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In quantum mechanics, black holes behave like black 
bodies and they emit thermal radiation which is 
called Hawking radiation. Black hole evaporation 
leads to the ‘information paradox’. In general rela-
tivity these properties follow from the fact that a 
black hole has a horizon. We explain this deep mys-
tery in terms of the quantum statistical mechanics of 
an underlying microscopic theory. The microscopic 
degrees of freedom, for the class of black holes we 
discuss, are given by the collective excitations of a 
configuration of D-branes which occur in string the-
ory. This article introduces the issues involved and 
presents a summary of what has been achieved and 
what more needs to be done. 

Black holes and general relativity 

THE force of gravity is one of the most important pre-
dictions of string theory. In fact string theory explains 
gravity because its low energy limit is described by 
Einstein’s General Theory of Relativity. Since string 
theory is consistent with quantum mechanics (in par-
ticular it is unitary and free of the usual infinities of 
quantum field theory) it is widely believed that it is also 
a consistent theory of quantum gravity. Hence string 
theory should be able to resolve the conundrums of 
general relativity. One of these conundrums, to which 
this article is devoted, has to do with the fact that black 
holes emit thermal radiation. 
 Black holes are among the solutions of general rela-
tivity that describe gravitational collapse. There is a lot 
of indirect evidence for their existence and their study 
occupies a central place in modern high energy 
astrophysics. Their masses range from a few solar 
masses for black holes in X-ray binaries to a few 
hundred million solar masses for black holes that are 
believed to exist in the centers of galaxies.  
 At present all theories of astrophysical phenomena 
associated with black holes are based on classical gen-
eral relativity. While quantum aspects of black holes 
seem remote from experimental access they present 
nagging problems for theoretical physicists. There are 
various aspects to this. 

 Firstly the center of the black hole is a place where 
the curvature of space–time becomes infinitely large 
(Figure 1). Presently we do not know how to treat this 
singularity. However on general grounds it is clear that 
for large curvatures Einstein’s theory needs modifica-
tion and in a modified framework the singularity would 
be smoothened out. string theory offers many examples 
where singularities are understood and resolved by a 
variety of mechanisms. As of now these mechanisms do 
not apply to the singularity of a black hole. 
 Black holes have another property that enables us to 
ignore the above singularity and discuss their physics in 
a well-defined way. They have a horizon which is a sur-
face that shields the singularity in a manner of speaking 
(Figure 1). Penrose has called this property ‘cosmic 
censorship’. The horizon is a null surface in the sense 
that any two points on the horizon are connected by a 
ray of light. The horizon of a black hole in 3+1 dims is 
a 2-dim. surface with a fixed area. Light starting inside 
the horizon never emerges outside. Physically we can 
 

 
 

 

Figure 1. A picture of a black hole space–time. The horizon di-
vides the space–time into two regions and shields the singularity. A 
jar of hydrogen gas is falling into the black hole. 
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attribute this to the bending of light by the gravitational 
field inside the black hole: a kind of a gravitational total 
internal reflection. The horizon thus partitions the 
space–time of a black hole into two distinct regions. A 
freely falling observer crossing the horizon will con-
tinue to fall inwards and will never be able to get out. 
Since the light emitted by a source that is carried by the 
observer cannot escape, the hole will appear black! That 
is why an object with a horizon is called a black hole. 
The name was coined by John Wheeler. 
 The presence of the horizon of a black hole leads to a 
paradox with the 2nd law of thermodynamics. Imagine a 
jar of hydrogen gas falling into a black hole (Figure 1). 
This gas, which is at a certain temperature, would have 
a certain amount of entropy before falling into the black 
hole. After falling in this entropy would be entirely un-
observable and that would violate the second law of 
thermodynamics because in the process of the jar falling 
into the black hole the total entropy of the jar plus the 
black hole would decrease! The paradox would be re-
solved if we assume that the black hole has entropy and 
this entropy increased when the jar fell in. 
 Bekenstein made the hypothesis that the entropy as-
sociated with a black hole is proportional to the area of 
the horizon of the black hole, 

 S = aA, (1) 

where a is a universal constant which would be the 
same for all black holes. 
 Let us list a few properties of black holes that support 
his guess.  
 
