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ABSTRACT. We consider the point processes based on the eigenvalues of the reverse circulant,
symmetric circulant and k-circulant matrices with i.i.d entries and show that they converge to a
Poisson random measures in vague topology. The joint convergence of upper ordered eigenvalues
and their spacings follow from this. We extend these results partially to the situation where the
entries are come from a two sided moving average process.
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1. INTRODUCTION

There appears to have been only limited studies on the weak convergence of point process based
on the eigenvalues of random matrices. Soshnikov (2004) considers the point process based on the
positive eigenvalues of appropriately scaled Wigner matrix with heavy tailed entries {x;;} satisfying
P(|zij| > z) = h(z)z~* where h is slowly varying function at infinity and 0 < o < 2. He showed
that it converges to an inhomogeneous Poisson random point process. A similar result was proved
for sample covariance matrices in Soshnikov (2006). These results were extended in Auffinger, Ben
Arous and Peche (2008) to 2 < ar < 4.

On the other hand, Bose, Hazra and Saha (2009) establish the distributional convergence of the
maximum of the eigenvalues of circulant, reverse circulant and symmetric circulant matrices. Same
result for k circulant matrix for n = k% + 1 was derived in Bose, Mitra and Sen (2008). The main
tool for proving such a result was the strong approximation theorem by Einmahl (1989) for i.i.d
random vectors.

In this article, we deal with circulant type matrices with light tailed entries and consider the
point process based on the points (wy, ’\’“a_qbq) where )\ is k-th eigenvalue and wy = % is the
Fourier frequency and ag4, b, are appropriate scaling and centering constants appearing in the weak
convergence of the maximum. We show that the limit measure is Poisson. In particular this yields
the distributional convergence of any k-upper ordered eigenvalues of these matrices and also yields
the joint distributional convergence of any k spacings of the upper ordered eigenvalues. Then we
extend these results partially to two sided moving average process entries under certain restriction
on the process.

2. RESULTS FOR I1.I.D. INPUTS

2.1. Reverse circulant (RC,). This is a symmetric matrix where the (4,7)-th element of the
matrix i T(i4j—2)mod n- L€t Anz(wo), Anz(wi), ..., Anz(wn-1) be the eigenvalues of n~Y2RC,,.
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These eigenvalues are given by (see Bose and Mitra (2002)):

Ana ) Y
(1) Ana (W2 Y230 (1) ay, if no s even
Ana(Wk) = =Ano(Wn—k) m 1<k < [251).
where

1= ork

In :v(wk *‘ ZZ’ € thk|2 and Wg = L

n

t=0

Note that {|An.(wr)|? 1 <k < n/2} is the periodogram of {x;} at the frequencies {wy = 22; 1 <

n
k < n/2}. This explains our notation of using wy as an argument of the eigenvalues \,, . Since the

eigenvalues occur in pairs with opposite signs (except for perhaps one eigenvalue), it suffices for our

purposes to define our point process based on the points (wg, %j)_bq) for k=0,1,2,...,[n/2].
Let €, (- ) denote the point measure which gives unit mass to any set containing z. With ¢ = [5],
ag = QW and by = /In g, define

(2) 26 ) )‘n jz(wj)— bq)( )
Jj=

aq

Let My, ([0, 7] x (—o0,00]) denote the set of all point measures on the set [0, 7] x (—o0, 0] endowed
with topology of vague convergence. We then have the following Theorem.

Theorem 1. Let {x;} be i.i.d random variables with E[zo] = 0, E[z¢]?> = 1 and E|zo|* < oo for
some s > 2. Then for the sequence of point processes n, defined in (2), we have ny, A n, where n

is a Poisson process on [0, 7] X (—00, 00| with intensity measure 7~ 1dt x e *dx and L, denotes the
convergence in distribution on the space M,([0, 7] x (—o0, o0]) relative to the vague topology.

The relation 7, A 1 immediately yields the joint weak convergence of a finite vector of k upper
ordered eigenvalues. To be precise, we introduce for every n the ordered version of the sample
)\n@(wj),j = 07 1,. Lo, = 1,

)‘n,(q) <... < )‘n,(2) < An,(l)'

Let xz < --- < 1 be any real numbers, and write N;, = 0,([0, 7] x (z;,00)) for the number of

exceedances of z; by %jkbq, j=1,...,q. Then

A —b A —b
{%Smla"',%Sxk}:{Nl,nzoaNQ,nSla"‘aNk,nék_]-}~
q q

Thus the joint limit distribution of the vector of the k upper ordered eigenvalues A, ;(w;) as well
as their spacings can be derived from Theorem 1.

Corollary 0.1. Under the assumption of Theorem 1,

(i) for any real numbers xj < --- < 9 < 1,

)\n —-b )\n —b
P(v(l)qga;l,m,’(k)qéxk) = P(Yu) <z, Yy < ),
q

Qq Qa,

where (Y, -+, Y(x)) has the density exp(—exp(—zx) — (21 + -+ 21-1)).

(ii) (M)i_l 2, (i E;)iz1.. 1k where {E;} is an i.i.d standard exponential sequence.

