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ABSTRACT

We formulate the c = 1 matrix model as a quantum fluid and discuss its

classical limit in detail, emphasizing the h̄ corrections. We view the fermi fluid

profiles as elements of w∞-coadjoint orbit and write down a geometric action for

the classical phase space. In the specific representation of fluid profiles as ‘strings’

the action is written in a four-dimensional form in terms of gauge fields built out of

the embedding of the ‘string’ in the phase plane. We show that the collective field

action can be derived from the above action provided one restricts to quadratic

fluid profiles and ignores the dynamics of their ‘turning points’.
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1. Introduction:

Two-dimensional string theory provides us with a good laboratory to discuss

principles of string theory and gravity. One of its attractive features is the high

degree of solvability both at the classical and quantum level. In particular for a

flat background metric and a linear dilaton the theory is equivalent to c = 1 matter

coupled to two-dimensional gravity [1-5] and has a non-perturbative formulation

in terms of the double-scaled c = 1 matrix model [6-9]. It is known for a long time

that this matrix model is equivalent to a gas of non-interacting fermions moving in

an external potential[10]. The fermions allow us not only to solve the theory [11-14]

but also to find a large symmetry group (W∞) [15-19] that has the interpretation of

performing generalized gauge transformation on the fermions (generalized because

it involves both multiplying the fermion field by a phase and transporting it in

space). This symmetry has also been found in two-dimensional string theory [20,

21], and in the collective field theory which approximates the fermion field theory

[22]. In particular in [20] there is a realization of vertex operators in terms of a ring

of functions in a two-dimensional phase space and associated vector fields. See also

[23]. In [15] and [17] we explored the consequences of the W∞ symmetry in the

quantum theory. It turns out [15] that the “classical limit” of the above symmetry

can be understood very naturally in terms of the classical limit of the fermi theory.

In the semi-classical approximation the states of the fermi theory are represented

by a “fermi fluid” of uniform density occupying a certain two-dimensional region

(not necessarily connected or simply connected) in the single-particle phase plane.

Excitations of this state correspond to deformations of the fermi fluid. Such a

concept is well-known in condensed matter physics [24] and has been applied to the

problem at hand in a limited sense in [14]. In the quantum theory the excitations

must satisfy the condition that the total number of fermions is conserved– in the

semiclassical approximation this means that the total area of the fermi fluid must

be conserved. Hence the excitations of the quantum theory are semiclassically

represented by area-preserving deformations of the fermi fluid. If we concentrate

for the moment on those deformations that are differentiable, then we see that the
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basic excitations of the theory are area-preserving diffeomorphisms, hence they are

elements of w∞. We thus recover the classical limit of W∞. In [15] we used this

observation to represent fluid profiles by w∞ ‘angles’ and discussed the dynamics

in terms of the latter.

In this paper we develop in more detail the classical limit of the one dimensional

fermi gas and its correspondence with the quantum theory. We summarize the

results below.

(1) Correspondence between classical and quantum theory: We show that the

W (p, q, t) operator introduced in [15-17] have the interpretation that the expecta-

tion value of its fourier transform in any state |F > gives the quantum distribution

function uF (x, p), satisfying the property that

< F |

∫

dxΨ†(x, t)f̂(x,−i∂x)Ψ(x, t)|F >=

∫

dx dp f(x, p)uF (x, p) (1)

We show that the equation of motion of W (p, q, t) is simply a statement of Li-

ouville’s theorem for the quantum distribution function. We discuss the classical

limit of uF (x, p) which leads to density functions that are one inside a region R

and zero outside. We derive the change of uF (x, p) as the state |F > is changed

to U |F > (U belonging to the W∞-group). This gives a natural representation of

W∞ in the space of uF ’s. We show that the classical limit of this representation

corresponds to a representation of w∞ on the classical distribution functions, which

coincides with the representation we had introduced in [15] and will use below. We

also present the operator algebra of the quantum fluid characterized by W (p, q, t)

and u(x, p, t).