• The ‘no hair theorems’, tell us that the state of a 

classical black hole is completely characterized by a 
few parameters like its mass, angular momentum and 
global gauge charges which give rise to long range 
fields. Electric charge is an example of a gauge 
charge associated with the long range electromag-
netic field. In particular the area of the event horizon 
depends only on these quantities. 

• If we perturb a black hole, say by throwing in some 
matter, then the perturbation decays in a characteris-
tic time rh/c (rh is the horizon radius and c is the 
speed of light in vacuum), and the new state of the 
black hole is again characterized by a horizon whose 
area has increased and is characterized by the 
changed mass, angular momentum and charge of the 
final state. In fact in any adiabatic process involving 
black holes the horizon area never decreases. In par-
ticular if we have a fusion of two black holes with 
horizon areas A1 and A2 then the horizon area A12 of 
the final black hole is never less than the sum of the 
initial areas. 

This is as far as we can go using the classical theory 
where only the change in the entropy of a system makes 

sense. The absolute entropy of a black hole can only be 
defined in the framework of quantum mechanics. This 
crucial step was taken in the work of Hawking who 
quantized matter in a black hole background. 

Quantum field theory and black holes 

In the quantum theory since the absorption process is 
described by the matrix element of a hermitian Hamil-
tonian, the emission amplitude is necessarily non-zero. 
Black holes radiate and behave like black bodies. They 
emit thermal radiation and they are characterized by a 
temperature that has a purely quantum mechanical ori-
gin and depends only on the mass, angular momentum 
and the global charges of the black hole. The fundamen-
tal formula for the temperature, due to Hawking is 
given by, 
 

 ,
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where κ is surface gravity (acceleration due to gravity 
felt by a static observer) at the horizon of the black 
hole. For a Schwarzschild black hole κ = (1/3GNMc), 
where GN is Newton’s constant and M is the mass of the 
black hole. 
 The constant of proportionality in eq. (1) is deter-
mined by using the first law of thermodynamics, 
TdS = dM and the temperature formula 
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This is the celebrated Bekenstein–Hawking formula. 
 A basic question that can be posed at this stage is: Is 
there a microscopic origin of the black hole entropy? Or 
equivalently can we understand black hole entropy in 
terms of Boltzmann’s formula? 
 
 Sbh = lnΩ , (4) 
 
where Ω  is the number of micro-states of the black hole. 
There does not seem to be an answer to this question in 
the standard framework of quantized general relativity. 
However if we assume that eq. (3) is a measure of the 
micro-states of the black hole, its study may teach us 
something about the hidden degrees of freedom of 
quantum gravity. string theory does vindicate this ex-
pectation for a certain class of black holes. 
 Note that the universal constant 4a–1 is the square of 
the Planck length lP  which is a basic unit of area built 
out of the 3 fundamental constants: speed of light c, 
Planck’s constant h and Newton’s constant GN. 
( )/( 3

N
2
p cGl h=  = 10–33 cm.) It is remarkable that a 
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counting formula contains the Planck length which is a 
length scale one would naturally associate with ex-
tremely high energy physics. Besides the fact that a 
black hole behaves like a thermodynamic object, black 
holes in general spontaneously radiate thermal radiation 
(called Hawking radiation). In the case of a realistic 
Schwarzschild black hole, this is reflected in the fact 
that the specific heat is negative and hence the black 
hole is expected to evaporate completely. 

The information paradox 

The information puzzle is a statement of the conflict 
that arises between the general principles of quantum 
mechanics and the fact that black holes evaporate by the 
emission of thermal radiation. Let us explain this. The 
in falling matter that forms a black hole is described by 
a wave function in the standard fashion before it disap-
pears behind the horizon. Given the wave function we 
know (in principle) all the quantum mechanical correla-
tions between the degrees of freedom of the system. 
When the black hole evaporates the final state of the 
system is purely thermal radiation. The final state is a 
mixed state where the quantum mechanical correlations 
between the states of the system are averaged over. This 
evolution of a pure state to a mixed state is in conflict 
with the standard laws of quantum mechanics because a 
hermitian Hamiltonian evolves pure states into pure 
states. The fact that in the presence of black hole a pure 
state evolves into a mixed thermal state is called the 
‘information paradox’. 
 Hawking radiation as calculated in semi-classical 
general relativity is a mixed state and one can attempt to 
resolve this paradox in the standard quantum gravity 
framework by calculating the correlations between the 
ingoing and outgoing Hawking particles. In this way 
one may be able to reconstruct the initial state of the 
black hole. However such a calculation would require a 
good quantum theory of gravity where controlled ap-
proximations are possible. All such attempts have failed 
in the conventional framework of quantum gravity. 
 In string theory we propose to resolve the information 
puzzle (for a certain class of black holes) by discover-
ing the microscopic degrees of freedom of the black 
hole and their interactions. In string theory a black hole 
is described like in standard quantum statistical me-
chanics by a density matrix: 
 

