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ABSTRACT
We present a method for studying the proximity effect and thedensity structure around
redshift z=2-3 quasars. It is based on the probability distribution of Lyman-α pixel optical
depths and its evolution with redshift. We validate the method using mock spectra obtained
from hydrodynamical simulations, and then apply it to a sample of 12 bright quasars at red-
shifts 2-3 observed with UVES at the VLT-UT2 Kueyen ESO telescope. These quasars do
not show signatures of associated absorption and have a meanmonochromatic luminosity of
5.4 × 10

31 h−2 erg s−1 Hz−1 at the Lyman limit. The observed distribution of optical depth
within 10 h

−1Mpc from the QSO is statistically different from that measured in the general
intergalactic medium at the same redshift. Such a change will result from the combined effects
of the increase in photoionisation rate above the mean UV-background due to the extra ioniz-
ing photons from the quasar radiation (proximity effect), and the higher density of the IGM if
the quasars reside in overdense regions (as expected from biased galaxy formation). The first
factor decreases the optical depth whereas the second one increases the optical depth, but our
measurement cannot distinguish a high background from a lowoverdensity. An overdensity
of the order of a few is required if we use the amplitude of the UV-background inferred from
the mean Lyman-α opacity. If no overdensity is present, then we require the UV-background
to be higher, and consistent with the existing measurementsbased on standard analysis of the
proximity effect.

Key words: Methods: data analysis - N-body simulations - statistical -Galaxies:intergalactic
medium - haloes - structure - quasars: absorption lines

1 INTRODUCTION

The hydrogen Lyman-α absorption lines of the ‘Lyman-α forest’
seen in the spectra of distant quasars, are a powerful probe of the
physical conditions in the intergalactic medium (IGM) at high red-
shifts (1.8 ≤ z ≤ 6). It is believed that most of the lines with
column density,NHI

<
∼ 1014 cm−2 originate in quasi-linear density

fluctuations in which the hydrogen gas is in ionization equilibrium
with a meta-galactic UV background produced by star forming
galaxies and quasars. Non-linear effects are unimportant and there-
fore the properties of the Lyman-α forest are described well by just
three basic ingredients: quasi-linear theory for the growth of bary-
onic structure, a UV radiation field, and the temperature of the gas

⋆ Based on observations collected at the European Southern Observatory
(ESO), under the Large Programme “The Cosmic Evolution of the IGM”
ID No. 166.A-0106 with UVES on the 8.2 m KUEYEN telescope operated
at the Paranal Observatory, Chile.

(Bi 1993; Muecket et al. 1996; Bi & Davidson 1997; Hui, Gnedin&
Zhang 1997; Weinberg 1999; Choudhury, Srianand & Padmanab-
han 2001a; Choudhury, Padmanabhan & Srianand 2001b; Schaye
2001; Viel et al. 2002a). This paradigm is impressively confirmed
by full hydrodynamical simulations (Cen et al 1994; Zhang, Anni-
nos & Norman 1995; Miralda-Escudé et al 1996; Hernquist, Katz
& Weinberg 1996; Wadsley & Bond 1996; Zhang et al. 1997; The-
uns et al. 1998; Machacek et al 2000; see e.g. Efstathiou, Schaye &
Theuns 2000 for a recent review).
In photoionization equilibrium, the optical depth,τ , is related to
the overdensity of the gas,∆ ≡ ρ/〈ρ〉, by

τ ∝ ∆2T−0.7/Γ12 ∝ ∆2−0.7(γ−1)/Γ12 . (1)

Here,Γ = Γ12 10−12s−1 is the hydrogen photo-ionization rate
andT (∆) the temperature of the gas. The associated transmission
F = exp(−τ ) ≡ Fo/Fc is the observed flux (Fo) divided by the
estimated continuum flux (Fc). Photo-ionization heating and cool-
ing by adiabatic expansion introduce a tight relationT = T0 ∆γ−1

http://arXiv.org/abs/astro-ph/0502284v2
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in the low-density IGM responsible for the Lyman-α forest (Hui &
Gnedin 1997; Theuns et al. 1998). The above equation has beenex-
tensively used, especially to probe the matter clustering (Hui 1999;
Nusser & Haehnelt 1999; Pichon et al. 2001; Viel et al. 2002b;
Croft et al. 2002; McDonald 2003; Rollinde et al. 2003).
The UV-background that causes the photo-ionization is dominated
by massive stars and quasars (Haardt & Madau 1996; Giroux
& Shapiro 1996). The amplitude of the corresponding photo-
ionization rate as a function of redshift,Γ(z), and the relative im-
portance of the different sources, are relatively uncertain. Fardal,
Giroux & Shull (1998) have derived the HI and HeII photoion-
ization history by modelling the opacity of the IGM, using high-
resolution observations of HI absorption. They findΓ12 = 1−3 at
redshiftz = 2−4. Haardt & Madau (2001) have combined models
for the emissivity of galaxies and quasars with calculations of the
absorption of UV photons in the IGM, and estimateΓ12 ≈ 1−2 at
redshiftz = 2 − 3. More recent observations suggest that Lyman
break galaxies may dominate the UV-background atz = 3 (Steidel
et al 2001). In simulations, assuming a standard Big Bang baryon
fraction, the value ofΓ12 has to be between 0.3 and 2 at a redshift
z = 2 − 3 in order to reproduce observed Lyman-α forest proper-
ties, such as the mean transmission and the column density distri-
bution (Hernquist et al. 1996; Miralda-Escudé et al. 1996;Rauch et
al. 1997; Zhang et al. 1997; Choudhury et al. 2001a; Haehneltet al.
2001; McDonald & Miralda-Escudé 2001, erratum 2003; Hui etal
2002; Tytler et al. 2004; Bolton et al. 2005).
An independent way for estimatingΓ is theproximity effect. Lo-
cally, the UV-field may be dominated by a single source, such as
a bright quasar, leading to a deficit of absorption lines sufficiently
close to the quasar. Because the amount of absorption is in gen-
eral increasingwith redshift, this reversal of the trend for redshifts
close to the emission redshift of the quasar is called the ‘inverse’
or ‘proximity’ effect (Carswell et al. 1982; Murdoch et al. 1986).
The strength of this effect depends on the ratio of ionization rates
from quasar and UV-background, and since the quasar’s ionization
rate can be determined directly,Γ12 can be inferred. This method
was pioneered by Bajtlik, Duncan & Ostriker (1988) but more re-
cent data have yielded a wide variety of estimates (Lu, Wolfe&
Turnshek 1991; Kulkarni & Fall 1993; Bechtold 1994; Cristiani et
al. 1995; Fernandez-Soto et al. 1995; Giallongo et al. 1996;Lu et
al. 1996; Srianand & Khare 1996; Cooke, Espey & Carswell 1997;
Scott et al 2000, 2002; Liske & Williger 2001). Scott et al. (2000)
collected estimates from the literature which vary over almost an
order of magnitude atz = 3, i.e.1.5 <

∼ Γ12
<
∼ 9.

In the standard analysis of the proximity effect it is assumed that the
matter distribution is not altered by the presence of the quasar. The
only difference between the gas close to the quasar and far away is
the increased photoionization rate in the vicinity of the QSOs. An
important consequence is that the strength of the proximityeffect
should correlate with the luminosity of the quasar but such acorre-
lation has not been convincingly established (see Lu et al. 1991;
Bechtold 1994; Srianand & Khare 1996; see however Liske &
Williger 2001). It is in fact likely that the quasar will be inan over-
dense region. Indeed, the presence of Lyman-α absorption lines
with redshiftzabs greater than the quasar redshiftzem suggests pos-
sible excess clustering of the IGM material around QSOs (Loeb &
Eisenstein 1995; Srianand & Khare 1996). Furthermore, in hierar-
chical models of galaxy formation, the super-massive blackholes
that are thought to power quasars are in massive haloes (Magor-
rian et al. 1998; Marconi & Hunt 2003; Häring & Rix 2004), which
are strongly biased to high-density regions. If the accretion rate in
quasars is close to the Eddington limit, then it seems plausible that

