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We present qualitative arguments for the emergence of the Nambu-Jona-Lasinio model within
Quantum Chromodynamics. Then within this model we sketch the derivation of the chiral meson
model including the Wess-Zumino term. We also discuss the perturbative and non-perturbative
spectrum.

Introduction and the Nambu-Jona-Lasinio model

In this article I will discuss the Nambu-Jona-Lasinio (NJL) model? in the context of
some recent developments in strong interactions physics which addressed themselves to
the question of the effective low energy lagrangian of quantum chromodynamics (QCD).
This is the subject of the nonlinear chiral lagrangian, the Wess-Zumino term and
topological solitons.?»¥ Here we present qualitative arguments for the emergence of the
NJL model as an effective field theory at an intermediate length scale. Then within this
model we will describe the derivation of the chiral meson model and the Wess-Zumino
term. The resulting nonlinear lagrangian generalizes Skyrme’s model and supports
soliton solutions.”

At present there is no first principles calculation that derives the chiral model from
QCD. The issue is as difficult and similar to a derivation of hydrodynamics from the
principles of atomic physics. Here we shall recourse to a plausible qualitative scenario.
The theoretical framework to discuss phenomenological lagrangians is provided by the
Kadanoff-Wilson renormalization group. We begin with 4-dimensional QCD on a hyper-
cubical lattice. When the lattice spacing is small (much less than a fermi) we assume that
QCD is described by Wilson’s lattice action for quarks and gauge fields. This short
distance lagrangian has no chiral couplings. To obtain an effective lagrangian at a
larger lattice spacing we have to integrate out the high momentum fluctuations of the
gauge and fermion fields. Now suppose we do that and after a few iterations we reach
a lattice spacing of the size of the correlation length of the gauge fields: £&¢. (Non-abelian
gauge fields in 4-dimensions have a finite correlation length and this is one of their most
important properties.) The lattice action at this length scale will contain higher order
operators and possibly non-local couplings. These couplings can be chiral.

Now suppose at this scale we focus on Green’s functions of local gauge invariant
fermionic operators, e.g., 0. (x)=2¢ & I'.¢ & where I'a={1, vs, Yu, 7u7s"}. @ is a
SU(N) colour index and ¢, j are U(#n) X U(#%) flavour indices. Restricting attention to
properties of these Green’s functions for distances much larger than &¢ (which is now one
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lattice spacing) we are effectively dealing with a nonlinear theory of fermions with
contact interactions. This is basically the NJL model.

The main point in the above reasoning is that non-abelian gauge fields develop a finite
correlation length and the nonlinear fermion theory only evaluates correlations of gauge
invariant fermionic operators. With this understanding of the model there is no conflict
with the local gauge invariance of the underlying QCD and with the question of quark
confinement. A similar though far simpler situation where a massive gauge field leads to
a theory with contact interactions, is the familiar Glashow-Salam-Weinberg model where
the gauge symmetry is realized in the Higgs mode. For wavelengths much larger than the
compton wavelength of the W boson the gauge theory is well approximated by the Fermi
theory without violating gauge invariance.

With these qualitative remarks we write down the effective NJL model which
evaluates gauge invariant correlations of fermionic operators for distances longer than
the correlation length of the gauge field

— L= 14ii 3P rar+ P rasi FPrar + 912( P 1aiPrar) (P roxPLes)

- iizz (@ raivedbrar) (Pronyudre) + LE—>R+++], (1

¥, and ¥ refer to the left and right chiral projections. ¢: and g are constants of mass
dim —1. There are phenomenological parameters. We denote the cutoff implicit in (1)
by A: A7'>&c. Further specifications will be made as we go on. The dots in (1) refer
to higher tensor couplings which we do not consider here. The above lagrangian can be
rewritten using colour gauge invariant collective fields:”

—iL: {171,(23 +iZ) ¢L+ SZ’_R(ia +iR)¢R+ JLM¢R+ ‘[RM'{(/’L

giz tr(L/l2+R#2)+"'. (2)

+

L tr MM+
g1

M is a complex scalar and L. and R, are vector fields which couple to the left and right
chirality fermions.