=1,...,
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2.2. Symmetric circulant (SC,,). It is symmetric version of the usual circulant matrix and (¢, j)-
th element of the matrix is given by @, /2_|n/2—|i—jj|-

Let Apz(wo), Anaz(wi), ..., Apg(wn—1) be the eigenvalues of n~1/28C,. These eigenvalues are
given by: (i) for n odd:

{ Analwo) = —=[ag+ 250 )]

) Anaz(wr) = —=[zo + 22£¢L:/12] zjcos(wij)], 1<k <[n/2]

S

n

(ii) for n even:
n_q
Analwo) = =[z0+237 1 25+ Tppo]
n_q )
Analwr) = J=[zo+237 ) zjcos(wri) + (=1)F2,p0], 1<k <

with A\ z(wn—k) = Apo(wg) in both cases.

(4)

I3

Now define a sequence of point processes based on the points (wj, W) fork=0,1,...,q(=
[n/2]), where X, are same as in (3). Note, we have not considered the eigenvalues A,_j for
k=1,...,[5] to define the point process since A\, z(wn—r) = Anz(wy) for k=1,...,[5] and it does
not effect our goal of finding the limit distribution of upper order eigenvalues. Define

q
(5) () =D € rnap-bay ()
S (s =)
where
log1 log 4
(6) bp = Cn+ anIn2, a, = (2logn)~"/? and ¢, = (2logn)"/? — 0 logn + l0g 47
2(2logn)1/2

Theorem 2. Let {x;} be i.i.d random variables with E[xg] = 0, E[zg]?> = 1 and E[x]® < oo for

some s > 2. Then for the sequence of point processes ny, defined in (5), we have n, A 7, where n is
a Poisson process on [0, 7] x (—o0, 00] with intensity measure 7~ 1dt x e~%dx.

Note that a similar result as Corollary 0.1 holds in this case too.

2.3. k-circulant. For positive integers k and n, define the n x n square matrix

i) 1 o ... Tn—2 Tp—1
A Tn—k Tpn—k+1 T1 .-+ Tp-k-2 Tpn—k-1
kn = | Tp_ok Tp—2k+1 To ... Tp-2k-2 Tn—2k—1

nxn

The first row of Ay, is (zo, 1,2, ...,2p—1) and for 1 < j < n —1, its (j + 1)-th row is obtained by
giving its j-th row a right circular shift by k& positions (equivalently, £ mod n positions).

We consider k-circulant matrix only for n = k? + 1. First we describe the eigenvalues of k-circulant
matrix. Let

n—1
(7) v = vy, 1= cos(2m/n) +isin(2n/n), i2 = —1 and M\(z) = Zmlukl, 0<j<n.
=0
For any positive integers k, n, let p; < p2 < ... < p. be all their common prime factors so that,
(& C
n:n'Hpqq and k= k’HpZ‘q.
q=1 q=1

Here a4, B, > 1 and n’, K/, p, are pairwise relatively prime. For any positive integer s, let
Zs=1{0,1,2,...,s — 1}. Define the following sets

(8) S(x) = {zk® mod n’ : b >0}, 0<z <n'
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Let g, = |S(z)|. Define

(9) Uk = {& € Zyy : g < g1}]-
We observe the following about the sets S(x).
(1) S(z) = {xk® mod n’ : 0 < b < |S(2)|}.
(2) For = # u, either S(z) = S(u) or S(x)NS(u) = ¢. As a consequence, the distinct sets from
the collection {S(z) : 0 < z < n'} forms a partition of Z,,.

We shall call {S(x)} the eigenvalue partition of {0,1,2,...,n—1} and we will denote the partitioning
sets and their sizes by

(10) {P(),Pl,...,'Pl_l}, and ni:\Pi], 0<i<l.
Define

yj::H)\ty, j=0,1,....,1—1 where y=mn/n'.
teP;

Then the characteristic polynomial of Ay, (whence its eigenvalues follow) is given by

-1

(11) X (Apn) = X T O —y5)
j=0

In the present case, by Lemma 7 of Bose, Mitra and Sen (2008), the eigenvalue partition of

{0,1,2,...,n — 1} contains exactly q = [%] sets of size 4 and each set is self-conjugate. Moreover,

if k£ is even then there is only one more partition set containing only 0, and if & is odd then there
are two more partition sets containing only 0 and only n/2 respectively.

Now for the development of the point process we need a clear picture of the eigenvalue partition of
{0,1,2,...,n — 1}. For this we represent the set Z,, = {0,1,2,...,n — 1} in the following form

(12) Zp={ak+b0<a<k—-11<b<k}u{o}.
Then we can write S(x) defined in (8) as follows
S(ak +b) ={ak +b,bk —a,n —ak —bn—bk+a}; 0<a<k-—1, 1<b<k.
Lemma 1. Forn = k? +1,
(13) Ly, = U S(ak +b) U S(0), if k is even
0<a<[ 2] a+1<b<k—a—1
and
(14) Ty = U S(ak +b)| JS(0) JS(n/2), if k is odd
0<a<[*72%],a+1<b<k—a—1
where all S(ak + b) are mutually disjoint and hence form a (eigenvalue) partition of Zy,.

Now we are ready to define our point process based on the eigenvalues of the k-circulant matrix.
For our purpose we neglect {0,7n/2} if n is even and {0} if n is odd. Denote

S=2Z,—{0,n/2}, T,, ={(a,b): 0<a < [%],a+1§b§k7(a+l)},

Bem(a,b) =[] Ae(z) and Ap(a,b) = (Banla, b))/

teS(ak+b)

: : b Awlab)—dgy .
Now define a sequence of point process based on points {(-%, T %) : (a,b) € T,,}. Define

(15) ZOEED ST IWIENG

(a,b)ET, Vi “q

B
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n

where ¢ = q(n) = [ %] and

Inn)t/? llnlnn 1 T
1 » = (8Inn) /2 <1%:£———71 - In—.
(16) ¢ (8Inn) an V2 + 4 lnn + 2(81Inn)t/2 "y

Theorem 3. Let {x;} be i.i.d random variables with E[zo] = 0, E[z¢]?> = 1 and E|z¢|* < oo for

some s > 2. Then for the sequence of point processes n, defined in (15), we have 1, A n, where n
is a Poisson process on [0,1/2] x [0, 1] x [0, 00] with intensity measure 4lg,<y<1_gye”"dsdtdz.

