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Repeated yield drop phenomena as a cooperative effect

G ANANTHAKRISHNA
Materials Science Laboratory, Reactor Research Centre, Kalpakkam 603 102, India

Abstract. We present a theoretical model of repeated yielding (RY) which reproduces many
experimentally observed features, apart from showing how the temporal behaviour of the
phenomenon emerges as a consequence of the cooperative behaviour of defects. We first
consider the case of step-like creep curves. Our model leads to a coupled set of nonlinear
differential equations which admit limit cycle solutions, and thence jumps on the creep curve.
Approximate closed form solutions for the limit cycles and the steps on the creep curve are
obtained. The model is then extended to the constant strain rate experiment by including the
machine equation. The temporal ordering of RY is shown to follow, as well as several other
features characteristic of RY. Chaotic flow is also exhibited: the model has a sequence of period-
doubling bifurcations with an exponent equal to that of the quadratic map. Finally, we have
analysed the fluctuations during the onset of RY using nonlinear Langevin equations.
Fluctuations in the periodic (RY) phase are also investigated. We conclude that RY is another
example of a dissipative structure.

Keywords. Repeated yield drop; defects; cooperative behaviour; limit cycle solutions;
nonlinear Langevin equations.

1. Introduction

There have been numerous phenomenological treatments of repeated yielding (ry) in
the metallurgical literature (Bell 1973; Bodner and Rosen 1967; Cottrell 1953;
McCormic 1972; Penning 1972; van den Beukel 1975, 1980). The best known model is
Cottrell’s dynamic strain-ageing model and its extensions (McCormic 1972; van den
Beukel 1975, 1980). In these models, expressions are derived for such quantities as the
critical strain, the critical strain rate, the dependence of the flow-stress on the strain rate,
etc. Little attention has been paid to relating these quantities to the basic dislocation
mechanisms such as cross glide, the Frank-Read mechanism, the formation of
dislocation locks, etc. Also, there has been no attempt to investigate how the temporal
behaviour of repeated yielding could arise naturally as a consequence of the basic
dislocation mechanisms. From this point of view Cottrell’s model is essentially static in
character.

The transition from a single yield drop to a situation where Ry occurs when certain
‘drive’ parameters (e.g., the strain rate, temperature, etc.), are varied has the physical
features of a nonequilibrium phase transition. (For examples of such transitions
which arise only when the system is driven away from equilibrium, see Nicolis and
Prigogine 1977, Haken 1978). We have constructed dislocation-dynamical model
(Ananthakrishna and Sahoo 1981; Ananthakrishna and Valsakumar 1982; Valsakumar
and Ananthakrishna 1983) which exhibits most of the experimentally observed features
of Ry and demonstrates that Ry is a nonequilibrium phase transition. Needless to say, we
consider somewhat idealized conditions, and further do not attempt to fit any actual
data. In § 2, we start with the simplest case, namely, steps on the creep curve. Based on
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well-known dislocation mechanisms, we introduce a model which transforms one type
of dislocation into another, giving rise to a set of coupled nonlinear differential
equations for the corresponding densities. For a range of values of the rate constants,
these equations are shown to admit limit cycle solutions. These lead immediately to
jumps on creep curves. The model predicts a temperature range in which these jumps
appear. In §3, we outline how approximate closed form solutions for the limit cycles
and the steps on the creep curve are obtained. The results are shown to agree with
experiments on zinc (Zagorukuyko et al 1977). Section 4 contains the extension of the
model to the constant strain rate case by coupling the equations of §2 to the machine
equations. The temporal ordering of ry is shown to follow (Ananthakrishna and
Valsakumar 1982). Also demonstrated are several important features typical of ry such
as bounds on the strain rate, bounds on the concentration of solute atoms, the negative
strain rate dependence of the flow stress, the dependence of the amplitude on the strain
rate and strain, etc.

Our model also exhibits chaotic flow, which finds some support from experiments.
We find a sequence of period doubling bifurcations (Ananthakrishna and Valsakumar
1983) with an exponent identical to that for a quadratic map. This is presented in §5.
Section 6 is devoted to the study of fluctuations during the onset of Ry using nonlinear
Langevin equations, We have used the Monte-Carlo and Gaussian decoupling methods
(Valsakumar et al 1983). As the strain rate approaches its critical value, the variance not
only diverges, but also shows the periodic nature of the fluctuations. Fluctuations
within the periodic phase (ry) are also investigated. Our entire analysis shows that ry is
another example of a dissipative structure (Nicolis and Prigogine 1977). In the final
section, some unresolved problems are discussed.