 ∑ 〉〈
Ω

=
i

ii |,|
1ρ  

 
 ,lnΩ=S  (5) 
 
where |i〉 is a micro-state. Ω  represents the total number 
of micro-states. Hence in string theory the thermal na-

ture of Hawking radiation is explained just like we ex-
plain the thermal spectrum of a piece of hot glowing 
coal. In principle, if we choose not to use the micro-
canonical ensemble, we can reconstruct the initial state 
of the system from the final state. There is no in princi-
ple ‘information paradox’. It is well worth emphasizing 
that the existence of black holes in nature compels us to 
resolve the logical problems of incorporating general 
relativity into the framework of quantum mechanics. 
One may take recourse to the fact that for a black hole 
of a few solar masses (one solar mass is approximately 
1033 g), the Hawking temperature is very tiny ~ 10–8 K, 
and hence unobservable. However the logical problem 
that we have described above cannot be wished away 
and its resolution enhances the case for the string para-
digm as a framework for fundamental physics. 

D-Branes and micro-states of string theory  
black holes 

It is a fortuitous circumstance that for a certain class of 
black holes that occur in string theory, we can make 
precise statements about the derivation of black hole 
thermodynamics from statistical mechanics including 
the rates of Hawking radiation. These black holes occur 
as classical solutions in the low energy limit of type IIB 
string theory and their space–time is 4+1-dimensional. 
Their virtue lies in the fact that we can make precise 
statements about them. They also have the simplifying 
property that unlike the Schwarzschild black hole they 
have a positive specific heat.  
 Let us give a brief description of these black holes. 
They are characterized by 3 charges Q5, Q1 and N which 
can be chosen to be positive integers. The charges Q5, 
Q1 are generalized gauge charges and N is an electric 
type charge. To describe the microscopic model we need 
to first consider 10-dim space–time as a product of 
R5,1 × S1 × T4. So we have 4 non-compact space dimen-
sions, time, a circle of radius R and a 4-torus (a product of 
4 circles). The radii of the 4-torus are much smaller than R. 
 The basic building blocks are the 2 distinct types of 
solitons of this string theory. They are D5-branes and 
D1-branes. A D5 brane is a 5-dim. domain wall and a 
D1-brane is a 1-dim. string. These branes are sources of 
the generalized gauge charges Q5, Q1. The fundamental 
property of these branes is that open strings can be 
emitted and absorbed by these branes just like photons 
are emitted and absorbed along the world lines of elec-
trons. Just like a photon emitted by an electron and ab-
sorbed by another describes their electromagnetic 
interactions, open strings emitted and absorbed between 
branes also mediate interactions between D-branes. The 
amplitude for the emission of an open string from a D-
brane is proportional to the string coupling constant gs. 
Figure 2 illustrates this point. 
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Figure 2. Open strings (dotted lines) emitted and absorbed by D5 
and D1-branes. 
 