the IGM density close to the quasar is significantly higher than the
mean.
Recent studies of thetransverseproximity effect by Croft (2004)
and Schirber, Miralda-Escudé & McDonald (2004) also suggest
excess absorption over that predicted by models that assumethe
standard proximity effect and isotropic quasar emission. If this is
not due to an increase in density close to the quasar, it mightim-
ply that the quasar light is strongly beamed, or alternatively that the
quasar is highly variable. Interestingly, neither of theseaffects the
longitudinal proximity effect discussed in this paper.
Observations of the IGM transmission close to Lyman break galax-
ies (LBGs) show that the intergalactic medium contains moreneu-
tral hydrogen than the global average at comoving scales 1< r
(Mpc) < 5 h−1 (Adelberger et al. 2003). As the UV photons from
the LBGs can not alter the ionization state of the gas at such large
distances, it is most likely that the excess absorption is caused by
the enhanced IGM density around LBGs. It is worth noting that
various hydrodynamical simulations have trouble reproducing this
so-called galaxy proximity effect (e.g. Kollmeier et al. 2003, Brus-
coli et al. 2003, Maselli et al. 2004, Desjacques et al. 2004). If a
similar excess of density around quasar host galaxies exists and is
not taken into account, then a determination ofΓ from the proxim-
ity effect will be biased high.
In this paper, we present a new analysis of the proximity effect
of very bright quasars observed as part of the ESO-VLT Large
Programme (LP) ‘Cosmological evolution of the Inter Galactic
Medium’ (PI Jacqueline Bergeron). This new method allows one to
infer the density structure around quasars. The method is based on
the cumulative distribution function (CDF) of pixel optical depth,
τ , and so avoids the Voigt profile fitting and line counting tradition-
ally used. Usingτ instead of the transmission,F = exp(−τ ), has
the great advantage that we can take into account the strong redshift
dependence〈τ 〉 ∝ (1 + z)α, with α ≈ 4.5.
We begin by briefly describing the data used in this paper. We out-
line the procedure in Section 3 and illustrate it using hydrodynam-
ical simulations in Section 4. The application to the high signal
to noise and high resolution spectra of the ESO-VLT Large Pro-
gramme is described in Section 5. Our analysis requires thatthe
density be higher close to the quasar. Results and future prospects
are discussed in Section 6. Throughout this paper, we assumea flat
universe withΩm = 0.3, ΩΛ = 0.7 andh = 0.7.

2 THE DATA

2.1 The LP quasar sample

The observational data used in our analysis were obtained with the
Ultra-Violet and Visible Echelle Spectrograph (UVES) mounted
on the ESO KUEYEN 8.2 m telescope at the Paranal observatory
for the ESO-VLT Large Programme (LP) ‘Cosmological evolu-
tion of the Inter Galactic Medium’ (PI Jacqueline Bergeron). This
programme has been devised to gather a homogeneous sample of
echelle spectra of 18 QSOs, with uniform spectral coverage,reso-
lution and signal-to-noise ratio suitable for studying theintergalac-
tic medium in the redshift range 1.7−4.5. Spectra were obtained
in service mode observations spread over four periods (two years)
covering 30 nights under good seeing conditions (≤ 0.8 arcsec).
The spectra have a signal-to-noise ratio of∼40 to 80 per pixel and
a spectral resolution≥ 45000 in the Lyman-α forest region. Details
of the data reduction can be found in Chand et al. (2004) and Aracil
et al. (2004). In our analysis we have only used absorption lines that
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Figure 1.TransmissionF = exp(−τ) as a function of luminosity distance for the LP QSOs listed inTable 1. The emission redshift,zem, is indicated between
brackets and increases from top to bottom. The evolution of the optical depth with redshift (see Section 3.4) is removed to compute the mean transmission
F = 〈exp(−τ/τ(z))〉 as a function of luminosity distance (bottom panel). The proximity effect is clearly seen as an increase in mean transmission close to
the quasar.
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Table 1. Properties of the Large Programme QSOs in our sample. The
redshift of emission (details are given in second to fourth columns) has
been determined using different emission lines. The luminosity, L, in h−2

erg s−1 Hz−1 (last column) is computed assuming aΩm = 0.3 flat Uni-
verse and a spectral index of 0.5.

quasar zem log(L)
mean value used lines ref.

Q0122-380 2.203 Hα, Mg II 2 31.633
PKS1448-232 2.220 Hα, Mg II 2 31.527
PKS0237-23 2.233 Hα, Mg II 2 31.665
HE0001-2340 2.267 MgII 1 31.649
Q0109-3518 2.404 MgII 1 31.819
HE2217-2818 2.414 MgII 1 31.994
Q0329-385 2.440 Hα, Mg II 2 31.278
Q0453-423 2.658 Lyman-α, C IV , Si IV 3 31.709
PKS0329-255 2.736 CIV 1 31.577
Q0002-422 2.767 Lyman-α, C IV , Si IV 3 31.721
HE0940-1050 3.068 CIV 1 32.146
PKS2126-158 3.267 Lyman-α, C IV , Si IV 4 32.132

Average determinations ofzem are taken from Espey et al 1989 (2), Bech-
told et al. 2002 and Srianand & Khare 1996 (3), using a correction factor
suggested by Fan & Tytler 1994), Tytler & Fan 1992 (4) or (re)done in this
paper (1, Section 2.1).

are between the Lyman-α and the Lyman-β emission lines of the
quasar.
Six of the eighteen LP QSOs (HE 1158−1843, HE 1347−2457,
HE 0151−4326, HE 1341−1020, Q 0420-388 and
HE 2347−4342) show signatures of associated absorption close to
the emission redshift of the QSO, and are therefore excludedfrom
our analysis. The remaining twelve are listed in Table 1, which
gives the name of the QSO, its redshift,zem, and the monochro-
matic luminosity at the Lyman limit (L).
An accurate determination of the emission redshift is important for
the analysis. Espey et al. (1989) have found that the Hα line is red-
shifted by an average 1000 km s−1 with respect to lines from high
ionization species and has statistically a similar redshift as the lines
from the low ionization species. The mean difference between Hα
and Mg II redshifts in their sample is∼ 107 km s−1 with a stan-
dard deviation of∼ 500 km s−1. A redshift measurement based on
Hα and other low ionization lines is available for 4 of the QSOs
(Espey et al. 1989, see Table 1). We consider the mean redshift of
all observed lines for these systems. When the MgII emission line
is observed, as it is for three additional QSOs, we fit the profile
with the doublet of MgII and a polynomial continuum to deter-
mine accurately the redshift. Fig. 2 shows the results of this fitting
procedure for the three QSOs. On average, these redshifts should
be within anrmsof 500 km s−1 from the systemic redshift. For 2
of the QSOs, Bechtold et al. (2002) and Srianand & Khare (1996)
used the CIV , Si IV and Lyman-α lines to determine the redshift
of emission, and applied the correction factor suggested byFan &
Tytler (1994). Otherwise, we use the CIV emission line for two
other QSOs and the determination from Tytler & Fan (1992) forthe
last remaining QSO. Therefore 7 out of 12 redshifts of the QSOs
in our sample are determined accurately using the Hα or Mg II

emission line, and 2 using the correction factor from Fan & Tytler
(1994).
The QSO luminosity at the Lyman limit is computed from the avail-
able B-magnitude. The QSO continuum slope is assumed to be a
power law,Fλ ∼ λα. We useα = −0.5 as Francis (1993). We
checked that within a reasonable range ofα = −0.5 to −0.7 (e.g.

Figure 2.Determination of the emission redshift,zem, of three QSOs using
Mg II line (see Table 1). For each quasar, the MgII emission lines (λλ
2796.35, 2803.53) are fitted (two dashed lines) on the top of apolynomial
continuum (long dashed line). The final profile is shown with asolid line.

Cristiani & Vio 1990), our main result (i.e. the density structure
around quasar) is not affected by our choice ofα.
All possible metal lines and Lyman-α absorption of a few sub-DLA
systems (there are no DLA systems in the observed spectra) are
flagged inside the Lyman-α forest. The entire line is removed up
to the point where it reaches the continuum. We have not removed
the Lyman-α absorption associated with metal line systems (i.e.
systems with N(HI)< 1019cm−2) but the metal absorption lines
themselves are flagged and removed.
Continuum fitting of the quasar spectra is very important forour
analysis. As most of the QSOs in our sample are at lower redshifts
where line-crowding is not a problem, all the available linefree
regions are used to fit the continuum. The procedure used to com-
pute the continuum has been calibrated and controlled usingsyn-
thetic spectra by Aracil et al. (2004). They estimated that errors in
the continuum amount to about 2% atz ∼ 2.3. The transmission
F = exp(−τ ) for each quasar in Table 1 is shown in Fig. 1 up to a
luminosity distance of 20h−1Mpc.