(2) In [15] we identified the classical phase space of the c = 1 matrix model

with the space of shapes of an incompressible fermi fluid (fluid ‘profiles’) in the

two-dimensional phase plane of a single fermion. As suggested by correspondence

with the quantum theory, we represent the fluid profiles by density functions that

are characterisitic functions. The w∞-action on these fluid profiles corresponds to

thinking of the area-preserving diffeomorphism as a hamiltonian flow and evolving
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each fermion constituting the fluid under that flow. We show that there is a natural

notion of scalar product between fluid profiles and canonical transformations which

enables us to identify the w∞-action on the fermi fluid as a co-adjoint action. This

allows us to write down a geometric action on the classical phase space a la Kirillov.

We find that this action is the classical limit of the action we wrote down in [16]

involving elements of the W∞-group.

(3) We show that there is a rather interesting ‘string representation’ of the

above classical dynamics. One parametrizes the boundary of the fermi fluid in

the form of a (closed or open) string. Under this parametrization the dynamics of

the fluid profile resembles a ‘string theory’ in 2 space dimensions with a built-in

reparametrization invariance that follows from the indistinguishability of fermions.

In order to write down the geometric action mentioned in (2) in these variables,

one needs to introduce a time t and an additional variable s, so that the basic

variables of the theory are xi(σ, τ, t, s), i = 1, 2; x1 = x, x2 = p which, at any given

t, s, describes two-dimensional region (we consider connected simply connected

regions) occupied by the fermi fluid which is thought of as the image of a map (xi)

from a two-dimensional parameter space σ, τ . The most interesting feature of the

string representation is that the geometric action is given by

S0 =

∫

M

dt ds dσ dτFστFst (2)

where Fµν is the field strength of an abelian gauge potential Aµ = ǫikx
i∂µxk, i, k =

1, 2; µ = 1, 2, 3, 4. We are using the notation ξµ = (σ, τ, t, s) for coordinates of the

four-dimensional space M (the topology of M is discussed in section 5 below).

We also show that under a certain ‘gauge choice’ which is valid only in some

restrictive class of configurations (namely that the fluid profile is quadratic, that

is, the fluid boundary is given by 0 = F (x, p) where F is at most quadratic in p

and that the turning point of the fluid boundary on the x-axis is static), we recover

the collective field theory action [25, 26].
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The preceding couple of paragraphs deal with fermi fluids that occupy one filled

region. The situations with multiple filled regions or regions with holes (multiply

connected regions) correspond, in the string-interpretation, to splitting and joining

of strings, and hence to an interacting string theory. We should mention that by

using the action in terms of the U variable, it is possible in principle to calculate the

action for a “pants” diagram, by invoking U -variables which are perhaps singular

and which take a one-string configuration to two-string configurations. This is

similar in spirit to the calculation of a three-string vertex using the Polyakov path

integral.

The plan of the paper is as follows. In section 2 we discuss the correspondence

between classical and quantum theory. In section 3 we review the Kirillov method

briefly to set up the notation. In section 4, we apply this method to the case of

the fermi fluid and derive the geometric action. In section 5, we discuss the string

representation, derive the action (2) and show how to recover collective field theory

from this action under the restricted circumstance mentioned above.

2. Correspondence between the classical and the quantum theory:

In [15-17] we introduced the fermion bilinear Φ(x, y, t) = Ψ†(x, t)Ψ(y, t) or its

relative

W (p, q, t) ≡

∫

dxΨ†(x, t)ĝ(p, q)Ψ(x, t), ĝ(p, q) ≡ exp(ipX̂ + iqP̂ ) (3)

as the basic dynamical variable of the theory
⋆
. Since all states of the fermi theory

are obtained by multiple application of the W (p, q, t)’s to the ground state (filled

fermi sea)
†
, it is clear that they provide a complete set of physical observables.

⋆ The definition of W (p, q, t) given here differs from the one in our earlier papers [15-17] by
a factor of two.

† To see this, note that elementary particle-hole excitations can be written as linear combi-
nation of W (p, q, t)’s (cf. [15].
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Let us recall the commutation relation and equation of motion of the W (p, q, t)’s

[15]

[W (p, q, t), W (p′, q′, t)] = 2i sin[
h̄

2
(pq′ − qp′)]W (p + p′, q + q′, t) (4)

(∂t + p∂q + q∂p)W (p, q, t) = 0 (5)

In writing the last equation we have used a specific hamiltonian h(x,−i∂x) =

(−∂2
x − x2)/2.