Integrating over the fermions in the path integral corresponding to (2), we get the
path integral entirely over the collective fields
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Serr=Indet D— dzte M'M —— [d*z tr (L + Ra?), (3)
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PL,R:Q%)-. (4)

The central object of our investigation will be the determinant the chiral Dirac operator
D. In (4) we can parametrize M(x)=H(x)U(x), where H is hermitian and U is
unitary.
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Spontaneous symmetry breaking

In the large N limit, we can seek for configurations which minimize the effective
action (3). A Lorentz invariant configuration that does it is L,=R,=0 and M =H]1.
Substituting in (3) and minimizing it leads to the gap equation (we have used a sharp
momentum cutoff for illustration)

=, H? A%\ 8x? ]*
H[l Azln(l-i-Hz) o]0, (5)

There are 2 solutions =0 and A +#0. The latter exists provided A¢:>>87%/N. The
solution H =0 is unstable to small perturbations, whilst the non-trivial solution which is
stable, corresponds to the true minimum of the effective action. This is the famous result
of Nambu and Jona-Lasinio:” Chiral symmetry is spontaneously broken. In this case
from U(xn) X U(n) to diag U(n).

Determinant of chiral Dirac operator
and Wess-Zumino term

We now discuss the determinant of the chiral Dirac operator (4). For the present we
do not assume spontaneous symmetry breaking. detD is formally invariant under local
U(n) X U(n) gauge transformations: M - 92M, R— R*=QRQ'+i0Q807", and similarly
for the left-handed fields. This invariance is formal because the currents corresponding
to this symmetry are not conserved due to the presence of anomalies.¥ We shall see that
a chiral rotation on the collective fields translates the phase of detD. To study these
matters and in fact to define the phenomenological model more precisely we turn to
defining detD.

In euclidean space time the operator D is elliptic and non-self adjoint w.r.t. the scalar
product (x, ¢)=/d*xx'¢. The non-self adjointness is due to the presence of chiral
couplings. We also assume that space time is compactified to S*. Hence the eigenvalues
of D are discrete and complex: e,=¢e"|e,]. We can formally define Indet D=:3ndx
+ + XaInlex*=7 Im(ln det D)+ +1n det D'D. Now in a cutoff field theory these sums
must be cutoff at #~/A. A smooth cutoff procedure maintaining certain symmetry
principles is desirable. Since we are modelling the strong interactions we define detD to
preserve vector symmetries. Further in our phenomenological theory we parametrize the
definition of detD in terms of an arbitrary function g(x) which vanishes for large x,
together with all its derivatives. We also assume that g(x) is monotonically decreasing
and g(0)=1. An example is g(x) =e %* where ¢>0 is a parameter. With this under-
standing we define Indet D=i4+ 5 trinD'D by

_ _ 1 “ ds =
4=Im(Indet D) = 1 Im_/;/m—s tr g(sD?), (6)
1 + . 1 Nt — l * ds St
7 trin D D———2 trinD'D= o ./;/m_s trg(sD'D), @)

where D= iysD .
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Calculation of the phase 4

We establish a differential equation for the determinant of the gauge rotated Dirac
operator. DW= —FZP;—R°Pr+iH(QU'P,+UQ'Pr). Then under £-2+52 we
have 8D = 3 [6227!, D'']— 3 {76227, D''}. Since our definition of 4 preserves vector
symmetries, the first variation does not contribute and we have

[2] \2
54() = ~Imtr{r600((2) )} ®)
The above anomalous variation of the phase can be calculated to give
54(@)= [d*xtr(i 6007 B(x)) +0(4z). (9)

B(x) is the non-abelian anomaly computed many years ago by Bardeen using different
methods

1
82

Fo=dV+iV?+iA? and Fa=dA+iAV +iVA are the vector and axial vector 2-forms with
V=3(L+R® and A= 3(L—R?. V and A are vector and axial vector 1-forms. Note
that at the level of phenomenological lagrangians it is justified to drop terms 0(1/4?)
because we are assuming that the background fields are slowly varying on this scale.
Also B(x) is independent of the function g{x) and hence universal.