A similar result as Corollary 0.1 holds in this case too.
3. RESULT FOR DEPENDENT INPUT
Let {z,;n > 0} be a two sided moving average process,

o
(17) Ty = Z Qi€n—i

1=—00
where {a,;n € Z} € i, that is ), |an| < oo, are nonrandom and {¢;;4 € Z} are i.i.d. random
variables with E(¢;) = 0 and V(e;) = 1. Let f(w), w € [0, 27] be the spectral density of {x, }. Note

that if {z,,} is i.i.d. with mean 0 and variance o2, then f = I-.

3.1. Reverse circulant (RC),). Now define a sequence of point processes based on the points

An,x(wk) b
(wk, %’N) for k=1,2,...,q, where )\, ;(wy) are the eigenvalues of n~Y2RC. defined in ().
Define Ay (wi) = Ans@r) anq

27 f (w)
(18) () = Ze(wﬁxn,z(wk)fcq)(')

where a4 = ﬁ and b, = v/Ingq.

Theorem 4. Let {z,} be the two sided moving average process defined in (17) with E(ey) = 0,
E(e2) =1 and E |¢|* < oo for some s > 2 and

(19) Z laj||5]*? < 0o and f(w) > 0 for all w € [0, 27).

j=—o0

Then for the sequence of point processes 7, defined in (18), we have 7, A n, where 1 is a Poisson
process on [0, 7] X (—o0, co] with intensity measure m'dt x e %dx.

3.2. Symmetric circulant (SC,,). Here we consider two sided moving average process defined in
(17) with an extra assumption that a; = a_; for all j € N. Define

(20) ﬁn() = Z 6( in,a:(wj)—bq) ()
im0 W
where ¢ = q(n) ~ 3, Ana(wj) = %}”3)) and Ay, z(wj) are the eigenvalues of symmetric circulant
7 f (w;
matrix given in (3) and agy, b, are as in (6).
Theorem 5. Let {x,} be the two sided moving average process defined in (17) with a; = a_j,
E(ep) =0, E(e2) = 1 and E|eo|* < oo for some s > 2 and

(21) Z laj||5]*? < 0o and f(w) > 0 for all w € [0, 27].
Jj=—00

Then for the sequence of point processes 7, defined in (20), we have 7, LA n, where n is a Poisson
process on [0, 7] X (—o0, co] with intensity measure m'dt x e %dx.
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3.3. k-circulant. First recall the eigenvalues of k-circulant matrix for n = k% + 1 given in Section
(2.3) and define following notation based on that

Bem(a,b) = ] Mle), Adla,b) = (Benla, b))%,
teS(ak+b)

HtES(ak+b) At()
472 f (waktb) f (Wok—a)

Now with dj, ¢, as in (16), define our point process based on points {(ﬁ, %, %l;)_dq) : (a,b) €
T,} as:

me(a, b) = and S\x(a, b) = (me(a, b))1/4.

(22> ﬁn() = 26( e b S\x(a,b)—dq)(')-

7=0 N cq

Theorem 6. Let {z,,} be the two sided moving average process defined in (17) with E(ey) = 0,
E(e3) =1 and E |¢|® < oo for some s > 2 and

(23) Z laj||5]*? < 0o and f(w) > 0 for all w € [0, 2x].

j=—o0

Then for the sequence of point processes f, defined in (20), we have 7, A n, where 1 is a Poisson
process on [0,1/2] x [0,1] x [0, oo] with intensity measure 4l,<;<1_gye” “dsdtdz.

4. PROOFS OF RESULTS

4.1. Proof of Theorem 1. Before going into the proof of Theorem 1 we state two results which
play a key role in the proof and which will also be used later. The proof of Lemma 2 is available in
Kallenberg (1983), Resnick (1987) and Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997).

Lemma 2. Let (N,,) and N be point processes on a complete separable metric space E and N be a

simple point process. Let T be a basis of relatively compact open sets such that T is closed under

finite unions and intersections and for I € T, P[N(0I) = 0] = 1. If lim P[N,(I) =0] =P[N(I) =
n—oo

0] and lim E[N,(I)] = E[N(I)] < 0o then N, BN in My(E).
The following Lemma is from Davis and Mikosch (1999) which follows from strong approximation
results of Einmahl (1989). Denote the truncated and centered i.i.d random variables by
Ty = zd (|2 < n'/®) — B[z I (Jz] < n'/).
Lemma 3. Ford > 1, define
(24) va(t) = (cos(wi, t), sin(wi,t), ..., cos(wj,t), sin(w;,t))

where wj,, ...,w;, are any distinct Fourier frequencies. Let {x;} be i.i.d random variables with
E[zo] =0, E[z0])? = 1 and E[z0]* < oo for some s > 2. Let py, be the density function of

21207 12N (@ + 0 NyJualt),
t=1

where {N;} is a sequence of i.i.d N(0,1) random variables, independent of {x;} and o2 = Var(T;)s>.