We shall see now that W (p, q, t)’s have a rather interesting interpretation in

the classical limit. Let us compute the expectation value in a state |F > of an

observable

Of =

∫

dx Ψ†(x, t)f̂Ψ(x, t) (6)

where f̂(x,−i∂x) is an operator corresponding to a classical function f(x, p) in the

single-particle phase space. We shall fix the operator ordering in f̂ by defining

f̂ ≡

∫

dαdβf̃(α, β)ĝ(α, β), f̃(α, β) ≡

∫

dx

2π

dp

2π
f(x, p) exp(−iαx − iβp) (7)

f̂ , defined in this fashion is called a Weyl-ordered operator. To understand (7),

note that it can be obtained from the classical relation

f(x, p) =

∫

dαdβf̃(α, β)g(α, β; x, p), g(α, β; x, p) ≡ exp(iαx + iβp) (8)

by replacing the symbol x by X̂ and p by P̂ on the right hand side so that

g(α, β; x, p) becomes ĝ(α, β) (recall the definition of ĝ in (3)). As an example, if

f(x, p) = xp2 then f̃(α, β) = (−i∂α)δ(α)(−i∂β)2δ(β), so that f̂ =
∫

dαdβ (−i∂α)δ(α)(−i∂β)2δ(β) exp(iαX̂+

iβP̂ ) = X̂(P̂ )2 − iP̂ = (1/3)[X̂(P̂ )2 + P̂ X̂P̂ + (P̂ )2X̂] which is perhaps a more

familiar statement of Weyl ordering.
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The expectation value of Of in a state |F > is then

< F |Of |F >=

∫

dα dβ < F |

∫

dx Ψ†(x, t)ĝ(α, β)Ψ(x, t)|F > f̃(α, β)

=

∫

α,β

< F |W (α, β)|F > f̃(α, β)

=

∫

x,p

< F |u(x, p)|F > f(x, p)

(9)

where u(x, p, t) is the Fourier transform of W (α, β, t):

u(x, p, t) =

∫

α,β

exp(−iαx − iβp)[

∫

dy Ψ†(y, t)ĝ(α, β)Ψ(y, t)] (10)

Equation (9) is rather interesting. It tells us that the expectation value of the

operator Of can be exactly expressed by a phase space integral of f(x, p) with a

density function

uF (x, p, t) ≡< F |u(x, p, t)|F > (11)

Since this statement is valid at the quantum level, we call uF (x, p) the quantum

distribution function in the state |F >.

Thus, we find that W (p, q, t) is simply the Fourier transform of the quantum

distribution function operator u(x, p, t)

u(x, p, t) =

∫

dα dβ exp(iαx + iβp)W (α, β, t) (12)

whose expectation value gives us the quantum distribution function uF (x, p, t).

Note that the equation of motion (5) for the W -operator implies the following

equation for u (using (12))

(∂t + p∂x + x∂p)u(x, p, t) = 0 (13)

which is simply the statement of Liouville theorem for the quantum distribution

(for the hamiltonian h(x, p) = (p2 − x2)/2).
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Relation to the “first-order density matrix”:

Given a many-body wave-function |F >=
∑

F (x1, · · · , xN )|x1, · · · , xN > the first-

order density matrix is defined as

φF (x, y) =

∫

dx2 dx3 · · · dxNF ∗(x, x2, x3, · · · , xN )F (y, x2, x3, · · · , xN )

=< F |Φ(x, y)|F >, Φ(x, y) = Ψ†(x)Ψ(y)

(14)

The usefulness of this quantity is that a single-particle operator like Of =
∑

i f̂(xi,−i∂/∂xi) =
∫

dx Ψ†(x, t)f̂Ψ(x, t) is given by

< F |Of |F >=
∑

x,y

< x|f̂ |y > φF (x, y) (15)

By using (7) in (15) we get

< F |Of |F >=

∫

x′,p′

f(x′, p′)[

∫

x,y

φF (x, y) < x|˜̂g(x′, p′)|y >] (16)

where ˜̂g(x, p) ≡
∫

α,β
ĝ(α, β) exp(−iαx − iβp).