 

 The model of the black hole is built by wrapping the 
D5-branes on the 4-torus and the circle of radius R, and 
wrapping the D1-branes on the same circle. In this way 
these coincident branes share exactly one spatial dimen-
sion, namely the circle of radius R. 
 Now that we know the placement in space–time of 
the basic building blocks, let us enumerate the various 
open strings that mediate the interaction amongst the 
assembly of D-branes. There will be various types of 
open strings attached to the branes depending on their 
end points. For example there is an open string that 
connects the ith Q1 brane with the jth Q5 brane. We can 
assemble these open strings into Q1 × Q5 matrices. 
Similarly we can assemble open strings that join the ith 
and jth Q1 branes into Q1 × Q1 matrices and similarly 
for the 5 branes we have Q5 × Q5 matrices. Since the D-
branes are charged the ( j, i) open strings are complex 
conjugates of the (i, j) open strings. Hence the matrices 
which assemble the open strings are hermitian matrices. 
See Figure 3. 
 The low energy dynamics of these open strings are 
described by a supersymmetric non-abelian gauge the-
ory on a cylinder of radius R with time running along its 
length. This is just the cylinder that is common to both 
the D1 and D5-branes. The gauge group is U(Q1) × 
U(Q5). Since there are a large number of branes in-
volved, the effective coupling constant of this gauge 
theory is gs .51QQ  We see that even though the cou-
pling gs can be small the effective coupling can be large 
since a macroscopic black hole is composed of a large 

number of branes. Hence black hole physics is  
described by the strong coupling limit of the gauge  
theory. 
 In order to have a workable solution to our problem 
we are aided (immensely) by the fact that the gauge 
theory has a scale invariant description with a high de-
gree of supersymmetry. Supersymmetry enables us to 
circumvent the would-be hard strong coupling problem. 
However we leave this unexplained for the purposes of 
this article. Using this fact we can explain several fea-
tures of black hole thermodynamics without a detailed 
knowledge of the dynamics. The scale invariant dynam-
ics has a Hamiltonian H that evolves the system along 
the cylinder, a momentum P that generates rotations 
around the cylinder and a central charge c which is a 
measure of the number of degrees of freedom that enter 
the Hamiltonian. In the case at hand c = 6Q1Q5 and the 
ground state of our black hole is modeled by the eigen-
value condition H = P = N/R. The fact that such a state 
is a stable ground state is a consequence of supersym-
metry.  

Entropy of the extremal black hole 

We now indicate the fundamental result that the entropy 
of the above state exactly matches the Bekenstein–
Hawking entropy of the black hole. Henceforth our 
convention will be to work in units which set c = h = 1. 
 For large values of charges the H = P = N/R state, is 
highly degenerate, and in fact the degeneracy grows 
exponentially. A well-known asymptotic formula counts 
this number and the entropy is the logarithm of the de-
generacy 
 
 

 
Figure 3. A drawing of the assembly of D5-branes (shaded region) 
and D1-branes. The X axis stands for the directions of the 4-dim. 
torus and the Y axis stands for a circle of radius R. The D1-branes 
wind around the circle and they are indicated by the lines with ar-
rows. The various open strings are illustrated by the dotted lines. 
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 Sbh = 2π .51 NQQ  (6) 
 
This result of Strominger and Vafa coincides with the 
Bekenstein–Hawking result for the corresponding ex-
tremal black hole! The temperature of this black hole is 
zero. However there is no conflict with the Nernst theo-
rem in classical thermodynamics since here we are re-
ferring to the absolute entropy of a highly degenerate 
quantum ground state. 

Entropy of near extremal thermal black holes  

Let us now describe the more interesting case when the 
black hole is excited above its ground state. As we shall 
see in this case it has a small Hawking temperature and 
one can address the question of Hawking radiation to a 
state of lower mass. The quantum state corresponding to 
the near extremal black hole is modeled by the eigen-
value conditions H = N/R + 2n/R and P = N/R, n Ú N. 
 The entropy of the excited black hole in the micro-
canonical ensemble can be once more calculated using 
asymptotic formulas 
 

 ).(2ln 51BH nnNQQS ++=Ω= π  (7) 

 
The small Hawking temperature of this near extremal 
black hole is also readily obtained from the above for-
mula since we know that the change in energy from the 
ground state is 2n/R. 
 

 .
2 51

H QQ

nR
T

π=  (8) 

 
 The above thermodynamic formulas again match with 
the calculations done in general relativity for large val-
ues of the charges Q1, Q5, N. It is important to note that 
the entropy and temperature of this black hole are inde-
pendent of the 5-dimensional Newtons’s constant. It is 
also easy to see from the above formulas that the spe-
cific heat is positive since the change in mass is propor-
tional to the square of the temperature: .~ 2

HTn  This 
circumstance is unlike the (more difficult) case of the 
Schwarzschild black hole. Another interesting feature of 
the above thermodynamic formulas is the fact that the 
entropy above the ground state is proportional to the 
temperature. This is characteristic of a gas of particles 
in 1-dimension and has a natural explanation in the  
microscopic theory. 