2. Steps on the creep curve

2.1 The model

Perhaps the simplest manifestation of instability in plastic flow, from a conceptual
point of view, is a creep curve with steps. However, there are not many instances of
measurements where stepped response has been observed (Ardley and Cottrell 1953;
Navratil et al 1974; Stejskalova et al 1981; Zagorukuyko et al 1977, Da Silveira and
Monteiro 1979; Lubahn and Felgar 1961). There appears to be no detailed theory for
the phenomenon. The model we propose (Ananthakrishna and Sahoo 1981;
Valsakumar and Ananthakrishna 1983) is a natural extension of our earlier work
(Sahoo and Ananthakrishna 1982) where a theory of creep was developed under the
assumption that mobile dislocations (denoted by g) and immobile dislocations
(denoted by s) transform into each other and are in dynamical balance. In the present
case, we introduce a third species of dislocations (denoted by i) which are surrounded by
clouds of solute atoms. These are dislocations moving much slower than the mobile
species, ultimately becoming immobile. The introduction of this species is reminiscent
of the basic feature of Cottrell’s (1953) theory, so that the model is in keeping with the
essential spirit of Cottrell’s theory.

Let N, N and N, denote the densities of the g, s and i species respectively. The rate
equations for these quantities are (a dot denotes the time derivative):

N,=0V,N,—uN?— N ,N,+ AN ,—aN,, (1)
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N, = kuN? — NN, = AN, +«'N,, )
N,-:ocNg—oc’Ni. 3)

Here V denotes the dislocation velocity. We assume that 6, [, ', o, o, and 4 are
constants for a given stress at a given temperature. The first term in (1) corresponds to
the production of dislocation by the cross glide mechanism; the second corresponds to
the immobilization of two mobile dislocations and the annihilation of pairs of
dislocations at a rate (] —k)y; the third corresponds to the annihilation of a mobile
dislocation with an immobile one; and the last arises from solute atoms gathering
around dislocations. Once a certain number of solute atoms gather around a moving
dislocation, its mobility is reduced, and it becomes a type i dislocation (hence the source
term aN, in (3)). As the size of the solute atom cloud increases, the dislocation
eventually becomes immobile (hence the source term o’ N; in (2)). The term AN, comes
from the (thermal or athermal) activation of immobile dislocations. The parameter o is
expected to depend on the diffusion constant of the solute atoms, their concentration
and the velocity of dislocations of type i. The parameter o is the rate of immobilization,
and hence should be expected to depend on the critical velocity (k is a parameter close to

unity).
It is convenient to make equations (1)-(3) dimensionless by setting
x= (AN, y=@0V)N,, z=(ut/inN., (4)
Then
dx/dt = (I—a)x —bx* —xy+), %)
dy/dt = b(kbx* —xy —y+ az), (6)
dz/dt = c(x —2), (7N
where
A=0Vgt, a=a/0V, b=A0V, c= [0V, 8)

(We have set y = y in order to reduce the number of parameters.)

2.2 Stability analysis and existence of limit cycles

Equations (5)-(7) form a nonlinear system. Under well-known conditions (Minorsky
1962), these admit periodic solutions called limit cycles for a certain range of values of
the parameters a, b, c and k. Although the method of investigation is well known, for the
sake of completeness we briefly outline the procedure used. Limit cycles are special
classes of solutions which are isolated closed trajectories in the phase space (x, y, z) such
that any trajectory which is sufficiently close to it either approaches it or recedes from it.
Such closed trajectories can arise only in nonlinear systems. The search for limit cycles
is generally preceded and aided by an investigation of the properties of the system
around the steady state values x,, y,,and z,. The stability of the system is decided by the
nature of its singular points—node, focus, saddle point or centre. Linearising the set of
equations around (x,,),, z,), one obtains an equation of the form

dy/dz =Wy, ©)

where ¥ is the column vector with components (x —X,), (v — ya), (z —z,), and Wis a
3 x 3 matrix. A node arises when all three eigenvalues of W are of the same sign, and a
saddle point when only two of these are of the same sign; a focus occurs when there are
two complex conjugate eigenvalues, and a centre when one eigenvalue is identically zero
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and the other two are pure imaginary. (In the last case the nature of the singular point
may have to be analysed more carefully; see Minorsky 1962).