Comparing with the previous expression of < F |Of |F > we find that the quantum

distribution function is a simple transform of the first-order density matrix:

uF (x, p) ≡< F |u(x, p)|F >=

∫

x1,y1

K(x, p; x1, y1)φF (x1, y1) (17)

where

K(x, p; x1, y1) ≡< x1|˜̂g(x, p)|y1 >= exp(−ip(x1 − y1))δ(
x1 + y1

2
− x) (18)

This kernel actually expresses the transformation between the two different forms

of the fermion bilinear, Φ(x1, y1, t) and u(x, p, t).
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The semi-classical limit:

Let us try to calculate uF (x, p) using (17), when |F > is the ground state. For

simplicity, let us consider a system of free particles first (potential= 0). It is easy

to calculate φF (x1, y1) using plane waves for the single-particle wavefunctions:

φF (x1, y1) =
∑

k<kF

exp[ik(x1 − y1)] (19)

This gives

uF (x, p) = const. θ(pF − p) (20)

The constant ensures that the integral
∫

dx dp uF (x, p) which measures the total

fermion number, is N (in the case of double scaling where N → ∞ the normaliza-

tion has to be appropriately redefined).

Equation (20) is the first example of recovering a classical result from the

quantum distribution function. We recall that semiclassically the ground state of

a fermi system corresponds to filling up the region in the phase space corresponding

to h(x, p) < eF where h(x, p) is the energy function. In other words, the classical

density function is

uC
F (x, p) = const. θ(eF − h(x, p)) (21)

where the constant is again determined by the condition that the integral of uC
F

should reproduce the total fermion number. We can see that for the free par-

ticle case (h(x, p) = p2) (21) coincides with (20). In other words, the quantum

distribution function coincides with the classical distribution function.

In general (for a more general potential and more general states) the classical

distribution function is given by

uC
F (x, p) = χR(x, p) (22)

where χR(x, p) is the characteristic function for some region R in the phase space

(χR(x, p) = 1 if (x, p) ∈ R, = 0 otherwise). R describes the region occupied by the
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fermions in the state |F >— in general this is only an approximate concept, and

hence the quantum distribution function has an h̄-expansion:

uF (x, p) = χR(x, p) + O(h̄) (23)

corresponding to a quantum softening of the step function. Of course at finite

temperature there is a softening of the step function even at the classical level. In

the above we have ignored the constant multiplying χR(x, p).

In the case of h = (p2 − x2)/2 the quantum distribution function is indeed not

exactly equal to the characteristic function, and has non-trivial h̄ corrections as in

(23), but we skip the details here.

We see therefore that the natural set of observables in the quantum theory,

namely uF (x, p) =< F |u(x, p)|F > correspond in the classical limit to the set of

density functions χR(x, p) for all regions R in the phase plane. In section four we

will define the classical phase space of the fermi system in terms of characteristic

functions.

Before we end this section, let us show how the W∞-transformations in the

quantum theory give rise to w∞-transformations on the fluid regions R in the

classical theory modulo h̄-corrections.

We have shown in [15] that the fermion fock space forms an irreducible repre-

sentation of the W∞-algebra. This is a consequence of the fact that an arbitrary

state in the theory can be reached from the fermi ground state by particle-hole

pair excitations, which in turn can be expressed as linear combination of the W∞-

generators. This implies that an arbitrary state |F > in the theory can be written

as

|F >= U |F0 > (24)

where U is a W∞-group element:

U = exp[i

∫

p,q

ǫ(p, q)W (p, q, t)] (25)

10



Let us ask the following question: if a state |F0 > (not necessarily the ground

state) is changed by a W∞-transformation according to (24), how does the corre-

sponding quantum distribution function change? By definition

u0 → uF (x, p) =< F0|U
†u(x, p)U |F0 > (26)

We have abbreviated uF0
by u0.