2.2 The mock LP quasar sample

We use mock spectra generated from hydrodynamical simula-
tions to illustrate and test the method described below. The
simulated cosmological model has(Ωm, ΩΛ, h, Ωbh

2, σ8) =
(0.3, 0.7, 0.65, 0.019, 0.9), where the symbols have their usual
meaning, and we have usedcmbfast (Seljak & Zaldarriaga 1996)
to generate the linear power-spectrum at the starting redshift z =
49, assuming scale-invariantn = 1 primordial Gaussian fluctua-
tions. The baryons are heated and ionized by an imposed uniform
ionizing background as computed by Haardt & Madau (1996), and
updated by Haardt & Madau (2001). We have increased the photo-
heating rates during hydrogen and helium reionization to satisfy the
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constraints on the temperature of the intergalactic mediumas deter-
mined by Schaye et al. (2000). This ionizing background was re-
ferred to as ‘designer model’ in that paper. In this model, hydrogen
reionizes atz = 6.5 and Helium atz = 3.5. The amplitude of this
background is scaled so that the mock spectra reproduce the evolu-
tion of the mean transmissionexp(−τ ) with redshift. The simula-
tion is performed with a modified version ofHYDRA (Couchman,
Thomas, & Pearce 1995) as described in more detail in Theuns
et al (1998).HYDRA combines Smoothed Particle Hydrodynamics
(SPH, Lucy 1977; Gingold & Monaghan 1977) to represent the gas,
and P3M (Couchman 1991; Hockney & Eastwood 1981) to solve
Newtonian gravity. It follows the evolution of a periodic, cubic re-
gion of the universe of co-moving size20 h−1 Mpc to a redshift
z = 1.7, using2563 particles of each species, and a co-moving
gravitational softening of 20h−1kpc. Non-equilibrium gas cooling
and photo-heating is implemented, using the rates of Theunset
al (1998). Cold, dense gas particles are converted to collisionless
stars, but there is no feedback included. The resolution of the sim-
ulations is close to sufficient to resolve the Lyman-α forest.
As the simulation is running, we store the physical state of the IGM
along many thousands of uncorrelated sight lines, which arelater
patched together into mock spectra with a large redshift extent.
A full simulated spectrum typically requires around 20 individual
sightlines through the simulation box, atz = 2. We use the pho-
toionization packageCLOUDY1 to compute the ionization balance
of the gas in the optically thin limit, in the presence of the Haardt
& Madau (2001) ionizing background. We generate 20 mock spec-
tra for each of our observed quasars taking into account the excess
ionization by a QSO of luminosity similar to the mean luminosity
of the QSOs in our sample. A mock spectrum for a given QSO ex-
tends over the same wavelength range as that QSO, has the same
pixel size and spectral resolution, and we add noise to the simu-
lated spectra with the same wavelength and flux dependence. Ex-
cept for metals, which are flagged in the real data and are not used
in this analysis, this procedure ensures that we impose the same bi-
ases in the reconstruction of the mock spectra, as are present in the
real data. The analysis procedure described next does not rely on
simulations: we only use simulated spectra to demonstrate that the
method works.

3 METHOD

3.1 Overview

Our aim is to investigate the density structure around high-redshift
luminous quasars. We do so by investigating how the probability
distribution (PDF) of optical depths,P (τ ), varies with distance to
the quasar. Far away from the QSO,P (τ, z) evolves with redshift
mainly because the mean optical depth decreases with redshift due
to the expansion of the Universe. In the appendix we show thatthe
shapeof the PDF does not evolve much over the relatively small
redshift range1.8 ≤ z ≤ 3.1 covered by our QSO sample. There-
fore we can define a redshift-independentscaledoptical depth dis-
tribution, P (τ, z) ≡ P (τ (z)/τ0(z)), which allows us to predict
the optical depth PDF at anyz. The ability to take into account
the strong redshift evolution of the mean optical depth is a major
advantage of our method.

We can now compare this predicted optical depth PDF with
the measured one, as a function of distancer to a QSO. We show

1 http://www.pa.uky.edu/∼gary/cloudy/

that this predicted PDF differs significantly from the measured PDF
close to the QSO. Indeed, radiation from the QSO will decrease the
neutral hydrogen fraction in its surroundings, which in turn will
lead to a decrease of the reference optical depth. This is theusual
proximity effect. In contrast if the QSO lives in a high density
environment, as is expected, then the optical depth willincrease.
Therefore we need to introduce another functionf(r), which de-
scribes the effect of the QSO on the PDF, such that the opticaldepth
scales asτ/(f(r) τ0(z)). When radiation dominates,f(r) ≪ 1,
and the optical depth becomes very small. When density dominates,
f(r) ≫ 1, and the optical depth becomes very large. The explicit
expression forf(r) is given in Eq. (9) below. Of course, the pres-
ence of the QSO might also change the shape of the PDF. Our main
assumption in this paper is that the shape does not change, and we
demonstrate below that this is a good assumption.

By comparing the predicted to the measured optical depth
PDFs, we can determine the relative importance of radiationversus
density enhancement. As we explain in more detail below, we can
off-set a higher amplitude of the background ionization rate with a
decrease in the over density: our determination is degenerate in this
respect. So instead of assuming no over-density and inferring the
background ionization rate,Γ(z), as is usually done in the analysis
of the proximity effect, we will assume a given value ofΓ(z), and
recover the corresponding over-density.

This method is based on comparing optical depth PDFs. We
characterise the difference between two PDFs, by computingthe
maximum absolute difference between the correspondingcumula-
tive PDFs. Given bootstrap re-sampled realisations of these PDFs,
we can associate a probability to a given difference in cumulative
PDFs. This then allows us to associate a given probability ofthe
over-density as a function of distance to the QSO, for an assumed
value of the ionization rate. This is the basis for the inferred over
density as a function of distance to the LP QSOs shown in Fig. 10
below.
In the rest of this section we explain this procedure in more detail,
and test it on our mock QSO spectra. Readers not interested inthese
details may want to skip directly to Sect. 5, where we apply the
method to the LP data.

3.2 The optical depth- density relation

We analyse the proximity effect using the cumulative distribution
of pixel optical depths as a function of distance to a quasar.The
starting point is Eq. (1), which relates optical depth,τ , to overden-
sity, ∆ = ρ/〈ρ〉,

τ = τ0 ∆2 ∝ ∆1/(1+β) , (2)

where1/(1 + β) = 2 − 0.7(γ − 1), and

τ0 = 0.206

(

Ωbh
2

0.02

)2
X

0.24

X + 0.5Y

0.88

α(T )

α(T4)

×
1

Γ12

H(z = 2)

H(z)

(

1 + z

3

)6

, (3)

is the Gunn-Peterson (Gunn & Peterson 1965) optical depth. Here,
α(T4 = 104K) = 4.19 × 10−13cm3 s−1 is the hydrogen recom-
bination coefficient (Verner & Ferland 1996) which scales approxi-
mately∝ T−0.7 close toT = 104K, H(z) is the Hubble constant
at redshiftz, X andY are the hydrogen and Helium abundances
by mass, respectively, andΩbh

2 is the baryon fraction. We have
assumed that hydrogen and helium are both almost fully ionized.
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The exponentγ and normalisationT0 of the temperature-density
relationT = T0∆

γ−1, have been measured by e.g. Schaye et al.
(2000) to be in the rangeγ = [1 − 1.5] andT0 ≈ 104K in the
redshift interval2 ≤ z ≤ 3. How are the density and optical depth
PDFs related?

Let P∆(∆, z)d∆ be the density distribution at redshiftz.
The probability distribution function (PDF) for the optical depth
Pτ (τ, z)dτ is obtained by combiningP∆(∆, z)d∆ with Eq. (2).
At two different redshiftsz1 and z2, say,Pτ (τ, z)dτ will differ
becauseτ0 changes (see Eq. (3)) and because the density PDF,
P∆(∆, z)d∆, evolves as structure grows. For the relatively small
redshift range covered by the LP quasars, we show below that the
redshift evolution ofPτ (τ, z) dτ is dominated by that of the mean
optical depth,τ0, and that the shape of the distribution does not
change very much. This is true for the simulated quasar sample as
well. The PDF ofτ is therefore given by

Pτ (τ, z) dτ ≈ (1 + β) P∆

[

(

τ

τ0

)1+β
]

(

τ

τ0

)β dτ

τ0
, (4)

and to a very good approximation, its redshift dependence is
throughτ0(z) only. Therefore, given the PDF ofτ at several red-
shifts covered by the LP sample,1.7 ≤ z ≤ 3.1, one can accurately
predict the scaling factor required to scale each PDFPτ (τ, z) to the
PDF observed at a given reference redshift,z = 2.25. We will call
this thescaled optical depth PDFbelow. We emphasise here that
the transmission is non-linearly related to the density. Since the
median optical depth corresponds to a value of the flux withinthe
noise around the continuum, the evolution with redshift cannot be
taken into account with the transmission only.
Thermal broadening and peculiar velocities prevent the unique
identification of an overdensity,∆, in real space, with a given op-
tical depth,τ , in redshift space. ThereforeP∆(∆, z) d∆ does not
refer to the real space over density, but the optical depth weighted
overdensity, as used for example in Schaye et al. (1999). In the Ap-
pendix we discuss a fitting function ofP∆ which is based on the
fit introduced by Miralda-Escudé, Haehnelt & Rees (2000) for the
density distribution of the IGM. We show there that the shapeof
this function fitsP∆ well, but the best fitting parameters differ con-
siderably from the real space density PDF. We also show that,in
simulations,P∆ varies little with redshift in1.7 ≤ z ≤ 3.1.
A quasar’s proximity effect will change the PDF ofτ . The change
due to the increase in ionization rate can be accurately predicted
by the appropriate scaling ofτ0. However, the density PDF may
change, as is expected for biased quasar formation, which will mod-
ify accordingly the optical depth PDF. In our model, theshapeof
the density PDF is assumed to be unaltered, only the mean value is
changed. This is our main assumption. Physically, this implies that
feedback effects from the galaxy hosting the QSO such as winds,
infall, or excess of clustering that may modify the density distri-
bution itself, are neglected. The net effect of the quasar isthen a
rescaling ofτ0. This scaling factor is determined as a function of
distancer to the quasar, by comparing the measured PDF ofτ at
r with the predicted one at the same redshift. The method is based
on τ , whereas what we observe is the transmissionF = exp(−τ ).
We describe how to inferτ from F next.