If n=2%Inn < s2 < 1 with cg = 1/2 — (1 — 6)/s for arbitrarily small 6 > 0, then uniformly for
ol = og(amin (ns, n1/21/%)),

Pn(%) = P1402) 1 (€) (1 + 0(1))
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Proof of Theorem 1. Step 1: We first show that n}, A 1 where
a
77:1() = Ze(w, )‘7L,9E+anN(“’j)_bQ)(.)
j=1 7 4

2

and Az 10, n(wr) are the eigenvalues of n~/2RC,, with entries {Z; + 0, N;} with 02 = n~% and

cg is as in the Lemma 3. First note that if we define the set

Ag = {(xlvyla "'axd7yd)/ : \/m > 22(1}

where 2, = aqx + by, it easily follows that

P (M gtonN(Wiy) > 2gs oo A gtonnN(Wiy) > 24) = P (21/27171/2 Z(@ + onNp)vg(t) € Ag)
t=1

— / O(1so2) 1y () (1 + 0(1))da
Ad

(25) = ¢"exp(—dz)(1+o(1))
Since the limit process 7 is simple, to show 7} LA 7 it suffices to show that

. b—a, _, _
(26) By ((a,b] x (2,y]) = En((a,b] x (z,4]) = ——(e™" — ™)
forall0 <a<b<mand z <y and, forall £k > 1,
(27)
P(nr((a1,b1]xR1) =0,...,n; ((ak, bg] X Rk) = 0) — P(n((a1,b1]xR1) =0,...,n((ag, bi] x Rg) = 0),
where 0 < a; < by < --- <ag < b, <mand Ry,...,R; are bounded Borel sets, each consisting of
a finite union of intervals on (—oo, o0]. To prove (26), note that

En,((a,b] x (z,y]) = Z P(agz + bg < A zto.N(wj) < agy + bg)
wj€(a,b]
oy 25)) ~ O oy L OZ ey

Now to prove (27), set n; := #{i : w; € (aj,b;]} ~ n(b; — a;j). Then the complement of the event
in (27) is the union of m = ny + ... 4 n; events, that is,
(28)

* * k )\n,j-‘,-a'nN(wi) —b
1_P(77n((a17 bl] XRI) = 07 s 777n(<ak7 bk] XRk) = 0) =P (szluwie(aj,bj]{

Qq

* € Rj}).

Now for any choice of d distinct integers i1,...,iq € {1,...,q} and integers ji,...,jq € {1,...,k}
we have from (25) that

d
Ana-f“!‘o'nN(wir) - b —
(29) P (i, (2t 20 e ) = g d TR+ o))
q r=1
where \ is the measure on (—oo, 0] given by e *dx and the relation is uniform over all d-tuples
i1,...,1q. Using elementary counting argument and (29), the sum of the probabilities of all collec-
tions of d distinct sets from the m sets that comprise the union in (28) is given by
n n
Sa = ) ( 1) ( k)‘l”ul(Rﬂ N (Ry)(1 4 0(1))
uq U
(u1,esug)sur+--tug=d
1 u u
= > m((bl —a)A(R1))" - ((br — ar) A(Rg))™ (1 + o(1))

(ulv--~’“k)§ul+-~~+uk:d
— (d!)_lﬂ__l((bl — al))\(Rl) 4+t (bk _ ak))\(Rk))d
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Now it follows that,

2s _ e 2s (_1)j—1 4
> o(=1ytsy =y W((bl —a)MRL) + ...+ (b — ap)M(Ry))?
j=1 =1 7

k
T 1 —exp Z(b —a; (RJ)),

which by Bonferroni inequality and (28), proves (27).

Step 2: It remains to transfer the convergence of 1) onto 7,. First define the point process

M@

ﬁn() = Ze(w, An,a’c(“’j)*bQ)(') and 77n

6 ; /\nz(wy) bq)( )
j=1 V7

]:1 aq

It then suffices to show that (see Theorem 4.2 of Kallenberg)

_ x P
(30) T — 1y, — Oa
(31) i — 1 — 0
and

Equivalently, that for any continuous function f on [0, 7] x (—o0, co] with compact support,

= * P — P P

T (f) =1 (f) =0, a(f) = 1 (f) = 0, and 15, (f) = 1a(f) — 0
where the notation n(f) denotes [ fdn. Suppose the compact support of f is contained in the
set [0, 7] x [K 4 79,00) for some 79 > 0 and K € R. Since f is uniformly continuous , w(y) :=
sup{[f(t,z) — f(t,y)l; t€[0,7], |z —y| <~} — 0 asy— 0.

On the set A, = {max;_;__, |>\n z+;N(UJ]) An,z( wy)| < ~}, we have for v < 7,
q

lf An z+o’N(wj) bq > K

63 |fley, ) 2l g, dnaled) Zhy) g{ <

aq aq 0 lf >\n z+o’N(wj) bq < K
Also note
1
— max |\ w Az (Wi < — max |— Nt
aq 1<]<q| n:c+aN( ]) n,:v( ])’ 'y 1<J<q Z ’
On 27rkt 2kt o
< — max N; cos N sin
T ag 155<q Z ¢ n Z ¢ n )

o
< = max ,/X —|—X
ag 1<5<q

where {X1;, X251 < j < ¢} are i.i.d. N(0,1). Now Z—Zmaxlgqu,/X%j—kX%j = Op(op1nn).