Let us consider the case when U = 1 + iH = 1 + i
∫

α,β
ǫ(α, β)W (α, β) with H

infinitesimal. (26) now reads

δu0(x, p) = −i

∫

α,β

ǫ(α, β) < F0|[W (α, β), u(x, p)]|F0 > (27)

We can evaluate the commutator by using the structure constants (5) of the W∞-

algebra. We have

[W (α, β, t), u(x, p, t)] = 2i

∫

α′,β′

sin[
h̄

2
(αβ′ − α′β)] exp(−iα′x − iβ′p)W (α + α′, β + β′)

= 2i sin[
ih̄

2
(α∂p − β∂x)][eiαx+iβpu(x, p, t)]

(28)

Putting this in (27) one gets

δu0(x, p) = i

∫

α,β

ǫ(α, β)δα,βu0(x, p) (29)

where

δα,βu0(x, p) =

∫

x′,p′

Mα,β(x, p; x′, p′)u0(x
′, p′) (30)

with

Mα,β(x, p; x′, p′) =2i

∫

α′,β′

sin[
h̄

2
(αβ′ − α′β)] exp[−iα′x − iβ′p + i(α + α′)x′ + i(β + β′)p′]

=2i sin[
ih̄

2
(α∂p − β∂x)][δ(x − x′)δ(p − p′) exp(iαx′ + iβp′)]

(31)
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Equations (30) and (31) define the representation of W∞-algebra on the quantum

distribution functions.

To understand the classical limit of equations (30) and (31) we need to make

an h̄-expansion of these equations. The net result is that the sine function gets

expanded in power series, the first term representing the classical limit. Using this,

we get

Mα,β(x, p; x′, p′) = −h̄(α∂p−β∂x)[δ′(x−x′)δ(p−p′) exp(iαx′+iβp′)]+O(h̄2) (32)

The last equation implies

1

ih̄
δα,βu0 = {exp(iαx + iβp), u0}PB + O(h̄) (33)

In other words, if one performs a W∞-transformation on the quantum distribution

function by a generator corresponding to the single-particle operator exp(iαX̂ +

iβP̂ ) the result, to leading order in h̄, is to send u0(x, p) → u0(x
′, p′) where the

points x′, p′ are obtained from x, p by a canonical transformation under the cor-

responding classical function exp(iαx + iβp). The division by ih̄ is related to the

difference between commutators and classical Poisson brackets. Note that the {}PB

here denotes Poisson bracket in the single-particle phase space. Equation (33) is

remarkable because (a) it relates the Poisson bracket structure in the many-body

phase space to that in the single-particle phase space and (b) it sets up a correspon-

dence between W∞-trnasformations on the left hand side to w∞-transformations

on the right hand side.

Thus we proved that W∞-transformation on the quantum distribution imply

w∞-transformation on the classical distribution. The coadjoint orbit construction

in section four for the classical case will precisely use this transformation.

To end this section we mention that a detailed discussion of the operator al-

gebra of the quantum fluid, considered briefly here, is under preparation [27]. We
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summarize the operator algebra in the following:

[W (p, q, t), W (p′, q′, t)] =2i sin[
h̄

2
(pq′ − qp′)]W (p + p′, q + q′, t)

[W (p, q, t), u(p′, q′, t)] =2i sin[
ih̄

2
(p∂p′ − q∂q′)][e

i(pq′+qp′)u(p′, q′, t)]

[u(p, q, t), u(p′, q′, t)] =2i sin[
h̄

2
(∂p∂q′ − ∂q∂p′)][δ(p − p′)δ(q − q′)u(p′, q′, t)]

(34)

where u(p, q, t) in the last two lines denotes u(x, p, t) with x = q.

3. Review of the Kirillov method[28]:

Traditionally, the Kirillov method is a method of inventing physical systems

that form representations of a group G. The steps are the following:

(a) Find a dual Γ to the Lie algebra G, that is, invent a linear space Γ so that

there is a scalar product < x|u > between elements x ∈ Γ and u ∈ G.

(b) Define an action of G (and consequently of G) on Γ by the rule G ∋ U :

x → xU ≡ Ã(U).x ∈ Γ where Ã(U).x is defined by

< Ã(U).x|u >=< x|UuU−1 > for all u ∈ G (35)

The group action Ã(U) satisfying (35) is called a co-adjoint action and the property

(35) is called the co-adjoint property (for obvious reasons, since the right hand side

of (35) uses the adjoint action on the Lie algebra G).

Note that Ã has the property Ã(UV ) = Ã(U)Ã(V ).