3.3 The optical depth distribution

At a given redshift only part of the PDF of optical depth,Pτ (τ )dτ ,
can be recovered from the observational data. Low values ofτ ,

τ ≤ τmin, are lost in the noise, whereas high values ofτ , τ ≥ τmax,
cannot be recovered since the Lyman-α absorption is saturated.
However, we can estimate the rangeτmin ≤ τ ≤ τmax whereτ
can be accurately recovered given the noise properties of the data.
By using higher-order transitions one can accurately recover high
values ofτ where Lyman-α is saturated but Lyman-β for exam-
ple is not (Savage & Sembach 1991; Cowie & Songaila 1998;
Rollinde, Petitjean & Pichon 2001; Aguirre, Schaye & Theuns
2002; Aracil et al. 2004). However, here we only use the Lyman-α
absorption from normalised spectra and recoverτ betweenτmin =
− log(1 − 3σ) ≃ 0.1 andτmax = − log(3σ) ≃ 2.5, whereσ(λ)
is the rms noise as a function of wavelength. Note thatτmin = 0.1
is a high value compared to the actual noise in most of the spec-
tra. We use this limit to be conservative. Since we will use the
cumulative probability distribution ofτ (CPDF, in the following
all probability functions implicitly refer toPτ , unless explicitly
noted), we also keep track of the number of pixels belowτmin and
aboveτmax. The CPDF of thiscensoredrepresentation of the op-
tical depth,CPDFrec(τ ), is therefore a portion of the full CPDF,
CPDF(τ ) ≡ P (τ ′ < τ ), betweenτmin andτmax :
{

CPDFrec(τ ) = 0. τ < τmin

CPDFrec(τ ) = CPDF(τ ) τmin ≤ τ ≤ τmax

CPDFrec(τ ) = 1. τ > τmax

. (5)

The values ofτmin andτmax depend on redshift because the noise
levelσ does, but this dependence is very weak for our sample. This
means that when we scale two recovered PDFs to the same refer-
ence redshift, the scaled values ofτmin andτmax will no longer be
the same. For example at lower redshift (say,z = 2) higher over-
densities∆ ∝ (τ/τ0(z = 2))1+β can be recovered before the line
becomes saturated than at higher redshift (z = 3, say) because of
the evolution ofτ0(z). Conversely, lower over densities can be re-
covered atz = 3 than atz = 2, before the line disappears in the
noise. This could be exploited to increase the effective recovered
overdensity range if the evolution ofτ0 was strong enough. We de-
scribe how we scale PDFs to a common redshift next.

3.4 Scaling of the reference optical depthτ0(z)

We show in Sections 4.1 and 5 that the shape of the censored opti-
cal depth cumulative distribution function in both simulations and
observations, is nearly independent of redshift. These distributions
refer to regions far away from the quasar (proper distance≥ 50
Mpc/h) where the distribution ofτ is not modified by radiation
from the QSO itself. The fact that the shape of the PDF is conserved
means that redshift evolution can be modeled accurately by asim-
ple redshift dependence of the reference optical depth,τ0(z). We
find the best fitting scalingτ0(z) ∝ (1 + z)α by minimising the
maximum absolute distance between scaled optical depth CPDFs
(KS distance) within different bins in redshift. Note that the evolu-
tion of the number of systems within a range of column densities,
as used in most previous work on the proximity effect, is alsode-
scribed as a simple scaling. Errors inτ0(z) are estimated using a
bootstrap resampling of chunks of proper size 10h−1Mpc. In the
next steps,τ0(z) is used to scale the optical depth of each pixel to
a reference redshift ofz = 2.25.

3.5 The proximity effect

We now consider the influence of a quasar on the optical depth
distribution in the nearby IGM, scaled to the same referencered-
shift using the functionτ0(z). We consider the effect of both the
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ionizing flux emitted by the quasar and that of a modified density
distribution.
Let the quasar emit ionizing photons with spectrum characterised
in the usual way as

4π JL(ν, r) =
L

4πr2

(

ν

νHi

)

−φ

erg s−1 cm−2 Hz−1 .

= 4π J21(z) × 10−21
(

ν

νHi

)

−φ

ω(r, z) . (6)

Here,L is the monochromatic luminosity of the quasar at the hy-
drogen ionization thresholdνHi. The corresponding ionization rate
is (12.6/(3 + φ))J21 ω(r) 10−12s−1, when one approximates the
hydrogen photo-ionization cross-section with a power-law(Theuns
et al. 1998, TableB4). The functionω is

ω(r, z) =
L[h−2erg s−1 Hz−1]/4π

4 π (r(z)[h−1cm])2 10−21 J21(z)

≡

(

rL(z)

r(z)

)2

. (7)

Here r(z) is the luminosity distance from the quasar at redshift
zem to the cloud at redshiftz, at the time the photons arrive there.
For a given pixel,r is computed from the absorption wavelength of
that pixel and the emission redshift of the quasar, using theequa-
tions from Phillipps, Horleston & White (2002) for aΩm = 0.3
flat cosmological model (in the future, it would be worthwileto
investigate how our results depend on the assumed cosmology, as
initiated for the standard proximity effect analysis by Phillipps et
al. 2002). Note that this neglects possible infall or outflowclose to
the quasar. All distances are computed as a luminosity distance in
the analysis. Yet, we may also define them asproper distancesince
proper and luminosity distances are almost equal up to 30h−1Mpc
at the redshifts of interest here. All quasars in our sample have a
similar luminosity (Table. 1), they will then have a similarvalue of
rL whenΓ12 does not vary strongly, as is expected (e.g. Haardt &
Madau 1996; Fardal et al. 1998).
The total ionization rateΓ in the IGM is the sum of that from the
uniform background radiation,ΓIGM (z), and from the radiation
from the quasar,ΓQ(r, z). The increase inΓ will shift the PDF of
τ to smaller values, without changing its shape. Very close tothe
QSO,Γ(r) ∝ 1/r2 diverges, hence according to Eq. (3),τ0 → 0,
which is the usual proximity effect.
However, we argued before that the quasar is likely to be in an
overdense region, which will lead to anincreasein τ . We model
this by assuming that the density close to the quasar is simply a
scaled-up version of that far away from the quasar, i.e.

P∆(r, (1 + Ψ(r))∆)d∆ ≡ P∆(∆)d∆ . (8)

Eq. (2) shows that this has the effect of increasingτ0 by a factor
(1+Ψ(r))1/(1+β), shifting the PDF ofτ at a givenr bin, to higher
values without changing its shape. To simplify the notation, we will
useρ/〈ρ〉 to refer to the density structure, or enhancement, around
the quasar (i.e.1 + Ψ), and∆ to refer to the distribution of density
P∆.
Note that we neglect a possible variation of temperature dueto the
ionizing flux from the quasar. Since the main modification to the
ionizing background is the larger proportion of hard photons from
the quasar, we assume that the change in temperature is not large
enough to modify the optical depth distribution in a significant way.
This argument will not be valid if the HeII is not ionized. Avail-
able observations indicate the epoch of HeII reionization may be
probably earlier thanz ≃ 3 (e.g. Theuns et al. 2002).