An attractive limit cycle exists if there is a surface surrounding an unstable focus into
which all trajectories enter: in the present case, we first look for a domain in the
parameter space (a, b, ¢, k) when two of the eigenvalues are complex with at least one of
them having a positive real part, and then show that such a surface exists
(Ananthakrishna and Sahoo 1981). The only constraints that we have on the values of
the parameters are a <1 (which arises because the total rate of production of
dislocations is positive); k < 1;and a,b,c¢ > 0. (N, N;and N; are obviously positive).

2.3 Staircase creep

An analytical solution of (5)-(7) for arbitrary values of the parameters, and valid for all
times, is difficult. To obtain numerical solutions, ¥, must be known as a function
of N = N;+ N,+ N, and o*(N), where o* is the effective stress. For simplicity we
assume ¥, to be constant. Although this assumption is not physical, it can be argued
that it will not alter the qualitative features of staircase creep (Ananthakrishna and
Sahoo 1981). The creep curve obtained by integrating the Orowan equation is shown in
figure 1. The steps on the creep curve appear only in the secondary region, which is
consistent with the existing experimental results (Zagorukuyko et al 1977; Da Silveira
and Monteiro 1979).

Our model also predicts a feature which is in agreement with experiment, namely,
that there are upper and lower bounds for the asymptotic creep rates for which staircase
creep occurs. These arise because the frequency of oscillation ~ ¥, Im w,, where o, is
one of the two complex conjugate eigenvalues of W. Bounds can be put on Imw,,
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Figure 1. Staircase creep for typical values of the parameters a, b and c.
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depending on the basic mechanism prevailing in the system. This implies corresponding
bounds on ¥, in order to have observable steps on the creep curve. This in turn implies
that the phenomenon can only be observed over a finite range of £ (in practice,
somewhat less than three orders of magnitude). Moreover, since ¥, is temperature
dependent (for a fixed stress), this phenomenon can only occur over a fixed range of
temperature, as corroborated by the experimental results of Zagorukuyko et al (1977).

3. Approximate solutions

We outline an analytic procedure for obtaining asymptotic solutions to our
equations. This is essential if one wants to relate the theoretical rate constants to
accessible parameters such as the applied stress ¢, temperature T, concentration of
solute atoms C, etc. Our method follows that of Tyson (1977) for the Belousov-
Zhabotinski oscillating chemical reaction. The main point is to identify a fast mode and
adiabatically eliminate it to obtain a reduced set of two coupled equations from the
original set of three equations (5}-(7). Approximate solutions are then obtained by
using the method of relaxation oscillations (Minorsky 1962; Tyson 1977). Defining
X=x—-X,Y=y-y,Z=z—z,and v = br, (5}-(7) may be re-written in the form

bX = —[aX + Y +bX?+ XY], (10)
Y= —[yX +8Y —bX*+ XY —aZ], (11)
V4 =§[X ~Y], (12)

where the dot now refers to differentiation with respect to t'. Further, the constants
o...,0are

o=a+2bx,+y,—1,f=x,—1,y=y,—2bx, 6 =x,+1 (13)

(The constant « used here is distinct from that appearing in (1) of §2.) Since b < a, c, we
seethat | X | — oo as b — O unless the right side in (10) vanishes identically. This amounts
to saying that X must change with a characteristic time ~ b to maintain the condition

X +pY+bX2+XY =0 ) (14)

Thus X is a fast variable that can be adiabatically eliminated from (10)-(12), and the
resulting pair of independent equations used for further analysis.

We use the results of stability analysis and further express a, 8, 7, 8, x,, y, and z, as
power series in b. We then determine the ‘null clines’

V=002, = 20) = XO)+ [x+ X, e

and )
Z=0e2Z,=X({) (16)

and again express Z(Y) in powers of b. To find the limit cycles, we look for the
intfrsection of the null clines in the region of negative slope. From the expressions for
the'null clines Z, and Z, we obtain a reasonable idea of the phase portrait. For a < 1/3
and for 1/,/2 < a < 1, the steady state is stable. For 1/3 < a < 1/ /2, the null clines
intersect in the negative slope region, which means that a limit cycle exists. Figure 2
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shows a typical phase portrait for 1/3 <a < 1/2. Starting from an arbitrary point, the
trajectory moves along the null cline Y = 0 until it reaches the turning point D, from
where it almost instantaneously jumps to A. Thereafter it moves along the branch Y = 0

" (slowly) until it reaches the second turning point B from where it jumps to C, and the
process continues. Thus the trajectory is a closed one and the limit cycleis A - B—C
— D — A. From the expressions for Z, and Z,, it is possible to calculate also the period,
the amplitude and the wave form of the limit cycle solution. Finally, as already stated,
we can integrate the Orowan equation to obtain the steady state creep curve which
exhibits steps (Valsakumar and Ananthakrishna 1983).