Therefore lim,, . P(AS) = 0. Now, for any € > 0, choose ~ sufficiently small that v < . Define
By = {lin(f) = n3(f)| > €}. Then

limsupP(B,) < limsup(P(B,NA,)+ P(AY))

< limsup P(w(y)n; ([0, 7] % [K,00)) > €) + limsup P(Ay)

< limsup By ([0, 7] x [, 00))w(y) /e < e Fw(y)/e.

n—oo
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Since w(y) — 0 as v — 0, (30) follows.

The proof of (31) is essentially identical to the argument given for (30). For completeness we give
An,w(wj) _ An,i(wj)

the details. Now define C,, = {maxi<j<q]| | < ~}. Again on the set C,,, we have

aq aq
for v < o
Anz(wj) — by Anz(w;) — by w(y) if W>K
(34) ‘f(wj,a—q)—f(wj,a—q)’§ 0 el g
Aq
Now
L B max Poalr) — nalw)l} < S Emax |- 3wl > n/o)ei])
ag  ‘1<j<q e T oag 15550 Vn & LRI
Vinn

E I 1/s
SNG {;wtl (lze] > n"7%)}
< VnlnnE |z |I(Jz] > n'/®)
= annn[nl/sPﬂxl\ > nl/?) +/ P(X; > z)dz]

nls
Elzi*  Elaf*
< Valan[ue B0l Bl
n nt—/s

Inn
S 2mE’$1|SHO, as n — oQ.
Therefore P(CS) — 0. Now for any € > 0, choose 7 sufficiently small that v < 9. Then by
intersecting the event {|n,(f) — 7n(f)| > €} with A,, and A¢, respectively and using (34) and (26),
(30) we obtain
limsup P(7.(f) = n(f)l > €) < limsup(P((1)ia((0,7] x [K,00)) > €) + P(AS))

n—0o0 n—oo

< limsup E7, ([0, 7] x [K,00))w(y)/e < e Fw(y)/e.

n—oo

Since w(y) — 0 as v — 0, (31) follows.
Finally for any € > 0
An.z(wo) — b

P, (f) —m(f)l > €) = P, )

n—1
n _ 1
pAnle0) Zbo 5 gy = P(= > > Kay by) =0, asn = o,
=0

IA

Qq

Therefore 1, — 1), Z 0. O

Proof of Corollary 0.1. The proof is similar to the proof of Theorem 4.2.8 of
Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). We just briefly sketch the steps. We have
already seen that for finite k,

Ay — b
P( 7(k) q

An,(1) ~ g
———— < 7,...,——— <7) = PWNip=0,Noypy <1,..., Ny <k—1)
aq aq
- P(N1:03N2§177Nk:§k_]—)7
where N; = n([0, 7] x (z;,00]). Let us denote Z; = n([0, 7] X (x;, z;—1]) with z9 = co. Now observe
that to calculate P(N; = 0, Ny < 1,--- , Ny, < k — 1), it is enough to consider P(N; = a1, Ny =
ay +ag, -+ ,Ny =aj + -+ ag), where a; > 0 and

P(Ni =ai,Nya =ai +az,--- Ny =a; +---+ay)
:P(leal,ZQ:a2,~- ,Zk:ak)
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I G X ) G o e e g
B ar! as! ag!
This proves Part (i). Part (ii) is an easy consequence of Part (i). O

4.2. Proof of Theorem 2. The following lemma, similar to Lemma 3 is a strong approximation
result which we shall use in the proof of Theorem 2. Suppose v4(0) = v/2(1,1,...,1) and for
1 <t <7, vg(t) are same as (24).

Lemma 4. Let n = 1+ 2j and ajz = (14 25)7¢ for some ¢ > 0 and let {x;} be i.i.d mean zero
with Ex3 = 1 and El|zo|* < oo for some s > 2. Suppose Ny’s are i.i.d. N(0,1) random variables
independent of {z:} and pj(x) is the density of

1 &
W Z(.%’t + Uth)Ud(t).
t=0

Then for any measurable subset E of RY,

| [ as@ite= [ baopn@is] < 6 [ oo, la)de+ Olexp(=(1+20)7)

where €; — 0, n > 0 and the above holds uniformly over d-tupules 1 < iy < iz < ... <1ig < j.

Proof of Theorem 2. The idea of the proof is similar to proof of Theorem 1. So we mention only
the main steps and a few technical details. We first establish convergence in distribution for the

A i)—b,
point process based on the points (wj, %Wq) for j =1,2,...,q, where
1 /2] 2wt
o, N(Wi) = NG [V2(Zo + 0, No) + 2 Z (%t + opNy) cos ] 0<j<[n/2].
t=1
Define

q
=D € N wp—bey ()
2 (o Sz
Since the limit process 7 is simple, it suffices to show (26) and (27) for above 7). We can establish
them following arguments similar to those given in the proof of Theorem 1 and using Lemma 4.

Now define the following point processes

q q
Ze _A aw)— bq) 26 Axnz(up bq)(' aﬂdﬂn :Zﬁ _)\nx(‘”]) bq)()

Jj=1 aq j=1 %q j=1 agq

where

[n/2] .
2
\f$0+22:ntcos ]t], 0<j<I[n/2],

and {\, z(w;)} are given in (3) with x; replaced by Zy. As before it now suffices to show that (see
Theorem 4.2 of Kallenberg)
_ P N _ P P
(35) T = == 0, il — 7y — 0, fIn — 1, — 0 and n, — 1, — 0.
For the first relation in (35) define A,, = {maxi<;j<q |\, z(wj) = Anzron(w;)| < v} and observe that

21t
max |/\ (i) = A zron(wy)| = In max ]\[N0+22Ntcos 7;] | = Op(opInn).