The combined effect of a density increase and extra ionizingpho-
tons is to shiftτ0 by a factor

τ0 → τ0
(ρ(r)/〈ρ〉)1/(1+β)

1 + (rL/r)2
. (9)

The relative importance of quasar versus UV-background ionizing
photons is characterised byrL(z)2 ∝ L/Γ12(z) (whereΓIGM =
Γ12 10−12s−1). In the absence of any temperature enhancement the
optical depth atr is globally scaled compared to the optical depth in
the intergalactic medium. As a consequence, the distributionP (τ )
is simply scaled along the abscissa toward higher values in case of
an overdensity (ρ/〈ρ〉 > 1) or lower values under the influence
of the quasar ionizing flux (ω > 0). Thus, for a given distancer,
there is an intrinsic degeneracy between the local density structure
ρ(r) and the value ofΓ12, combined in the above scaling factor.
Therefore, if one modifies the value ofΓ12, the recovered value
of (ρ(r)/〈ρ〉)1/(1+β), is scaled by a constant value1/Γ12 when
r ≪ rL and is independant ofΓ12 whenr ≫ rL.
Close to or far away from the quasar, this scaling is constant, which
allows the shape of the density enhancement to be recovered.Then,
despite the fact that the absolute value ofρ(r), whenr ≪ rL, will
depend on the value ofΓ12 assumed in the analysis; the presence
of a non-uniform density enhancement can in principle be revealed
by this method. Conversely, if the underlying density enhancement
is known through numerical simulations e.g., or if it is neglected
as in the standard proximity effect analysis,Γ12 can be recovered.
However, neglecting overdensities always implies an overestimate
of Γ12, irrespective of the method.

We now describe how the density structure is recovered and how
errors are estimated.

3.6 Estimation of the density structure and errors

The density structure,ρ(r)/〈ρ〉, can be inferred once the ionizing
rate,Γ12(z), and the slope of the temperature-density relation,γ,
are determined. We will illustrate howρ/〈ρ〉 changes with changes
in these parameters.

The mean scaled CPDF in the IGM, and its statistical uncer-
tainty, are determined from bootstrap resampling pixels outside of
the possible proximity region, at distances larger than 50h−1Mpc
proper. We characterise the difference between two PDFs by the
maximum absolute distance (KS distance) between the correspond-
ing cumulative distributions, just as in a Kolmogorov-Smirnov test.
Bootstrap resampling allows us to associate a probability to a given
value of this KS distance,P(KS).

The proximity region is characterised by evaluating the scaled
CPDF in radial bins from the background QSO. For each radial bin,
the mean CPDF in the IGM is shifted according to Eq. (9), using
our assumed value ofΓ12 and for different values of the function
(ρ(r)/〈ρ〉)1/(1+β). Given the probability associated with a given
value of KS, we can determine a probablity associated with a given
value of ρ(r), PKS(ρ(r)/〈ρ〉). The distribution of KS values of
course depends on the number of pixels in each bin. Since we want
to use small bins close to the QSO, we need to determine the proba-
bility P(KS) for each bin separately, using only pixels outside the
proximity region.

We bootstrap the QSO sample, using different sub-samples of
six quasars taken from the 12 quasars available in full sample. We
can then define a global probability associated toρ(r) as

P (ρ(r)/〈ρ〉) ≡ 〈PKS(ρ(r)/〈ρ〉)〉sub−sample (10)
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Figure 3. Evolution with redshift of the cumulative distribution of optical
depth, computed with mock LP spectra. Only pixels located far away from
the proximity region are considered.Top panel:Cumulative distributions in
five bins in redshifts centred onz =1.8, 2.0, 2.25, 2.5 and 2.95 (left to right,
with alternate solid and dashed lines). The 3σ statistical error is shown with
a vertical mark in both panels.Bottom panelSame distributions but after
scaling each curve to the CPDF atz = 2.25 (thick curve in both panels)
by a redshift dependent scaling factorτ → τ τ0(z = 2.25)/τ0(z). The
scaled curves are all consistent within the 3σ error, showing that theshape
of the distribution is independent ofz.
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Figure 4. Evolution of different percentiles of the scaled optical depth
(z = 2.25) with luminosity distance to the background quasar, in mockLP
spectra. Quasars are randomly located in the simulation box, which implies
that no additional density structure around the quasars is expected statis-
tically (i.e. ρ/〈ρ〉 = 1). Mock spectra are computed assuming the mean
luminosity of the LP sample,L = 5.4 × 1031 h−2 erg/s/Hz andΓ12=1.
The distance where the amplitude of the ionizing flux from thequasar and
in the IGM are equal (i.e.ω = 1, Eq. 7) is indicated by the vertical dashed
line. Horizontal lines indicate the observational upper and lower limits in
optical depth.

which will allow us to characterise the density structure atdifferent
level of confidence.
Note that this method is also able to recoverΓ12, if one assumes
ρ(r) ≡ 〈ρ〉, i.e. the assumption made in the standard analy-
sis of the proximity effect. Indeed, the above procedure canbe
done for different values ofΓ12, while maximising the product of
P (ρ(r) ≡ 〈ρ〉) overr.

We will first apply the method to mock spectra in order to show
that this method works well. We also use the simulations to show
that our method of bootstrap sampling chunks and quasars gives
realistic errors.

4 PROXIMITY EFFECT USING OPTICAL DEPTH :
VALIDATION OF THE METHOD WITH SYNTHETIC
SPECTRA

In this section, we use mock LP spectra, generated as described
in Section 2.2. The proximity effect is implemented as described
by Eq. (9), assuming the mean luminosity of the LP sample,L =
5.4 × 1031 h−2erg s−1 Hz−1 andΓ12 = 1, without and with addi-
tional density enhancement. Note that the value used forΓ12 here
needs not be equal to the value actually implemented in the sim-
ulation itself. The different steps involved in the analysis, as de-
scribed above, are now applied successively to the mock spectra.
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Figure 5. Recovered density structure versus luminosity distance tothe
background quasar, from the analysis of mock LP spectra. Mock spec-
tra, including additional ionization from the background quasar, are gen-
erated from randomly positioned quasar (i.e.ρinput/〈ρ〉 = 1). The 2 and
3 σ confidence levels are indicated as blue region, and solid lines respec-
tively. The input structure is well within the 2σ confidence level except
for a small bias, and a large increase of errors below≃ 10 h−1Mpc
proper (luminosity and proper distances are similar up to 30h−1Mpc),
which are explained by the modifications of the CPDF due to thenoise
(see text for details). The luminosity of the quasars and theparametersΓ12

andγ are identical in the analysis and the generation of Mock spectra (i.e.
L = 5.4 × 1031 h−2erg s−1 Hz−1; Γ12 = 1; γ = 1.5).

Our assumptions and the ability of the method to recover the den-
sity structure will be discussed.

4.1 Evolution of the optical depth with redshift

Since we are first interested in the evolution of the optical depth
in the IGM, we consider here pixels at a distance larger than 50
h−1Mpc proper to the quasar only. The evolution of the CPDF
within five bins in redshift centred atz =1.8, 2.0, 2.25, 2.5 and
2.95 is displayed in the top panel of Fig. 3. The main evolu-
tion is driven by the mean density that increases, together with
the mean optical depthτ0(z), with redshift. This corresponds to
a shift of the CPDF along the abscissa toward higher values. As
explained in Section 3.4, a simple scaling of the reference optical
depthτ0(z) is used to remove this primary evolution. Parameter-
ising τ0(z) ∝ (1 + z)α gives a best fitting value ofα ≈ 4.5.
Although some scatter is present, half of 50 different samples pre-
fer a value4 ≤ α ≤ 4.5. Once the optical depth at each pixel is
scaled using this relation, the CPDF computed within the same bins
are displayed in the bottom panel of Fig. 3. We find then that the
shape is indeed conserved, to the level of accuracy of our sample.
In our mock samples, the ionizing backgroundΓ(z) varies only
weakly with z over the range1.7 ≤ z ≤ 3.1, as does the tem-
peratureT of the IGM. Therefore a scaling close toα = 4.5 is
indeed expected from Eq. (3), given the high redshift approxima-

tion H(z) ∝ (1 + z)3/2. Below we will generate several observed
data sets by bootstrapping the LP quasars, and use either thebest
fitting exponent inτ0(z) ∝ (1 + z)α for each sample, or a fixed
value ofα = 4.5.