Hawking radiation of near extremal thermal 
black holes 

The next issue of importance is the calculation of the 
Hawking rates of emission of the various particles by 

the near extremal black hole as it decays towards its 
ground state. The emission is most copious in the case 
of massless particles and fortunately these can be ex-
actly calculated. The derivation of these rates turns out 
to be a difficult problem because it involves an under-
standing of the interaction of the absorbed and emitted 
modes with the black hole micro-states. In order to set 
up the interaction Hamiltonian to first order, we need a 
correspondence between the absorbed and emitted 
modes and operators in the microscopic theory that 
couple to them. The interaction Hamiltonian is then 
uniquely fixed up to a normalizing constant by the high 
degree of symmetry in the microscopic theory at hand. 
The basic idea is similar to the case of pion–nucleon 
couplings that are fixed to first order by the use of 
SU(2) isospin symmetry of the strong interactions. In 
the case at hand the symmetry turns out to be a combi-
nation of conformal symmetry and the SO(4) group of 
rotations in 4-space dimensions. The solution of this 
problem that applies to all the possible Hawking parti-
cles is provided by using a duality discovered by Mal-
dacena. This principle was originally formulated for the 
problem of D3 branes. It is indeed fortunate that it can 
also be adapted to the black hole modeled by the D1–
D5 system. 
 Let us explain this. In the limit G5 → 0 the interaction 
of the Hawking particles (absorbed and radiated from 
the black hole) and the black hole micro-states is van-
ishingly small and hence we can isolate the black hole 
micro-states from the Hawking radiation. Also, since 
the absorption cross section of very long wavelength 
particles into the black hole is proportional to the area 
of the horizon, Ah = 4G5 ,51 NQQ  this too is vanish-
ingly small in this limit. Note that since the entropy and 
temperature of the black hole in consideration are inde-
pendent of G5 they are unaffected by this decoupling 
limit and it makes sense to study the microscopic theory 
in isolation.  
 Maldacena’s duality states that in the decoupling 
limit the gauge theory of the micro-states, which we 
have discussed, is dual to string theory in a 5+1 dimen-
sional space–time which is M = AdS3 × S3. AdS3 stands 
for Anti de Sitter space in 3-dimensions and S3 stands 
for a 3-dimensional sphere (note 1). In fact the gauge 
theory lives on the boundary of this space, which is the 
2-dimensional cylinder that we encountered before. The 
low energy limit of this string theory describes a gravity 
theory in M. It has a black hole solution which captures 
the near-horizon features of the original black hole 
whose properties we are interested in. In a manner of 
speaking it is obtained by scaling (stretching) the region 
near the horizon of the black hole to infinity. The scale 
invariance of the microscopic model matches well with 
the fact that as we move away from the horizon of a 
black hole energies of particles undergo a gravitational 
red shift. Another way of putting this is that if one ex-
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amines the potential energy of a particle in the black 
hole geometry then in the near horizon limit, the wall of 
the pit (characteristic of a black hole) becomes infi-
nitely high so that the modes near the horizon cannot 
escape to infinity. In more technical parlance as Q1 and 
Q5 go to infinity the horizon degrees of freedom become 
exactly massless and decouple from the bulk degrees of 
freedom. 
 Once the exact correspondence of the various opera-
tors of the theory on the boundary, and the Hawking 
particles that live in the bulk, is known, we can use the 
first order interaction Hamiltonian, valid for small but 
non-zero G5, to calculate the absorption and emission 
rates. The interaction is described by the Hamiltonian 
 
 Hint = ∫ϕ|BO, (9) 
 
where ϕ is a wave field corresponding to an absorbed or 
emitted particle and O is the corresponding operator in 
the microscopic theory. ϕ|B means the value of the wave 
field on the boundary of Anti de Sitter space. The ab-
sorption of a particle described by the wave field ϕ 
causes a transition from a micro-state |i〉 to a microstate 
|f 〉 with amplitude 
 
 Sif = 〈f |Hint (|i〉|ϕ〉 ). (10) 
 
 
 

 
Figure 4. The effective theory that describes the dynamics of the 
D1–D5 system lives on the boundary of Anti de Sitter space. The 
dotted lines indicate excitations of this effective theory giving rise to 
a Hawking particle (represented by the wave field ϕ) that is emitted 
by the black hole. 