1<j<q Vn 1<< pot
Hence P(A¢) — 0. The remaining argument is similar to the proof of (30). For the second relation

note that Y
(V2 —1)|xo]
P (fgfx Anz(wj) — Az (w))] >€) <P (T >€) — 0.

Proof of the third and fourth relations are similar to the proofs of (31) and (32) in Theorem 1. [
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4.3. Proof of Theorem 3. We begin by proving the Lemma.
Proof of Lemma 1. First observe that S(0) = {0} and S(n/2) = {n/2} if k is odd and

n—1 if keven

k —
#{z: zeSak+b);0<a<] n—2 if kodd.

2
],a+1§b§k—a—1}={

So if we can show that S(ak +b);0 < a
we are done. We shall show S(ai1k + b1)
proof into four different cases.

[%], a+1<b<k—a—1 are mutually disjoint then
S(agk + be) = ¢ for ay # ag or by # by. We divide the

<

N

Case (i) (a1 < ag,b; > b2) Note that
a1+1<a2+1§b2<b1§k‘—(a1—|—1).

Since {S(z);0 < x < n—1} forms a partition of Z,, it is enough to show that a1k+b1 ¢ S(a2k+b2).
As (ag — a1)k > k and (by — b2) < k, we have a1k + by # agk + ba. Also (by — a1)k > 2k and
as +b1 < [%} +k—(a1+1)< %, therefore a1k + by # bok — as. Note that

ark + b1 +agk +by < (a1 +a2)k+2k—2(a; +1)

k—2
< Q[T]k+2k—2(a1+1)
< k% =2k 42k —2(ag + 1)
< K +1=n.

Therefore a1k + by # n — (agk + be). Similarly,
ak+b+bok—ay < atk+k—(a1+1)+(k—(ag+1)k—ay<k®+1=n
and therefore a1k + by # n — (bak — az). Hence in this case S(a1k + b1) N S(agk + be) = ¢.

Case (ii) (a1 < ag2,b; < bo) In this case it is very easy to see that ajk + by ¢ S(agk + be)
and hence S(a1k + b1) N S(azk + ba) = ¢.

Case (iii) (a1 = a2,b1 < b2) Let a1 = ag = a. Obviously ak + by # ak + by. Since 0 < a < [%]
and a+1<b; <by <k—(a+1), we have (by — a)k > 2k > (a + b1). Hence ak + by # bok — a.
Also 2ak + by + ba < k(k — 2) + 2k = k? < n, so ak + by # n — (ak + by). Finally,

by +bok+ak—a<[k—(a+D](k+1)+ak—a=k"—2a—-1<k*+1=n,

implies ak + by # n — (bok — a). Hence ak + by ¢ S(ak + b2) and S(a1k + b1) N S(agk + be) = ¢.

Case (iv) (a1 < a2, b1 = b2) In this case also it is very easy to show that S(a1k+b1)NS(azk+b2) = ¢.
This completes the proof. O

Proof of Theorem 8. Though the main idea of the proof is similar to the proof of Theorem 1, the
details are more complicated. We prove it in two steps.

Step 1: We first establish convergence in distribution for the point process based on the points
{(ﬁ, %, %ia’b)_dq) : (a,b) € T,,} where A\z44, n(a,b) is obtained from A, (a,b) replacing {x;}
by {Z; + 0,NV;}. Define

() = Z 6( a b Aa:>+anJ\r(a,b)—dq)(')'

(a,b)eTr VRV “q

Observe that first two components of the limit is uniformly distributed over a triangle whose vertices
are (0,0),(1/2,1/2), (0,1). Denote this triangle by A. Since the limit process is simple it suffices
to show that

(36) Eny,((a1,01] x (az,ba] x (x,y]) — En((a1,b1] x (a2, b2] x (z,y])
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forall 0 <a; <b; <1/2,0<ay<by <1andz <y, and forall ] > 1,

(37) P(ny((a1,b1] x (c1,d1] x Ry) = 0,...,m((ar,b] x (¢, di] x R;) = 0)
— P(n((a1,01] x (c1,d1] x R1) = 0,...,n((ar, bi] x (a1, di] x Ry) = 0),
where ﬂézl(ai, bi| X (¢;,d;] = ¢ and Ry, ..., R; are bounded Borel sets, each consisting of a finite

union of intervals on [0, co].

Proof of (36): We shall first prove condition (36) for the following type of sets:
(i) (a1, b1] X (a2, bo] lies entirely inside the trangle A.

(ii) (al,bl] X (al,bl] where 0 < a1 < by < 1/2.

(iii) (a1,b1] x (1 —b1,1 — a1] where 0 < a; < by <1/2.

(iv) (a1,b1] x (ag, ba] lies entirely outside of the triangle A.

Graphically the mentioned boxes are as in Figure 1.

1 1

=—— Type(iii)

w0

.5 R \]2

> A ‘ié A - Iy

> I

7 Type(i) [ —1Is
<« Type(ii)
— Type(iv)

X-axis 1 0 X-axis
Figure 1 Figure 2

Figure 1 shows four types of basic sets and Figure 2 shows the decomposition of a rectangle in four types of sets.