We shall also use the infinitesimal version of Ã, namely if U = exp(tv) then ã(v).x ≡

limt→0(d/dt)Ã(U).x. In this limit, the coadjoint property reads as

< ã(v).x|u >=< x|[v, u] > u, v ∈ G, x ∈ Γ (36)

Coadjoint orbit: for any given x0 ∈ Γ the set of points Ã(U).x0 obtained by

applying all group elements U ∈ G to x0 is called the coadjoint orbit of x0 (denoted

C(x0)).
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(c) Parametrize points of C(x0) by group elements, as follows. Suppose x ∈

C(x0). Clearly, by definition of C(x0), there is at least one group element U that

has brought us from x0 to x, i.e.

Ã(U).x0 = x (37)

Actually there would usually be an ambiguity in the definition of U , because if

some U applied to x0 gives x, then so would UV where

Ã(V )x0 = x0 (38)

The set of such V ’s forms a subgroup H ⊂ G, called the stability subgroup of x0.

This means that points of C(x0) are characterized by an equivalence class UH ; in

other words, C(x0) = G/H .

(d) Let us assume that we have fixed the ambiguity by choosing a particular

element out of each equivalence class. Then each point x ∈ C(x0) has an image

U ∈ G. Similarly, curves x(t) ∈ C(x0) have images U(t) ∈ G. It is easy to see that

the tangent vector dx/dt corresponds to the tangent vector dU/dt. By the well-

known isomorphism between tangent vectors in a group manifold and elements of

its Lie algebra we know that a tangent vector dU/dt at the point U(t) corresponds

to the Lie algebra element (dU/dt)U−1 ≡ ut. Note that dx/dt = ã(ut).x.

Kirillov’s prescription for the symplectic form is the following. Suppose we have

two tangent vectors at the point x ∈ Γ, given by t1 = ã(u1).x and t2 = ã(u2).x.

Then the syplectic form Ω(x) is defined by

Ω(x).(t1, t2) ≡< x|[u1, u2] > (39)

One can check that Ω is anitysmmetric and closed.

(e) The way one arrives at the classical action for a path x(t) ∈ Γ is by

extending the path x(t) to a two-dimensional region x(t, s) whose boundary is
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x(t). The classical action is simply the integral of the syplectic form over this two

dimensional region
∗
. Consider a little two-dimensional region formed by the two

tangent vectors at x:

dx/dt = ã(∂tUU−1).x, dx/ds = ã(∂sUU−1).x (40)

By the above definition for the symplectic form, the action is therefore

S0 =

∫

dtds < x|[∂tUU−1, ∂sUU−1] > (41)

The above action seems to depend on the extension x(t, s) of the original path

in the s direction. The fact that Ω is closed ensures that the action does not

change under small deformations of the map x(t, s) which keep the boundary x(t)

invariant.

One can formally integrate the Lagrangian with respect to s (in the absence

of any topological obstruction). Thus

S0 =

∫

dtds < x0|[U
−1∂tU, U−1∂sU ] >

=

∫

dt < x0|U
−1∂tU >

=

∫

dt < x|∂tUU−1 >

(42)

where in writing the first and the third lines line one has used the co-adjoint

property and the relation between x(t, s) and x0.

The question of well-definedness of the action: note that we have managed

to write an action (41) or (42) in terms of the U -variable. However, the action

must have an invariance with respect to the change U → UV where V satisfies

∗ Actually, this corresponds to the pq̇ part of the Lagrangian, we will include the hamiltonian
(Hdt) part shortly.
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(38), because both U and UV correspond to the same point x in the configuration

space, and the action should depend only on the path drawn in the configuration

space (and not in G). In other words, in case of (41), we demand that

S0[U(s, t)] = S0[U(s, t)V (s, t)] where Ã(V (s, t)).x0 = x0 (43)

and in case of (42) we demand that

S0[U(t)] = S0[U(t)V (t)] where Ã(V (t)).x0 = x0 (44)

We call these criteria the criteria for well-definedness of the action. Equation (43)

is easily satisfied by using the coadjoint property of the scalar product. (44) is

more tricky [29] and instead of the Lagrangian remaining invariant it changes by

a total derivative in time.

Adding the Hamiltonian piece:

So far we dealt with only the ‘symplectic form’ or the pq̇ part of the action.