We now integrate (9). To write it as a differential equation we parametrize 2
=¢*"  Then 02027 '=—t.us"07%, where us* is the vierbein on the group. The gener-
ator of group motions is the operator 9.=iu.*(8/67%) and (9) reads D.4=trt.B. Itis
a technical matter to recast this equation in the form

B(x)=— [%FUZ—F%FAZ—%Z'(FUAZ—FAFvA+A2Fv) ——g’—A“]. (10)

@a(4+cl+cz)=—4—;7?—trtaw4, w=idQ0", 11)

@ = Eppc0u22 710,20 70,002710:202 7" is a 4-form and C: and C: are actions of local
densities given by

1

ClL, R =g,

z fd“x tr{z'[R", LI(dL+dR®)+ R°L?*+ (R”)aL—%LR"LR"},

CR®, ) =—4§1;2~ fa*x tr{(R")sa)+w3R"+%a)R"wR”+ iw(R°dR+ dR"R")}.
(12)
Now the 4-form w* in (11) cannot be written as the variation of a local action hence to
solve (11) we integrate it along a path in the space of the chiral field 2(x). The path can

be specified by a parameter rs: 2(x; zs5), 0<xs<1. s is a function of the path length.
Along the path 9.=itr t.(022"/0xs)(d/dxs) and denoting 4+ C:+ C.=1T", (11) becomes

d 1 [ 300 i
L r=p= fatxte S —(de0™)". (13)
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We choose the boundary conditions 2(x; xs=0)=1 and 2(x; xs=1)= U(x) and integrate
(13) to obtain

&Q.Q -

raQ-ro= a’xs fatx tr 22— (a00-)*. (14)

487r

Since the 5-form in (14) is closed, the solution is path independent and is only a function
of the end point configuration U (x).
Hence we have our basic result:”

A(U)—-4(1)=ImIndet(i;d —ZP.— RPr+iH(UP.+ U' Pzr))
—Imindet(:d —ZP.— R'Px+iH)

=W17[2—'/:dx5d4x tr—————— a'QQ—

+i[Ci(L; RY)— Ci(L; R)+ C2(RY; idUUY)]. (15)

(dRQ~)*

In the context of the NJL model and QCD, where chiral symmetry spontaneously broken,
to leading order in large N we have H(x)=H. Then in the long wavelength expansion
in powers of 1/H, we find Im In det(id — ZP.— RVPxz+iH) =0* and so (15) evaluates 4 the
phase of the Dirac operator (4). On the other hand in case H (x) =0 and for simplicity L.
=R,=0, (15) tells us that

ag.o 927 1001

(16)

) ) . 1 1
Im(Indet:d) —Im(indet(;d —idUU ™)) :W./o dxsfd“x tr-=55

Back to the NJL model we mention that (15) is the Wess-Zumino term and it contains
all the anomalous vertices involving pions and vector mesons. It also serves to fix the
quantum numbers of the soliton solution.”

Calculation of |det D|
In this part of the calculation there is no universal piece like the anomgly (15). We
will present In|det D| as defined in (7) as an expansion in powers of 1/H upto dim 4
operators. We simply write down the final answer. For technical details we refer to Ref.

4).

Nnldet D|=—N fa’“xtr{dl[ (FA)* -+ FA) -+ 4T A3
+(apH)2+(H2—I?2)2]+dzi[Ay, ANFL+ dy A2 (H— H?)

A (BuAut il Vi, A+ ds(Au2)+ do[ A, Ay]2}+o<%> Can

Ff, and F{, are the vector and axial vector field strengths same as defined in (10). V
=3 (L+R*® and A= 5 (L—R*). The coefficients d. are given in terms of the regulator
function g(x) d=F- 1, dr=— 4Fo, ds=4F_, ‘SFo, d4:*(4/3)F0, ds——'(8/3)(2Fo F1) ds
=—(4/3)(Fo+ F\) where Fr=/2ds s*""g""(s), x = H?/A? and g™ (s) is the #th derivative
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of g(s). A reasonable theory has x<1. As expected (17) is invariant under vector
gauge transformations. Axial vector transformations are not a symmetry since the
expansion has been done in the broken symmetry phase.