Since any boxes in [0, 1/2] x [0, 1] can be expressed as disjoint union of these four kinds of sets (see
Figure 2), it is sufficient to prove (36) and (37) for the above four kind of boxes only. Let I; denote
i-th type of set. Enough to prove that for each i, as n — oo, En’ (I; x (z,y]) — En(I; x (z,y]).
Proof of (36) for Type (i) sets:

En;((a1,b1] x (az,bo) % (,9]) = BE( ) (et AH%N(a,b)—dq)((al,bl] X (az,ba] x (x,]))

(a,b)ET) nVne “a

Az onn(a,b) — d
- > p(luelel s )
(o)€@ i) (az bl !

- @mﬂ@@myfzeﬁﬂHoﬂ»
— 4(b1 — al)(bQ — CLQ)(G_I — e_y)
= En((a1,b1] x (a2, b2] x (z,y]).

Proof of (36) for Type (ii) sets:

By ((a1,01] x (a1, b1] x (z,y]) = E( ) (o Aﬂanma,b)—dq)((abbl] x (a1, b1] x (2,9]))
(a,b)ET, nvne “a

_ Z P ()\f+onN(a, b) — dq) c (aj,y])

Cq
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1
— §(b1 — a1)24(e_x — e_y)
= En((ar, b1] x (a1, b1] x (2,9]).
Proof of (36) for Type (iii) sets is exactly similar as Type (ii) sets.

Proof of (36) for Type (iv) sets:

By ((a1,01] X (ag, bo] X (z,y]) = E( Y (o Az+anN(a7b)—dq)((a1’bl] X (az, bo] x (2,9]))
(a,b)eT, nVne “a

)\f on N (I,b — d
= > P (= (C L=y ¢ (04)
()€l i) (az bl !

= 0=En((a1,b] x (az,b2] x (z,y]),

since {(a,b) € T}, X (ag,b2]} = ¢. This completes the proof of (36).

(\f f) (a1, b1]
Proof of (37): We prove (37) for four types of sets separately.

Proof of (37) for Type (i) sets: (a;,b;] x (ci,d;] lies completely inside the triangle A for all
i=1,2,...,10. Let

nj = #{(a,b): (\f \f) (aj, bj) x (cj, djl}
~ Vn(b; — aj)Vn(d; — ¢;) = n(b; — a;)(d; — ¢;).
Then the complement of the event in (37) is the union of m = ny + ...+ n; events, that is
1-P (n;((al,bl] X (Cl,dl] X Rl) = 0 .. ,nZ((al,bl] (Cl,dl] X Rl> = 0)

! a:JrUnN d,
= P (U Uy o et (2 € R)).

Now following the argument to prove (27) given in Theorem 1, we get
P (5 ((a1,b1] x (c1,d1] X Ry) =0,...,m5((a, bi] X (c,di] x Ry) = 0)
l
= exp (=) (b — a5)(dj — ¢)4N(R;)}
j=1
=P(n((a1,b1] x (c1,d1] x R1) = 0,...,n((ar, bi] x (e, di} x Ry) = 0).
This proves (37) for Type (i) sets.

Proof of (37) for Type (ii) sets: Here ¢; = a;, d; = b; and

a

b
ng = #{(a7b)( ’I’L’\/ﬁ) (ajvb]x(ajvbj]}
1
~ 5Vnlby = ag)Vn(b; — aj) = g(bj —a;)%.

Remaining part of the proof is as in the previous case. Finally we get

P (n;((al,bl] X (a1,b1] x R1) =0,...,m ((ar, b] x (a;,b] x Ry) = 0)

l
n—oo 1
— exp {— Z 5(()] — CLJ’)24)\(RJ')}

= P(n((al,bl] X (al,bl] X Rl) = 0, e ,n((al,bl] X (al,bl] X Rl) = 0).
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Proof of (37) for Type (iii) is same as Type (ii) sets.
Finally we prove it for Type (iv) sets. In this case (a;, b;j] X (¢;,d;| (VA = ¢ for alli =1,...,1. Note
that for all i, #{(a,b) € T}, (f f) (@i, bi] x (¢i,d;]} = 0 and therefore

P (5 ((a1,b1] x (c1,d1] x R1) =0,...,m5((a, b)) X (e, di] x Ry) =0) = 1.
Also from intensity measure of 7,
P(n((a1,b1] x (c1,d1] X R1) =0,...,n((ai, bi] x (er, di] x Ry) =0) = 1.
Hence (37) is proved for all four types of sets separately.

Step 2: It remains to transfer the convergence of 7; onto n,. First define the following process

ﬁn() = Z E(LVLVAﬂa,b)*dq)(')'
(ab)eT, VWV
Then it suffices to show that for any continuous function f on [0,1/2] x [0, 1] x [0, 00) with compact
support,

(38) Ia(f) =5 (f) == 0 and 7 (f) — n(f) == 0.

Suppose the compact support of f is contained in the set [0, 1/2] x [0, 1] x [K 470, 00) for some vy > 0
and K € R>g. Since f is uniformly continuous, w(y) := sup{|f(s,t,z) — f(s,t,y)|; s €[0,1/2], t €

)‘i+anN(aab) _ A (a’ b)

0,1], |z —y| < v} - 0asy — 0. On the set A, = {max, p)er < v}, we
(’) n

C,
have for v < 7, ’
(39)
: )‘n ac+o'N(wj) bq
£ a b )\j+a-n]\/'(a,b)_dq)_f(i b )\f(a,b)—dq)}< w(y) if Erra— 1
N Cq n’/n’ Cq 10 if Anston(wi)=by “*"Zq(wf) be < K.