In general, we will have a hamiltonian piece, where the hamiltonian h corresponds

to a given element of the Lie algebra, h ∈ G. We want to add −dtH term in the

action so that we get an equation of motion

dx

dt
= ã(h).x (45)

The additional piece is

Sh = −

∫

dt < x|h > (46)

and the total action

S = S0 + Sh (47)

It is easy to check that the equation of motion following from the above action is

indeed (45).
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This is the standard story.

Our approach will be slightly different, mainly in emphasis. We will consider

the physical system, say Q, as already given to us, with a specified action of the

relevant group G. We will try to see if we can invent a notion of scalar product

between elements of Q (to be suitably identified as a subset of some linear space Γ)

so that under that scalar product the group-action satisfies the co-adjoint property.

Then we can use the Kirillov device to write down a classical action on Q (or more

specifically on coadjoint orbits in Q). In the case of the fermi fluid, Q is going to be

the space of fluid profiles (= the space of characteristic functions), and the cojoint

orbits ⊂ Q going to be fermi fluids of a given area. We shall see that there is an

obvious scalar product between Q and the elements of w∞ algebra, indeed if we

use the identification of the space of fluid profiles with the space of characteristic

functions then Q is naturally imbedded in the space Γ of distributions and the

above scalar product is then inherited from Γ.

A Toy Example: single classical spin as co-adjoint orbit of SU(2)

Let us explain a toy example. This is the problem of a single classical spin,

characterised by a “spin” vector xi ∈ R3 satisfying the the constraint of unit norm

~x.~x = 1. The configuration space of the spin is Q = S2. How does one write a

natural action for this spin?

First remark that there is an obvious action of SU(2) on this spin, namely

rotation of the spin. To be precise, if we denote an element of su(2) (the algebra)

as u = uiσ
i where σ are the Pauli matrices, then

ã(u).~x = ~u × ~x (48)

One way of quickely arriving at this equation is to think of R3 as identified

with the Lie algebra su(2) where ~x is identified with a matrix X = xiσi. In this

case, the rotation by u of X is given by ã(u).X = [u, X] using the natural action

of Lie algebra on itself. (48) is obtained by using the fact that [u, X] = ~u × ~x.~σ.
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The above identification of R3 with su(2) also suggests a natural scalar product

between elements of R3 (and hence of Q ⊂ R3) and the elements of su(2), namely

< x|u >= tr(Xu) = ~x.~u (49)

Clearly the above action (48) of su(2) satisfies the co-adjoint property under

the scalar product (49). The co-adjoint orbits are spheres in R3 of constant radii.

By choice, our config. space Q is the coadjoint orbit characterised by unit radius.

Classical action: Let us try to construct the classical action for a periodic path

~x(t), ~x(0) = ~x(1) which in our case is a closed path drawn on the sphere Q. The

classical action is the integral of the symplectic form over the “filled circle”
∗
. We

denote the filled circle by ~x(t, s), where s ∈ [0, 1], s = 1 describing the boundary.

Consider now the infinitesimal region formed by the two tangent vectors d~x/dt

and d~x/ds drawn at the point ~x(t, s). The integral of the symplectic form over this

infinitesimal region is

ds dt < x|[ut, us] > (50)

where ut, us are elements of the su(2) algebra defined by the equations

ã(ut).~x =~ut × ~x =
d~x

dt

ã(us).x =~us × ~x =
d~x

ds

(51)

It is easy to solve (51), giving

~ut =~x ×
d~x

dt

~us =~x ×
d~x

ds

(52)

We have used the notation ut = ~ut.~σ, etc. and the fact that the tangent vectors

∗ There is an ambiguity here regarding whether we want to fill the ‘inside’ or the ‘outside’ of
the circle, but we’ll see that the symplectic form is an integral form which means that the
results will differ only by an integal multiple of 2π, hence in computing exp(iS) we would
not see any difference
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d~x/dt and d~x/ds are perpendicular to x (also that ~x.~x = 1).

Using these one arrives at a classical action

S0 =

∫

dt ds ~x.
~dx

dt
×

dx

ds
(53)

which is the famous solid angle action for a classical spin.

A typical hamiltonian term corresponds to inclusion of a magnetic field which

may be viewed as either a vector ~B or equivalently as a matrix B = ~B.~σ. The

corresponding term in the action is

Sh =

∫

dt < x|B >=

∫

dt~x. ~B (54)

4. The fermi fluid as co-adjoint orbit of w∞:

We consider the space Q of fermi fluid profiles as the classical phase space.