4.2 Proximity effect

Once the main evolution of optical depth with redshift is removed,
we can concentrate on its change with distance to the quasar.Fig. 4
shows the evolution of different percentiles of the opticaldepth
with luminosity distance to the mock background quasar. Note that
we only model the excess ionizating radiation from the QSO: there
is no over density at the emission redshift (i.e.ρ/〈ρ〉 = 1). We
note that the relation betweenω and distance, Eq. (7), depends on
the luminosity of the quasar. In our homogeneous sample, thelu-
minosity of the QSOs, and thenω, varies only within a factor of
two from one quasar to another. For the mock spectra, since weas-
sume an unique value of the luminosity of each quasar, the distance
at whichω = 1 is the same for all mock spectra: it is shown as a
vertical line in the figure. The effect of assuming a different lumi-
nosity on the recovered over density is discussed in more detail in
Section 5.
Fig. 4 clearly reveals the decrease ofτ with decreasing radius, as
the mock QSO starts dominating the ionization rate. Since inthis
caseρ/〈ρ〉 = 1, the optical depth whereω = 1 must be a factor
of two less than its value in the ambient IGM atr > 50 h−1Mpc
(Eq. 9). This is indeed observed here, for each percentile. Note
how at small distances the optical depth is everywhere decreased
below τmin, and how the different percentiles are almost all equal
to the minimum optical depth.

4.3 Recovery of a uniform density field

This qualitative change with distance is now studied quantitatively
to recover the underlying density field close to the background
quasars. During the implementation of the proximity effectin the
mock spectra, we assumedΓ12 = 1. Therefore, we shall use the
same value in the analysis. A wrong estimate ofΓ12 mostly leads
to a re-scaling ofρ/〈ρ〉 in the region of interest, close to the quasar.
Although the simulation does not correspond to a unique value ofγ
(there is a dispersion in the temperature-density relation), the exact
assumed value, if within the range specified above (Eq. 2), does not
have a large influence on the recovered density; we assume here
γ = 1.5. We will illustrate the amplitude of these effects on the
analysis of the Large Programme quasars in Section 5. Here, since
the quasars are randomly distributed in the simulation box,we must
recover a uniform density withρ(r) = 〈ρ〉.
For each bootstrap sample (Section 3.6), we recover a different
functionτ0(z) for the evolution ofτ . However, very similar results
are obtained using a fixed evolution(1+z)4.5, which shows that er-
rors on the estimation ofτ0(z) are not essential in the analysis. We
then fit the change of the CPDF with distance to the quasar (Fig. 4)
using Eq. (9). This allows us to recover a probability distribution of
ρ(r)/〈ρ〉, from the functionPKS (Eq. 10).
Our result is therefore expressed in terms of a probability for each
value ofρ/〈ρ〉 at a given radius. Different levels of probability are
shown in Fig. 5. The 2 and 3σ levels of confidence correspond to
the blue region and to the solid lines respectively. The input struc-
tureρ/〈ρ〉 = 1 is indeed accurately recovered at the2σ level for
r > 1 h−1Mpc. In this particular case, the assumption of the stan-
dard proximity effect is satisfied (see Introduction). Then, assuming
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Figure 6. Recovered density structure versus luminosity distance from the
analysis of mock LP spectra with an additional input densitystructure close
to the quasar,(dρ)input. We assumeL = 5.4 × 1031 h−2erg s−1 Hz−1,
Γ12 = 1 andγ = 1.5. The 2 and 3σ confidence levels are indicated as blue
region and solid lines respectively. The 3σ confidence level is also indicated
for a sample twice larger than the large programme sample (dashed lines).

ρ/〈ρ〉 ≡ 1, the data (i.e. the optical depth CPDF in our analysis,
but also the mean flux2) are fitted withΓ = Γtrue within the 3σ
confidence level. Therefore, the real value ofΓ12 may be recovered
if the density field is uniform.
However, at distance lower than 3h−1Mpc, a tendancy towards
over-density together with a symmetric increase of errors is appar-
ent. The reason is the following. When the ionizing flux from the
quasar is high (close to the quasar), the optical depth in most of
the pixels is belowτmin (see Fig. 4). Then, the modeled (censored)
cumulative function (computed from the CPDF in the IGM) is ev-
erywhere equal to 1. As for the CPDF measured directly in the
spectra, there will always be a fraction of the pixels aboveτmin due
to the noise (this fraction mostly depends on the signal to noise ra-
tio). Therefore, the KS distance between theoretical and measured
CPDFs will have a maximum probability at a value larger than 0.
This is not the case far away from the quasar, where the theoret-
ical CPDF, for the best fitting value ofρ/〈ρ〉, is the mean of all
measured CPDFs. Although most of this effect is included in the
functionPKS(ρ/〈ρ〉), this asymmetry will favour a value ofρ/〈ρ〉
higher than 1. Besides, a lowerρ/〈ρ〉, that is a larger under-density,
will not modify the theoretical CPDF, as long asτ is everywhere
lower thanτmin. This explains the large error toward lowρ/〈ρ〉 for
r <

∼ 10 h−1Mpc.

2 if the distribution ofτ is known betweenτmin andτmax, then the distri-
bution of the flux is known between 0 and 1, which allows us to compute
the mean flux too.
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Figure 7. Validation of the estimation of errors in the recovered den-
sity structure from mock spectra, with an additional density enhancement
(Fig. 6). The probability distribution ofρ/〈ρ〉 obtained at different radius
and with one sample is shown as a histogram in the different panels. The
corresponding radius (luminosity distance inh−1Mpc) is indicated and in-
creases from left to right and bottom to top. The range of mostprobable
values ofρ/〈ρ〉 obtained from 50 different samples is indicated as an hori-
zontal line. Each estimation of the most probable value stands between the
3σ rejection level (vertical dotted lines).

4.4 Recovery of a density structure

The issue at small distances discussed above should be less im-
portant if an overdensity is present close to the quasar. Indeed,τ
will then remain aboveτmin at lower distances. We have checked
this effect by adding a unique density structure (directly to τ ,
so in velocity space) in all spectra with the shapeρ(r)/〈ρ〉 =
1 + 3 exp(−(log(r))2/0.6) (Eq. (8)). We will show in Section 5
that, using this specific structure, the observed evolutionof optical
depth percentiles is well fitted by the evolution in mock LP spectra
(Fig. 9). This input structure is indicated with a solid linein Fig. 6.
The 2 and 3σ confidence levels for the recovered density struc-
ture are shown in Fig. 6. It is again consistent with the inputstruc-
ture. As an exercise, the analysis has been repeated with twice as
many quasars (i.e. 24). The corresponding contour of the 3σ re-
jection level are shown with dashed lines in Fig. 6. The constraint
is more stringent and still in agreement with the input structure.
As expected, the bias is not present anymore. Although this result
is encouraging, one must remember that the same luminosity and
density structure are used for all quasars, which would obviously
not be the case in a real and larger sample.

We have shown in two different cases, with a uniform and with an
enhanced density, that our analysis does recover the input structure.
We now concentrate on the estimation of errors.
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Figure 8. Evolution with redshift of the CPDF of the optical depth, from
Large Programme spectra. Notations are the same as in Fig. 3.Top panel:
Cumulative distributions in five bins in redshifts centred on z =1.8, 2.0,
2.25, 2.5 and 2.95 (left to right, with alternate solid and dashed lines).Bot-
tom panel : Same distributions but after scaling each curve to the CPDF at
z = 2.25 (thick curve in both panels) by a redshift dependent scalingfactor
τ → τ/τ0(z).

4.5 Validation of error estimates

The analysis of one sample (of similar properties as the Large Pro-
gramme sample), provides us with a probability distribution for the
recovered density structure. To validate the estimation oferrors,
we generate and analyse 50 different samples of mock spectra. In
Fig. 7, the results at different radius are reproduced in each panel.
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Figure 9. Evolution of different percentiles (95%, 85% and 70%) of the
distribution of scaled optical depth (z = 2.25) with luminosity distance
to the background quasar. The 1σ statistical contours corresponding to the
Large Programme spectra (with bootstrap resampling) are represented with
blue regions in each panel. The position whereω = 1 (dashed line) is com-
puted assumingΓ12=1 in the panels(a) and(b); andΓ12=3.0 in panel(c).
For comparison, the mean evolution of the same percentiles in mock LP
spectra is shown (with solid lines and circles) assuming either Γ12=1 and
ρ/〈ρ〉 = 1 (panela, from Fig. 4);Γ12=1 and the input density structure
shown in Fig. 6 (panelb) or Γ12=3 andρ/〈ρ〉 = 1 (panelc). A larger
ionization rate or a density enhancement are required to reproduce the ob-
servations. Those two cases cannot be distinguished withinour analysis.

For each radius, the range of most probable values ofρ/〈ρ〉 ob-
tained for each sample is indicated by a thin horizontal line, while
a specific probability distribution corresponding to one sample is
shown. This procedure is done in the case of an additional density
enhancement (Fig. 6). The best fitting value from different realisa-
tions does always fall within the 3σ rejection level estimated from
a single sample. The same validation has been done without addi-
tional density structure. The conclusion is the same, although the
bias discussed above implies that the distribution at low radius is
extended toward lower values while the best fitting value is shifted
toward higher values.