Although the results of the model (in its present form) are not directly applicable to
the detailed results on zinc (Zagorukuyko et al 1977), they still permit qualitative
comparison. That the steps are seen only in the secondary creep region is obviously
consistent with our theory, since the latter predicts a bifurcation from the steady state
solution to a periodic one. Zagorukuyko et al (1977) report a rapid monotonic increase
of the magnitude of the step in the strain as a function of o,; a weak, decreasing
dependence of the period of the jump on o,; and a decrease of the magnitude of the
jump in strain with increasing 7. All these features are consistent with our work.

4. Repeated yield drop

Our model can be extended to a constant strain rate experiment by augmenting
equations (1)~(3) with the machine equation representing the load sensed by the load

cell, namely
6, = K[€—bo(N,+YN))V,(6%)], an

where a dot denotes the time derivative. Here & is the imposed strain rate, K is the
effective compliance, b, is the Burgers vector and o* is the effective stress. The second
term on the right in (17) is the plastic strain rate £, We assume the power law
V, = Vylo*/ay)", with o* = o,—HN'?, where H is a constant characteristic of
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hardening and m is a velocity exponent. Following a procedure similar to that of § 2, it
can be shown that there is a domain in the space of the relevant parameters for which
limit cycle solutions exist. Choosing values of the parameters in the domain of
instability so as to be consistent with the expected values of the dislocation densities and
the yield drops, numerical solutions of the system of equations may be obtained, and
various characteristic features of the ry exhibited may be studied. These appear to be
generally consistent with the experimental results. (Note that the latter are in the nature
of averages over the sample dimensions.) We list these salient features: (a) There is a
range of ¢ over which serrations are seen. (b) The model exhibits the negative strain rate
behaviour of the flow stress at a fixed value of the plastic strain. The inset in figure 3
shows a typical plot of 6, vs £,, with a minimum in o, at a point &, = 4_,.. Curves
corresponding to larger ¢, are displaced successively upwards. This feature has been
both theoretically (Penning 1972; van den Beukel 1975) and experimentally verified
(Bodner and Rosen 1967). (c) Figure 3 shows a typical plot of serrated yielding. The
serrations are asymptotically periodic. Since it is not possible to identify them (from the
plot itself) as serrations of type A or type B, a strain rate change test (Wijler and van
Westrum 1971) must be carried out, from which it is found that beyond ¢, the
serrations are of type B. (d) The amplitude of the serration increases up to &min and
decreases thereafter. (¢) The amplitude increases and saturates as a function of e,
consistent with experiments (McCormic 1971). (f) There are upper and lower bounds
on the parameter « of (1) within which serrated yielding occurs. Since o depends on the
concentration of solute atoms, this implies that there is a range of the solute atom
concentration in which the phenomenon occurs. (g) ¢, (the critical strain), as a function
of &, first decreases and then increases (McCormic 1971). (h) Beyond the range of &
where serrated yielding occurs, the ‘normal’ behaviour of o,(¢) is resumed.

It should be pointed out that there has so far been no attempt to derive the negative
strain rate behaviour of flow stress (which is crucial for any meaningful description of
the phenomenon) starting from dislocation interactions. In the existing theories this is
either assumed (Penning 1972) or derived (van den Beukel 1975) through a
phenomenological treatment of waiting times involving in any case only individual
dislocations. In contrast, this property emerges naturally in the present model from a
consideration of dislocation interactions.

We have shown that the new temporal order represented by serrated yielding is the
consequence of a bifurcation from a temporally homogeneous steady state plastic flow
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beyond some critical values of the parameters. This order is a result of a balance
between the energy input (in the form of dislocation multiplication) and dissipation
(annihilation, immobilisation and other processes). The phenomenon is obviously a
far-from-equilibrium situationand isan example of a dissipative structure (Nicolis and
Prigogine 1977).

