of Sasaki formalism applied to
the PS mass function. This difference decreases with decreasing zc and at
certain redshift the Sasaki formalism predicts higher formation rate (weighted
by the destruction probability) compared to the derivative. However the star
formation in halos with these masses would be suppressed by the radiation
feedback due to reionization at zc <6. Therefore, at z = 3, the integrand
in Eq. 13 will be larger for the PS derivative compared to that obtained
from Sasaki formalism (for the range of halo masses and zc that contributes
dominantly to F ). For this reason the model with the derivative of the PS
mass function predicts higher volume filling factor even if the UV luminosity
function predicted by them were same.

Note that when we use the Sasaki formalism, we could go to the other
extreme and not destroy any outflow, by replacing the survival probability,
D(z)/D(zc), with unity. In this case we find that the volume filling factor
is the largest, even higher than that obtained when one uses the derivative
of the mass function to calculate the halo formation rate. We show this as
a thin solid line in Fig. 4. The volume filling factor that realistically obtains
will be bracketed by these two cases (the thick/thin solid lines of Fig. 4).
This difference also gives an estimate of the uncertainty in the volume filling
factor obtained in semi-analytic models.

We see from Fig 1 that the net formation rates, calculated using the
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derivative of all the mass functions, agree reasonably well, for halos that
contributes dominantly to F . This is the reason behind the close agreement
behind F estimated using the derivative of different mass functions.

Next we compare various physical properties of outflows for different halo
mass functions. In Fig. 6 we show various physical parameters related to
outflows for the derivative of the PS (dashed) and ST (solid) mass function.
For comparison we also show the results for the Sasaki formalism of the PS
mass function with dotted dashed line. In panel (a) we compare the filling
factor that we have already discussed in great details. Panel (b) compares
the porosity weighted average mass of the dark matter halos that contribute
to the filling factor. Since the ST mass function predicts more high mass
objects, the average halo mass that contribute to the filling factor predicted
by this model is slightly higher compared to the PS mass function for z & 3.
However, vary massive halos which formed at lower redshifts do not have an
outflow due to smaller value of f∗. Hence at z . 3 average mass contributed
to the volume filling factor is less in the models with the ST mass function
compared to that with the PS mass function. Panel (c) compares the porosity
weighted average radius of outflows whereas panel (d) compares the global
average metallicity produced by star formation (the top set of curves), and
that which is injected into the IGM (the lower set of curves). Due to the
reason already mentioned above, the average radius of the outflow and the
metallicity show a similar behavior as the average halo mass for different
models. In panel (e) and panel (f) we show the porosity averaged peculiar
velocity of the outflow and the temperature of the hot bubble respectively.
Both the average peculiar velocity and the temperature are higher in case
of the Sasaki formalism mainly reflecting the fact that f∗ is higher for the
PS mass function compared to the ST mass function. For the PS mass
function, although the Sasaki formalism and the derivative have the same f∗
the average peculiar velocity and the temperature are lower in the model with
the derivative due to the higher volume filling factor. In general, we conclude
from Fig. 6 that even if the filling factor changes depending on the way we
calculate the net formation rate (upto 50% change), the physical properties
related to the outflow do not vary significantly between these models. As
mentioned earlier, an important invariant feature of all the outflow models
is that small mass halos with M ∼ 107 − 109M� contribute dominantly to
the porosity Q(z) (as originally discussed by Silk, Wyse & Shields, 1987,
Miralda-Escude & Rees, 1997, Nath & Trentham, 1997, Madau, Ferrara &
Rees, 2001).
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Figure 6: The global properties of outflows for the derivative (dashes) and Sasaki formalism
(dotted dashes) of the PS mass function. We also show for the derivative of the ST mass
function with solid lines. Panel (a) shows the volume filling factor F . In panel (b) and (c)
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(in kpc) respectively. In panel (d) we show the global average metallicity produced by star
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of the outflows are shown in panel (e) and (f) respectively.
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The mildly overdense regions which produce the Lyman-α forest lines
probe the power spectrum of density perturbations down to a comoving scale
of half a Mpc or so at z ∼ 3. In Paper II we found that in the atomic cooled
models, the IGM is polluted by regions of hot gas (T ∼ 105 K) with sizes of
200− 800 kpc. This could potentially distort the density power spectrum as
inferred from the Lyman-α forest. There is no evidence in the current data
for such distortions. However, this aspect needs to be studied further to see
how much of a problem this is for the above models.

On the other hand, we also noted that molecular cooled models are better
placed to seed the IGM with metals without strong distorting effects on the
Lyman-α forest lines. This is because outflows from molecular cooled halos
can significantly fill the universe, even at z ∼ 8, while at the same time
having typically a much smaller radius. We therefore also consider here the
effect of changing the halo mass function in such models.