Our analysis has been successfully tested with a numerical sim-
ulation, for the most probable result as well as the estimation of
errors. We may now turn to the analysis of the ESO-VLT Large
Programme.

5 APPLICATION TO THE ESO-VLT LARGE
PROGRAMME

In this section, we perform, with the LP quasars, the same sequence
of analysis described above. First, we have confirmed that the evo-
lution of the mean transmission〈F 〉 with z is consistent with previ-
ous determinations (e.g. Press, Rybicki & Schneider 1993; Schaye
et al. 2003). In particular, this gives confidence in the continuum
fitting procedure.
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Figure 10. Recovered density structure versus luminosity distance tothe
background quasar from the analysis of the proximity effectin the Large
Programme sample. The density structure,ρ(r)/〈ρ〉, is recovered within
different bins in distance to the background quasar, from the evolution of
the optical depth distribution in the vicinity of the quasar, as compared to
the distribution in the IGM. Since the optical depth is a function of the
density, the temperature and the amplitude of the ionizing flux, the resulting
density structure depends on the slope of the temperature-density relation,
γ, and on the amplitude of the background ionizing flux (definedby the
parameterΓ12). The value ofγ is fixed to 1.5 since uncertainties in it are
small enough to have little influence on the result. The 2σ contours of the
recovered density structure are shown forΓ12=0.3 (panela); Γ12=1 (panel
b) and Γ12=3 (panelc). A value of Γ12 ≃ 1 is favored to recover the
density enhancement derived around the most massive halo atredshiftz =
2 in the Millennium simulation (Springel et al. 2005), which is overplotted
in each panel with diamonds.

Then, we compute the evolution of optical depth with redshift, dis-
played in Fig. 8 (upper panel). It is stronger than in the mockspec-
tra and seems to favorα = 6, when fitted withτ0(z) ∝ (1 + z)α.
However, a slope of 4.5 is allowed within a 3σ confidence level.
More important, our results are not modified, within the statistical
errors, whether we useα = 4.5 or the actual fit. The CPDF of the
scaled optical depth is shown in Fig. 8 (bottom panel) with the best
fitting result forτ0(z). Observations are also consistent with the as-
sumption that the shape of the CPDF does not evolve fromz = 3.2
to z = 2.2.
Once the evolution with redshift is removed, the scaled optical
depth CPDFs are computed within different bins in distance to the
quasar. The 1σ statistical contours (from a bootstrap resampling)
of the evolution of different percentiles are shown in Fig. 9(grey
regions in each panel). We note here that the different percentiles
are scaled roughly by the same amount at any given radius (when
the lowest contour ofτ is larger than the minimum value, i.e. the
lower dotted line). This corresponds to the fact that the shape of
the CPDF is conserved when one gets closer to the quasar (at the
level of accuracy of our sample). This gives confidence in ourmain
assumption that a simple scaling of the reference optical depth is
sufficient.
In order to recover the density structure, values ofΓ12 andγ have

to be fixed first. As mentioned earlier, the expected value ofγ is
between 1 and 1.5 and we useγ = 1.5 in most of our analysis. The
value ofΓ12 is between 0.3 and 3 (aside from measurements from
standard proximity effect analysis), we useΓ12 = 1. In the previous
section, the mean evolution of optical depth percentiles was com-
puted in mock LP spectra without additional density structure and
usingΓ12 =1 (see Fig. 4). It is overplotted for comparison in Fig. 9,
panel(a). In the data, there is no clear change in the percentiles at
a radius whereω = 1 (for Γ12 = 1) and even at the lowest radii
considered here, the highest percentiles do not reach the minimum
optical depth. In contrast, the presence of the ionizing photons from
the QSO already strongly affects the optical depth percentiles in
mock spectra. Thus, the addition of a density structure is required to
counterbalance the increase of the ionization rate. This isshown in
panelb where we overplot the evolution of optical depth percentiles
in mock spectra including a density structure around the quasar, as
described in Section 4.4 (Fig. 6). This provides then a better fit to
the observed evolution. The probability distribution ofρ/〈ρ〉 asso-
ciated to the Large Programme QSOs is directly recovered through
the procedure described in Section 3. The 2σ confidence region is
then displayed in Fig. 10, again forΓ12=1 andγ = 1.5 (panelb,
blue region).A uniform density is rejected at the 2σ level forr <

∼ 10
properh−1Mpc.
This recovered profile can then be compared to expected density
profile from simulation. For this purpose, we have used the Millen-
nium simulation (Springel et al 2005). This dark-matter only sim-
ulation evolved21603 particles in a box of size 500h−1Mpc, and
hasΩm = 0.25 andσ8 = 0.9. Since the LP quasars are very lumi-
nous, we extract the averaged density profile around the mostmas-
sive halo at redshiftz = 2 in the simulation. The profile, smoothed
over 2.5h−1Mpc is shown as diamonds in Fig. 10. The similarity is
encouraging, in particular the fact that both profiles startto increase
at the same radius≃ 10h−1Mpc.
The effect of varyingΓ12 andγ is investigated next. It is reason-
able to assume thatγ is within 1 and 1.5 (see Eq. 2). Since we
actually recover(ρ/〈ρ〉)2−0.7(γ−1) , varyingγ only scalesρ/〈ρ〉 in
a logarithmic plot. The effect is negligible compared to statistical
errors. As forΓ12, we have shown in Section 3 that, forr <

∼ rL,
ρ/〈ρ〉 is proportional to(1/Γ12)

1+β . Therefore, the observed op-
tical depth percentiles evolution could also be reproducedin mock
spectra with a larger value ofΓ12, which decreases the influence
of the quasar ionizing flux (the radius whereω = 1 is shifted to-
wards lower distance). The same quality of fit in Fig. 9 (panelc) is
indeed obtained with the evolution of optical depth percentiles in
mock spectra without density structure but with a larger value of
Γ12 (3 instead of 1). Similarly, the 2σ confidence region ofρ/〈ρ〉
is shown forΓ12=3 in panel(c) of Fig. 10. The recovered density
structure is reduced, and a uniform density can be rejected at the
2σ level for r <

∼ 2h−1Mpc only. Yet, this may as well be explained
by the systematic bias in the recovered structure at small distances
(Fig. 5). Higher values ofΓ12 would result in an under density at
small distances. Conversely, a lower value ofΓ12 enhances the re-
covered density structure, which is demonstrated forΓ12 = 0.3 in
panel(a) of Fig. 10.
One may then ask the question of which value ofΓ12 will allow
the observation to be consistent with a uniform densityρ/〈ρ〉 = 1.
This corresponds to the standard proximity effect applied to opti-
cal depth statistics. If one requires that an uniform density is not
rejected at more than 2σ, within each bin in distance,Γ12 is con-
strained to be within the range 3.6-15. This is consistent with the
range of estimates obtained from standard proximity effectanaly-
sis using line counting statistics (Γ12 ≃ 1.5 − 9). We could also
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assume the density profile based on the Millenium simulationto
recoverΓ12. In this case, Fig. 10 shows that 0.3< Γ12

<
∼ 3.

6 CONCLUSION

In this article we presented a method to probe the density struc-
ture around quasars, using a new analysis of the proximity effect in
absorption spectra of quasars. In the vicinity of the quasar, the ad-
ditional ionizing photons increase the total ionizing ratewhich de-
creases the Lyman-α absorption. Simultaneously, an increase of the
density around the quasar (as expected from biased galaxy forma-
tion) would increase the absorption. Both effects are better probed
with the optical depth than directly with the flux. Our methodalso
avoids fitting the individual absorption lines, and directly uses the
cumulative distribution of Lyman-α optical depths observed in each
pixel. We then model the change of this distribution under modifi-
cation of the density field and the amplitude of the ionizing rate,
Γ12. Our method therefore allows one, in principle, to estimatethe
density enhancement around host galaxy of quasars, onceΓ12 is
fixed by some other method.
We first use a LCDM high resolution simulation to validate our
method. The information onΓ12 and density field is accurately re-
covered. This gives us confidence to perform our analysis on the
real data. We then use the spectra of 12 quasars with highest lumi-
nosity at2.2 < z < 3.3 from the ESO-VLT Large Programme.