5. Chaotic flow

We now turn to the chaotic flow exhibited by our model over a certain range of a drive
parameter, the applied strain rate. (There is also some experimental evidence for sucha
flow, which will be discussed subsequently in brief). This adds to the growing list of
models and physical situations exhibiting chaos (Ott 1981; Eckmann 1981; Lauterborn
and Kramer 1981; Jefferies 1982). The model has an infinite sequence of period-
doubling bifurcation eventually leading to chaos. The region over which chaos is
exhibited is very small compared to the range of ¢ over which ry is seen (ry is considered
to be periodic). We have calculated the value of the associated exponent and found
it to be the same as the exponent for the quadratic map. We have also obtained the
associated one-dimensional map. As the parameter of interest is the applied strain
rate & we fix the values of all the other parameters within the instability region and
study the bifurcation sequence with respect to the parameter e = &(u/AVbo). The
region where the period doubling bifurcation occurs is small, and is located near the
upper end of the range of e (the dimensionless strain rate) over which Rry is observed.
For the chosen values of the parameters, the first bifurcation from the periodic state
with period T to a state with a period 2T occurs at ¢; = 159-98444, while the successive
bifurcation to states with period 22T, 2°T, . . ., occur at e, = 1737178, e3 = 175:8974,
... The exponents & = lim(e, — €,-1)/(én+1 —€,) appears to be very close to that
obtained by for the quadratic map (Grossman and Tnomae (1977), Feigenbaum
(1978)). The estimated value of e is 1764669, beyond which we find chaotic motion.
Figures 4and 5 show the variation of the stress o, with time (equivalently, the strain) for
e = 174679 (motion with period 47) and e = 178:205 (chaotic motion) respectively. A
log-log plot of the projection of the strange attractor in the N, — o, plane is shown in
figure 6. The associated one-dimensional map is shown in figure 7. Unlike the
corresponding map for the Lorenz model (Ott 1981), our map has a smooth rounded
maximum similar to the quadratic map except that it is very much skewed.

The fact that our model can exhibit chaotic flow has prompted us to look for
experimental evidence for the plots of repeated yield drops. (Of course, the value of the
parameter which controls the magnitude of the variation in g,, i.e., the magnitude of the
yield drop, has to be appropriately chosen). Even though we are constrained by the fact
that the average stress level remains constant in our model, we have found evidence
(Hall 1970) in support of such flows. Experimentally, too, this occurs towards the end of
the & range for which ry is seen. If we subtract the normally observed slow increase in
the base level of the stress, there appear to be many more situations which perhaps
correspond to chaos (Rosen and Bodner 1969).

6. Fluctuations during the onset of repeated yielding

We have discussed so far the possibility of a new temporal phase arising as a drive
parameter (here, £) is varied. The situation corresponds to a hard mode instability in

mean -
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Figure 4. Stress-strain curve for e = 174:679 with period 4T.
Figure 5. Stress-strain curve for e = 178-205, i.e,, in the chaotic region.

Figure 6. A log-log plot of the projection of the strange attractor for e = 178-205 in the
x— ¢ plane. Here x = (u/4) N, and ¢ = a,/o,.

Figure 7. The one-dimensional map associated with chaotic flow in the model.

which the real part of complex conjugate modes changes sign (from negative to
positive) in the frequency plane, as the drive parameter crosses its critical value. The
foregoing analysis is completely deterministic. We now analyse the nature of the
fluctuations when the parameter is in the neighbourhood of its critical value.

Our analysis begins with the nonlinear Langevin equations obtained by adding
Gaussian white noise terms to the deterministic equations. We have used both the
Monte Carlo technique and a Gaussian decoupling method (Valsakumar et al 1983) to
study the fluctuations. (However, in the present context the second method can be
applied only in the special case H = 0; otherwise powers of N'/2 are present, which
cannot be handled without further approximations). It is convenient to discuss the
general features of the fluctuations with the help of the equivalent Fokker-Planck
equation. The standard form of the Fokker-Planck equation is

0 0 18
7 (60 = 55 (KO- Ex(E0]) + 575 [P0 (E 0], (18)
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where

K() = %‘y—) D) = C,(y), (19)
and

Y cand g = x-y) 0)

Here, x is the random variable, y its mean, C, (y) the first jump moment and C; (y) the
second moment. (K is the regression matrix.) eis the (system-size) expansion parameter.
To identify the onset of the periodic state beyond the critical value of the drive
parameter, it is convenient to use the concept of the ‘irreversible circulation of

fluctuation’ defined by (Tomita and Tomita 1974; Tomita et al 1974)

« = 4[(Kof —Ka] (21)
where ¢ is the variance (T represents the transpose). K and o are related by
jo=a+Ko+13D. (22)

If a periodic state occurs as a result of the hard mode instability both « and o diverge;
the instability is incurred through a, which becomes increasingly large as the transition
point is approached from below.