Now if P(AS) — 0, then using (39)

. * — W(FY) —-K

timsup P (1 (1) ~ (/)] > ¢) < “04e K 0, sy —0

n—oo

Now we show P(AS) — 0. For any sequence of random variables (X;)o<i<n, define
n—1
_ ~1/2 -
M,(X) = ax In lz; X exp(z?wtl/n)}.

We can use the basic inequalities

|[z122] — [wiws|| < (|z1] + [ws]) max{|z1 — w1, |22 — wal},
and

w2 — [wa| 2| < Jwy — wo|?, 2w €C, 1< <2,
to obtain

max |Azto,n(a,0) = Az(a,0)| < [(Mn(Z + 0nN))2 + (M (2)) 2] (M (0, N)) /2

a,b
< [2(My(7 + 0, N))Y2 + (M (0,N)) 2] (M, (0, N)) V2.
By Davis and Mikosch (1999), we have
M2(o,N) = Op(c2 logn) and M2(z 4+ 0,N) = O,(logn),

with 02 = n~¢. Therefore

1
max c—|/\%+JnN(a,b) (a,b)| = Op((log n)n —e/y,
a, q

Hence

) = P(ma ‘ AztonN(a; D) _)\j((l’b)

a,b Cq Cq

P(A; | > ¢)
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c/4 enc/4

Az Lo b )\a_: 7b
lognnéal;xcq| +oun(a,8) = Azl )‘>logn

n

:P(

)—>Oasnﬁoo.

The proof of the other part of (38) is essentially identical with the conclusion of Lemma 8 of Bose,
Mitra and Sen (2008) playing the key role. O

4.4. Proofs for dependent inputs.

Proof of Theorem 4. First observe that min,cjo2n f(w) > @ > 0. We define another sequence
of point process based on the points (wk, %{’;)_bq) for k = 1,2,...,q where X\, ;(wg) are the

eigenvalues of n~1/2RC,, with z; replaced by ¢;. Define

(40) 26 ; An 6(“{7) bq)( )
J=1 “a
In Theorem 1, we have shown that 7, A n, where 7 is a Poisson process on [0, 7] X (—o00, co] with

intensity measure 7~ 'dt x e~*dx. Now if we can show that 7, — 1, A 0, then we will be through.
Equivalently, we have to show that for any continuous function g on E with compact support,

_ P

n(g) = mn(9) = 0
as n — oo. Suppose the compact support of ¢ is contained in the set [0,7] x [K + 79, 00) for
some 79 > 0 and K € R. Since ¢ is uniformly continuous , w(y) :— sup{|g(t,z) — g(t,y)|; t €

n:c >\n,e j
[0,1], |[x —y| <y} — 0asy — 0. On the set 4, = {max;_; . ,q| 275::;) s~ aiw])| <~} we

have for v < 7,

3 : ne(wg) bg
An :v(wk) - bq An e(wj) — bq w(*y) if > K
41 Dk T g, eI T ey <
(41) |9(“’J7 aq ) — 9(wj, aq )‘ =3 o o /\né(;@) by < K.
q
Observe
1 )\n z(w]') 1
_ L0 A i . < ; )
ag X I o) Anclwil = o max Pna(ws) = /27 f(w)An.e(ws)
1 n—1
z ezwj _ az ezwj € eiwjl
Qaq 1<J<‘1‘\fZ tZoo ; l |
and following the argument of Theorem 3 of Walker (1965) we can show that
o) 1 n—1
- iwil twity T wil|] —-1/4
pax | sze H (D ae o) aet = op(n™H.
t=—o0 =0

Therefore lim,,_,o, P(AS) = 0. Now, for any § > 0, choose ~ sufficiently small that v < 7. Then,
by intersecting the event {|7,(g) — nn(g)| > 0} with A, and AS and using (41), we obtain

limsup P(|iin(9) = 1n(9)] > 0) < limsup(P({|7n(g) = 1n(9) > 6} N An) + P(47))

n—oo

A

lim sup P(w(y)n, ([0, 7] x [K,00)) > €) + limsup P(Ay)

n—oo n—oo

< TimsupEn,([0,7] x [K, 00))w(7)/e < e Kuw(y)/e.

n—oo
Since w(y) — 0 as v — 0, ﬁn—nngo. 0

Proof of Theorem 5. The line of argument is similar as in Theorem 4. We omit the details but
mention that to show lim,_, P(AS) = 0, we use the following fact from (3.8) of Bose, Hazra and
Saha (2009)

Ak

max ‘7 = op(n*1/4).
1<k<[n/2] 27 f (wy)

- )\k,e
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Proof of Theorem 6. First define a point process based on {(%, %, Ma’ci?_dq) :(a,b) € T,,},

q

() = €( a Ne(ab)—dg ) (+)-
" ]z; (v )

First note that in Theorem 3, we have shown that 7, A n, where 7 is a Poisson process on [0, 1/2] x

[0, 1] x (—00, 00] with intensity measure 4l,<;<i_se~“dsdtdr. Rest of the argument is similar to

the proof of Theorem 4. The additional point that needs to be noted is that P(max, p)er, [Mz(a,b)—
Ae(a,b)| > ) — 0 follows from the proof of Theorem 11 of Bose, Hazra and Saha (2009). O
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