Our method has revealed the presence of an overdensity for
2 <

∼ r <
∼ 10 properh−1Mpc, assumingΓ12 < 3. We have shown

that it is consistent with a density profile around the most massive
halo at redshiftz = 2 in the Millenium simulation forΓ12 = 1
(Fig. 10). In the future, a similar analysis should be done with a
larger sample of spectra, covering different redshift and luminosity
ranges. Together with synthetic density profiles computed around
halos of different mass in a large simulation such as the Millenium
one, this will be very useful to understand better the relation be-
tween the environement of the quasar and its host galaxy, andtheir
evolution with redshift. New constraints could also be put on the
mass-luminosity relation.
Without the knowledge ofΓ12, and due to the limited statistics, we
could not discard an uniform density profile. Indeed, consistently
with standard proximity effect analysis, observations arealso mod-
elled without density enhancement, assuming a higher valueof Γ12.
Yet, due to the specific scaling of the density profile withΓ12, a
larger statistics could already allow us to distinguish between dif-
ferent type of profiles, from a simple power law to the existence
of alternate shells corresponding to over and under densityregions.
This would be valuable to test the presence of winds, or otherspe-
cific feedback effects. Thus it is important to confirm our tentative
finding of density enhancement around QSOs (forΓ12 < 3) at high
significant level using a bigger sample.

Another application of this analysis concerns the transverse prox-
imity effect. The modeling of the observations obtained with Ly-
man break galaxies or quasars has been done either with simula-
tions (Croft 2004; Maselli et al. 2004) or analytical model for the
density (Schirber et al. 2004). These works could not reproduce
the amplitude of the observed effect with normal propertiesof the
quasar, such as anisotropy of the beaming and variability. Combin-
ing the constraints on the optical depth evolution along andtrans-
verse to the line of sight could be a way to disentangle the different

parameters, that is the density structure,Γ12 and the properties of
the quasar.
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Schirber M., Miralda-Escudé J., McDonald P., 2004, ApJ, 610, 105
Scott J., Bechtold J., Dobrzycki A., Kulkarni V.P., 2000, ApJS, 130, 67
Scott J., Bechtold J., Morita M., Dobrzycki A., Kulkarni V.P., 2002, ApJ,

571, 665
Seljak U., Zaldarriaga M., 1996, ApJ , 469, 437
Springel V. et al., 2005
Srianand R., Khare P., 1996, MNRAS, 280, 767

Steidel C.C., Pettini M., Adelberger K.L., 2001, ApJ, 546, 665
Theuns T., Leonard A., Efstathiou G., Pearce F.R., Thomas P.A., 1998, MN-

RAS , 301, 478
Theuns T., Bernardi M., Frieman J., Hewett P., Schaye J., Sheth R.K., Sub-

barao M., 2002, ApJ, 574, 111
Tytler D., Fan X.M., 1992, ApJS, 79, 1
Tytler D., et al., 2004, ApJ, 617, 1
Verner D.A., Ferland G.J., 1996, ApJS , 103, 467
Viel M., Matarrese S., Mo H.J., Theuns T., Haehnelt M.G., 2002a, MNRAS

, 336, 685
Viel M., Matarrese S., Mo H.J., Haehnelt M.G., Theuns T., 2002b, MNRAS,

329, 848
Wadsley J., Bond J.R., 1996, Bulletin of the American Astronomical Soci-

ety, 28, 1414
Weinberg D., 1999, in Banday, R. K. Sheth, L. N. da Costa. eds,Proc. of

ESO/MPQ conf. Evolution of large scale structure : from recombination
to Garching, ESO, Garching,p.346

Zhang Y., Anninos P., Norman M. L, 1995, ApJl , 453, L57
Zhang Y., Anninos P., Norman M.L., Meiksin A., 1997, ApJ , 485, 496

APPENDIX

A key assumption in this paper is that the PDF of thescaled
optical depth,P (τ (z)/τ0(z)), varies little with redshift. Here,
τ0(z) ∝ (1 + z)α is a redshift dependent scaling function, with
α ≃ 4 − 5. We showed in Fig. 3 that this is true for the full op-
tical depth in mock spectra in the range0.1 ≤ τ/τ0 ≤ 100 and
in Fig. 8 for the censored, recovered optical depth in the range
0.1 ≤ τ/τ0 ≤ 2.5, both at the reference redshiftz = 2.25. We
illustrate in Fig. 11 the limitation of this assumption, by showing
the scaledP (τ/τ0) over a larger range. As expected, the PDF be-
comes wider in its tails as the density field becomes increasingly
non-linear at lower redshifts. However in the range in whichwe
use the PDF,τmin ≤ τ ≤ τmax, this dependence is very weak
indeed. It also becomes clear from this figure that we cannot reli-
ably determine the shape of the PDF around the maximum for the
signal-to- noise ratio in the LP quasars, even at the higher redshifts
z ∼ 3. This is also clear from Eq. (2):τ ∼ 0.07 < τmin at the
typical volume-averaged overdensity∆ = 1/3 at z = 3, when
τ0 ≃ 0.7. Uncertainties associated with continuum fitting make
this part of the PDF uncertain, in addition to these signal-to-noise
issues. Note that in our previous analysis we used the recovered
optical depth from mock samples, which were continuum-fitted to
mimic observed samples. This will strongly affect the shapeof the
PDF at these low values, and therefore it is not very worthwhile to
try to take these lower optical depths into account for the present
analysis. In contrast, themockPDF is uncertain at highτ , where it
becomes sensitive to lack of self-shielding and other numerical un-
certainties in high density regions. Given these limitations, can we
understand the shape of the optical depth PDF in the intermediate
regime?
Miralda-Escudé, Haehnelt and Rees (2000) provide physical moti-
vation for the following fitting function for the (volume-weighted,
real space) overdensity∆,

P (∆) d∆ = A exp
[

−
(∆−2/3 − C0)

2

2(2δ0/3)2

]

∆−β d∆ . (11)

Their Table 1 provides values forA, C0, δ0 and β at redshifts
z = 2, 3, 4 and 6, which they obtained from fitting their numerical
simulations. The exponent guarantees that the PDF is a Gaussian in
∆ − 1 whenC0 = 1 and the dispersionδ0 ≪ 1.
We can use this as anAnsatzfor the PDF ofτ , given the relation
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Table 2.best fitting parameters (Eq. 12) for the PDF of scaled opticaldepth,
within different redshift bins, restricting the fit to−2 ≤ log(τ/τ0) ≤ 1
(thin lines in Fig. 12)

z δ0 µ ν

1.8 3.58 1.44 0.46
2.0 3.80 1.46 0.47
2.25 4.09 1.47 0.50
2.9 3.80 1.49 0.52

Figure 11. PDF of the true, scaled optical depth,τ/τ0 , of a large sample
(20) of mock LP quasars, in the redshift range [1.7,1.9], [1.9,2.1], [2.15,
2.35], [2.85, 3.05]. A redshift scalingτ0 ∝ (1 + z)5 is assumed pixel by
pixel, the mean redshift is indicated in the panel. Limits inoptical depth for
the censored PDFs, are indicated by thin vertical lines (with corresponding
types). The PDFs have a Gaussian shape, with a more extended power-law
tail toward low as well as higher optical depths. The shape ofthe scaled
PDF is almost independent of redshift over nearly three decades in−1 ≤
log(τ/τ0) ≤ 2.

Eq. (2) between∆ andτ . We expect the exponent in the exponen-
tial to change−2/3 → −2(1 + β)/3, and1 + β = [0.5, 0.6] for
γ = [1, 1.6], hence we fit

P (x) dx = A exp

[

−
(x−2ν/3 − C0)

2

2(2δ0/3)2

]

(10x)−µ dx , (12)

wherex ≡ log(τ/τ0), with free parametersν ≈ 1+ β, C0, δ0 and
µ, andA a normalisation constant. Restricting the fit to−2 ≤ x ≤
1, we show the best fitting PDFs in Fig. 12 and provide the best
fitting parameters in Table 2. The best fitting value forC0 ≈ 0 is
kept constant. The dispersionδ0 differs significantly from the best
fitting one to the density PDF, but the value of the exponentν is
close to expected.
These fits are overlaid on the censored PDF of the observed LP
quasar sample in Fig. 13. The good agreement suggest that the
mock sample is indeed representative of the observed distribution.

Figure 12. Fits of the form Eq. (12) (full lines) to the scaled PDFs shown
in Fig. 11, represented here by the histograms. The fits shownby the thin
line restrict the fitted region to that of the censored optical depth (vertical
lines). Different redshift range indicated in the panel areoff-set vertically
and horizontally by 0.05 and 0.1 respectively, for clarity.The fitting function
does reasonably well around the maximum and in the power-lawtail toward
higherτ , but is not able to fit the more non-linear parts at very high and very
low τ . The fit to the censored optical depth (thin lines) does not recover well
the PDF around the maximum.

Figure 13. Overlay of the fits to the scaled PDF of the mock sample from
Fig. 11 to the (censored) scaled PDF of the LP quasar sample. The same
redshift scalingτ0 ∝ (1+z)5 is assumed for the LP data. The same redshift
range are indicated and shifted as in Fig. 12. The agreement is very good,
increasing our confidence that the mock samples are sufficiently realistic
for validating our method.