Our preliminary investigations reveal that as & — & from below, the fluctuations
show an overall growth whichis indicative of the divergence of the variance, in addition
to exhibiting a near periodic modulation which is indicative of the approach to a
periodic state. For & > £, the fluctuations have the normal characteristics expected
when limit cycle solutions are supported. The details of this study will be reported
elsewhere. '

7. Concluding remarks

We have shown that the state of temporal order represented by steps on the creep curve
or by repeated yield drops is a consequence of a bifurcation from a temporally
homogeneous, steady-state plastic flow. (A similar approach has been used by Kubin
et al (1984) for low temperature ry.) A major criticism that can be raised is that the
theory does not take into account the inhomogeneous deformation that normally
accompanies the phenomenon. (Although, to the best of the author’s knowledge,
experiments do not show which is the cause and which is the effect, i.e., whether an
inhomogeneous deformation is the cause and a yield drop is the effect, or vice versa. We
believe that it is not possible to disentangle the two. Nor is there any theory that takes
the inhomogeneous deformation into proper account. The closest is that of Penning
(1972) in which the feature is simply assumed). However, we argue (Ananthakrishna
and Valsakumar 1982) that if the space dependence is properly taken into account, the
inhomogeneity of the deformation should follow automatically. The point is that such
an extended model would still exhibit the negative strain rate behaviour of the flow
stress (which has been assumed by Penning (1972) to show that hopping and
propagating band type solutions are supported). Attempts are underway to dem-
onstrate explicitly that such solutions indeed occur when appropriate space depen-
dence is included.
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Another possible criticism could be that the model merely ‘mimics’ the effects of t.he
waiting of dislocations at obstacles which van den Beukel (1975) has used to dcn\.fe
o(¢,). However, this work deals with individual dislocations whereas what is observed in
an actual experiment is an ensemble average over participating dislocations. Therefore,
for such a theory to hold good, there must be a ‘phase coherence’ between the
dislocations, if the effects are to manifest themselves at a gross level. Further, itis known
that the negative strain rate behaviour is essential for ry. (For a detailed analysis of
various tensile test conditions using the negative strain rate behaviour, see Neelakantan
and Venkataraman 1983). Our analysis shows that this behaviour is a consequence of
the competition between different dislocation interaction mechanisms. We have a]s.o
checked (Ananthakrishna and Sahoo 1981) that the incorporation of certain other basic
dislocation mechanisms (pile up, pinning and depinning of dislocations from obstacles)
leads to similar results.

Finally, it should be pointed out that several materials like nylon (Schultz 1974),
metallic glasses (Takayama 1979), wood, etc. are known to show ry. The present work
suggests that the mathematical mechanism in all these cases must be the emergence of
limit cycle solutions which are characteristic of non-linear systems. As plastic flow is
basically nonlinear, such solutions are an intrinsic possibility. The basic microscopic
physical mechanisms of course are bound to be different in different materials.
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Discussion

P Rodriguez: You cited some results on zinc. In your model, the Cottrell type of solute
locking is envisaged. What was the solute species?

G Ananthakrishna; Zinc is a poor example (the dislocations are actually produced due
to inhomogeneities at the surface).

Rodriguez: Many of the conclusions with respect to the critical strain, the magnitude
of the strain burst, the delay time for the strain burst to occur, etc., follow automatically
once Cottrell locking is introduced. It is therefore not surprising that the model gets

these right.

Ananthakrishna; Cottrell iocking is not manifest in the equations of the model.

N Kumar: You get period doubling bifurcations even though your maps are not
discrete. Is this because of the higher dimensionality of the system of equations?

Ananthakrishna: One-D are the simplest of systems which exhibit chaos. Coupled
system of differential equations also exhibit such a behaviour. The associated 1-D map

can be obtained.

C K Majumdar: It would be interesting to examine the structure of your set of
equations from the point of view of catastrophe theory.