In Fig. 7 we show the volume filling factor predicted by the molecu-
lar cooled models, as obtained from the models with derivative of the PS
(dashed) and ST (solid) mass function. We also show the F (z) when we
use the Sasaki formalism and the PS mass function (dotted dashed line).
We take f∗ = 0.05 in the molecular cooled halos in order to be consistent
with the optical depth of reionization inferred from the CMB polarization
measurements (see Table 1). As expected all these models fill the IGM with
outflows and metals at fairly high redshift (z & 8). The volume filling
factor is again smaller when one employs the Sasaki formalism, essentially
for the same reason as discussed in the case of atomic cooled models. The
higher value of f∗ in the model with the derivative of the PS mass function
compared to the model with the derivative of the ST mass function makes
the volume filling factor larger for the former model. We have also checked
that physical parameters in these models are similar to that obtained in the
molecular cooled models discussed in Paper II. Hence the conclusions about
the molecular cooled models arrived at in Paper II remain; that they are more
favorable in spreading the metals, without unduly distorting the Lyman-α
forest.

6. Discussions and Conclusions

In a series of papers (Paper I and Paper II) we have been developing semi-
analytic models of star formation and associated outflows in high redshift
galaxies that are constrained by available observations on UV luminosity
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function and reionization. Our models successfully explained the observed
UV luminosity functions of Lyman break galaxies at z ≥ 3 and predicted
various effects of outflows form the galaxies on the metal enrichment of the
IGM. In all these models one of the main ingredients is the halo mass function.
We used the standard PS mass function with the halo formation rate given
by Sasaki (1994). However the halo mass functions determined by fitting
various numerical simulations of galaxy formation differ considerably from
the PS mass function, especially for rare objects. It is then necessary to
examine how this affects the model predictions given in Paper I and II. Here,
we present a systematic comparison of the results for different analytical
forms of the halo mass functions.

Further, two methods are normally used in the literature to compute the
net formation rate of halos for the PS mass function; (i) the formalism of
Sasaki is used to calculate a formation rate of halos at collapse and then
fold in the halo survival probability to later epochs, or (ii) the derivative
of the PS mass function is employed to get a net formation rate (formation
rate minus destruction rate) at any redshift. We had employed the Sasaki
formalism for the PS mass function in Paper I and II. Here we also calculate
model predictions using the derivative of the PS mass function to test the
sensitivity of the results to the manner of computing the net halo formation
rate. Such a comparison is also important as the Sasaki formalism is not
easily generalizable to other mass functions. For all other halo mass functions
one has to simply take recourse to its derivative, to model the net formation
rate of halos.

We first show, by comparing the derivatives of all mass functions, that
the historically used Press-Schechter mass function predicts a lower forma-
tion rate of rare high mass dark matter halos compared to any other mass
function. However, all other mass functions do not differ significantly in the
formation rate of collapsed dark matter halos. Therefore, significant differ-
ences can arise in model predictions made using the PS mass function and
the other forms of the mass functions considered here. We show the effect of
this difference by (i) calculating the reionization history of the universe, (ii)
fitting the observed UV luminosity functions of high redshift LBGs, and (iii)
calculating the feedback of star formation on the IGM. The main results of
our study are as follows:

• In order to produce a given electron optical depth to the reionization,
the efficiency in the star formation and/or in UV escape fraction has
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to be lower in the models using ST and other mass functions obtained
from simulations compared to that with the PS mass function. This
decrease has to be much more in the small mass molecular cooled halos
if they also contribute to the reionization process.

• All new sets of data points, which extend the UV luminosity function
of LBGs to the faint end and to higher z, can be naturally explained
in the framework of our earlier models.

• The luminosity function determined using the PS and ST mass func-
tions match reasonably at z = 3, but they differ more and more strongly
as one goes to higher redshifts, and especially at the bright end (right
panel of Figure 2). This is because as one moves to higher and higher
redshifts a given luminosity range is contributed by rarer and rarer
objects and the PS mass function predicts a lower net formation rate
compared to the ST mass function or other mass functions derived
from simulations. The UV luminosity functions determined from all
mass functions, other than the PS mass function, agree reasonably
with each other.

• We find that the luminosity functions calculated using the derivative
of the PS mass function and that obtained from the Sasaki formalism,
differ negligibly for κ = 1 and by less than 30% for other values of
0.1 < κ < 4.

• We show, by using χ2 minimization technique, that the models with
the ST halo mass function provide a better fit to the observed UV
luminosity functions in the redshift range 3 ≤ z ≤ 7.4 compared to the
models with the PS halo mass function. However, the redshift evolution
of the best fit model parameter f∗/η crucially depends on the data set
used, as well as various uncertainties such as k-correction, dependence
of dust opacity on the wavelength etc.

• Models with different mass functions, using the derivative of the mass
functions to calculate the net formation rate of halos, predict very sim-
ilar (with in 10%) volume filling factor for metals in the IGM. However,
these models always predict a higher volume filling factor compared to
the Sasaki formalism of the PS mass function. Therefore, even though
the method used to calculate the formation rate of collapsed dark mat-
ter halos has only a mild effect on the predictions of high redshift
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UV luminosity functions, they do predict different outflow feedback to
the IGM. Different models give similar predictions for other physical
parameters associated with outflows and the conclusions of Paper II
appear to be largely insensitive to the adopted form of the halo mass
function.

The next important step in the development of our models could be to
implement it in the framework of a numerical simulation or by generating
merger trees. This will help in unambiguously determining the halo formation
rate and its survival probability. However, as mentioned earlier, one has to
resolve the formation of halos right from 107M� to 1012M� in order to model
both IGM metal enrichment and the galactic luminosity function. To achieve
such a large dynamic range would be a major challenge.
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