The emission and absorption amplitudes are equal by 
time reversal invariance. Since the large degeneracy of 
the black hole states enable a density matrix descrip-
tion, the probability of the process is given by the ‘un-
polarized’ expression: 
 

 ∑∑Ω
=

i f

S .||
1

Prob 2
if

I
abs  (11) 

 
Note that the ‘unpolarized’ transition probability corre-
sponds to averaging over initial states and summing 
over final states. Ω I is the total number of initial micro-
states corresponding to the macroscopic charges of the 
black hole. A similar expression for the emission proc-
ess is given by 
 

 ∑∑Ω
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S ,||
1

Prob 2
if

F
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where ΩF is the total number of final micro-states corre-
sponding to the macroscopic charges of the black hole. 
 The above expressions for the absorption and emis-
sion probabilities express the most basic message of this 
article that black hole thermodynamics is a consequence 
of the quantum statistical mechanics of the microscopic 
degrees of freedom associated with the horizon of a 
black hole. These formulas can be used to calculate the 
decay rate of the black hole in a standard fashion. The 
string calculation, for the decay into all the dominant 
massless modes, is valid in the domain where string 
theory is well approximated by supergravity, due to the 
high degree of supersymmetry of the effective theory of 
the micro-states. The formulas derived in this way agree 
with Hawking’s semi-classical calculation in general 
relativity, 
 

 ,
)2(

d
)()()( 4

4

abs π
ρσ

k
kkk =Γ  (13) 

 
where ρ(k) = (exp k/TH – 1)–1 and σ(k)abs is the absorp-
tion cross section of the incident wave, of wave number 
k (in a particular channel), on the black hole (note 2). 

Concluding remarks and future problems 

• The successful description of black hole thermo- 
dynamics that we have given, hinged on discovering  
a microscopic description of the near horizon de- 
grees of freedom of a class of black holes in string  
theory. The technical methods (which we did not de- 
scribe in any detail) that made possible calculations  
of the Hawking process, which is basically a strong  
coupling problem, rely on (i) the ability to isolate  
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the microscopic dynamics (Maldacena’s decoupling 
limit) from the other degrees of freedom of the the-
ory and (ii) the high degree of supersymmetry of the 
D1–D5 system. The question is whether a new con-
ceptual breakthrough is needed to tackle the more 
physical Schwarzschild or Kerr black holes where 
neither of the above 2 points are obviously valid. 

• We need to explain the Bekenstein–Hawking for-
mula from the microscopic theory: why is the en-
tropy proportional to the area of the horizon? An 
answer to this question will throw light on the ques-
tion of how the microscopic theory creates (ex-
plains?) the space–time of the black hole. 

• Our discussion focused entirely on the region of 
space–time outside the horizon. What about the re-
gion inside the horizon which is singular. A funda-
mental theory must address this question. 

• String theory must address the difficult question of 
the actual formation and evaporation of a black hole. 

• In this article we have focused on one of the impor-
tant conundrums of general relativity on which 
string theory has made progress. We end this article 
by stating another conundrum that string theory 
faces, in light of the recent astronomical observa-
tions that indicate an accelerated expansion of the 
universe. Presently it is not known how to accom-
modate such a cosmological solution in string the-
ory. Besides, this string theory must also address 

itself to the deep conceptual issues related to the 
‘big bang’ and the origin of the universe.  

Notes 

1. Anti-de Sitter space is a solution of Einstein’s equations in 2+1 
dims, with negative cosmological constant just like the 3-
dimensional sphere is a solution with positive cosmological con-
stant. In the present case the magnitude of the cosmological con-
stant is the same for both the spaces. 

2. The theory of Hawking radiation for the class of black holes con-
sidered here has now been worked out after much effort. For de-
tails we refer the reader to the technical reviews quoted at the end 
of this article.  
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