Perturbative spectrum

Collecting the expressions (3), (15) and (17) the effective action of the NJL model is

Sess 1 1

N =In|det D|+i4(U) — Nor Nos

fatx tr H* = [d*x tr(La*+ RaD. (18)
The perturbative spectrum around the large N classical ground state L,=R,=0, M=H
is easily calculated by looking at the quadratic part of (18). It consists of massive vector
and axial vector mesons, the neutral o-meson and the massless pions. The masses and
F;* are given by
mi=—a— mi=—s 60, m=4H"

legzz ’ d11\7922 ’ ’

Flie NH?%d:

"~ 1+2H?d,Ng»? * (19)

Note the relation ma®—m,>=(3/2)ms*.

Non-perturbative spectrum:
Topological solitons of the NJL model

We now discuss the large N solitons of the effective action (18). For simplicity we
set the vector fields L,=R,=0, in (18). In principle we should consider the coupled
system of H(x) and U(x). However our investigation indicates that the classical value
of H(x) deviates negligibly from H and is never zero. Further if we look for static
solutions the Wess-Zumino term 4(U) does not contribute and the static energy function
to be minimized is .

L= [rru{ B2 +3aua.0) + L0 + L% 0, L), 1}

l,=i0.UU". (20)

If we look for configurations which are slowly varying over the length 1/H, the second
term is negligible and we have

£ [eofsmay+ Lo+ Lo, 1), 11} (21)
The coefficients di=/%(ds/s)g(s) and di—ds=(1/122%)[g(x) —xg’(x)] are positive for all
z, in particular for x <1. However the coefficient ds=(1/16x2)[g(x)+(x—2)
X (—g’(x))] is not positive for £ <1, for all functions g(x) in the class of admissible
regulators, e.g., if we choose g(x)=e"** then ds=(1/1671%) e **[1+a(x —2)], which is
positive for x <1 only when ¢<(2—x)~!. The point we are making is that the NJL model
is parametrized by the function g(x) and the choice of this function must be made on
physical grounds and cannot be fixed a priori. In practice one will have to parametrize
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g(x) by several parameters and fix them by matching observed quantities. With these
remarks, when all coefficients in (21) are positive we do find a soliton solution. The
skyrme model comprises of the first and third term in (21).® The numerical work is in
progress and will be reported later.

The soliton we have discussed is a baryon. To see this let us compute the baryon
current B,=(1/N)<¢y.¢>. The expectation value is evaluated in the presence of the
‘external’ fields L., R. and M. It is clear that B.=tr{(8/6L.) +(5/0R.)}Indet D. Now
since the real part of In det D, is invariant under vector gauge transformations only the
phase contributes and B.=tr{(8/6L,)+(6/6Rx)}4. In general this is a complicated
function of the various fields in 4. However in the limit of very long wavelengths when
massive vector and axial vector particles decouple from the effective lagrangian, we can
consider L, and R, as infinitesimal sources and in the formula for the baryon current only
the ‘5-dimensional term’ in the phase (15) contributes and we get the topological formula
for the baryon current

Bu=— i empatr(UU3,UU85UU ). (22)
The baryon charge Bo=(1/247%)d%xe:;»(8:UU*0,UU 0, UU ") is a topological invar-
iant in the broken symmetry phase where U(x—c0)=1.

Clearly much work of a numerical nature remains to be done to fit various aspects of
hadron phenomenology in the scheme we have outlined. We hope that progress in this
direction will be possible. The freedom offered by the regulator function in the definition
of the determinant, in a phenomenological approach, is bound to play an important role
in this endeavour.

Epilogue

Our work on the Nambu-Jona-Lasinio model emerged from a desire to understand the
‘topological’ Wess-Zumino term from a structural point of view: An understanding of
this peculiar 5-dim term must be contained in the fact that 2 quarks make up a meson. It
is this question that led us to establish a connection between the nonlinear fermion theory
and the nonlinear o-model. The understanding of the NJL model in the context of QCD
only came towards the end. Professor Nambu has often emphasized to me the impor-
tance of understanding and elucidating phenomena in terms of structure and constituents.
It is my privilege to dedicate this article to him.
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