In [15] we derived the transformation of the fluid profile under area-preserving

diffomorphisms (equivalently, canonical transformations). In section two we re-

derived this result by looking at the classical limit of the quantum distribution

function.

Following the discussion in section 2, we shall parametrize the fermi fluid as

follows. If the fluid occupies a region R in the phase plane we shall characterize it

by a density function χR(x, p) defined by

χR(p, x) =1, if (x, p) ∈ R

=0, otherwise
(55)

Thus, our classical phase space is the space of density functions Q = {χR, R ⊂

R2} where this R can be any two dimensional subset of the phase plane.
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The group we are concerned with is the group of area-preserving diffeomor-

phisms. The Lie algebra consists of hamiltonian flows under arbitrary functions of

the phase plane. Thus we shall parametrize the Lie algebra elements u by functions

f(x, p) or vector fields Xf = ∂pf∂x − ∂xf∂p. When we think of the functions as

Lie algebra elements, we define the Lie bracket as identical to the Poisson bracket.

Note that

[Xf , Xg] = X{f,g}PB

.

The action on fluid elements is specified by considering the action on the cor-

responding density functions:

ã(f).χR(x, p) = −(∂pf∂x − ∂xf∂p)χR(x, p) ≡ −XfχR(x) (56)

Let us justify the above definition. Note that for infintesimal f , the above can be

re-stated as

χR(x, p) + ã(f)χR(x, p) = χR(x′, p′) (57)

where (x′, p′) is the point obtained by evolving (x, p) for unit time under the hamil-

tonian −f : x′ = x − ∂pf, p′ = p + ∂xf . Now instead of evolving the cooridnates

x, p we might alternatively evolve the region R. We know that if we evolve both

R to R′ and the coordinate x, p to x′, p′ then χR(x, p) = χR′(x′, p′). This also

shows that χR(x′, p′) = χR′(x, p) where R′ is now obtained by evolving R under

the hamiltonian f for unit time. Thus we get the result that, for infinitesimal f ,

χR(x, p) + ã(f)χR(x, p) = χR′(x, p) (58)

In other words, under the w∞ transformation f , the region R evolves to a new

region R′ as if each fermion inside evolves under the hamiltonian f . In the next

sections we shall use (58) instead of (56) to find the action of infinitesimal w∞

transformations in the different parametrizations.
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Note that the above representation of w∞ is presicely the one obtained in

section two as a limiting case of W∞-transformation on the quantum distribution

function.

The action of finite group elements, like U(t) = exp(−iXf t) is given by

Ã(U).χR(x, p) = exp(it(∂pf∂x − ∂xf∂p))χR(x, p) (59)

The scalar product:

We define now a notion of a scalar product between the elements Xf of w∞

and fluid elements χR(x, p). A natural scalar product is:

< χR(x, p)|Xf >=

∫

R2

χR(x, p)f(x, p) =

∫

R

f(x, p) (60)

In other words the scalar product counts the total amount of f(x, p) contained in

the fermi fluid.

Note that if we think of elements of w∞ as simply functions f(x, p) on the phase

plane, the obvious dual Γ is the space of ‘generalized functions’ or distributions

(indeed distributions are defined that way). The scalar product of a distribution

D with a function f is by definition the integral of the distribution with f as the

‘test’ function. Our density function χR is defined as the characteristic function

corresponding to the region R, hence the space of fluid profiles Q (defined as

the space of density functions) is naturally embedded in the linear space Γ of

distributions. Indeed one can extend the definition of w∞ action on Γ in the

obvious way. To be precise, the action of Xf on a distribution D would be given

by

< ã(f).D|g >=< D|Xf .g >≡< D|{f, g}PB > (61)

(61) makes it clear that the above scalar product satisfies the co-adjoint prop-

erty. The coadjoint orbits are fluids of the same area. From the point of view of

the fermion theory, this is a natural consequence of fermion number conservation.
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Classical action:

We want to compute the classical action for a fluid trajectory R(t) (which we

assume periodic for the moment), given by density functions χR(t). We assume that

R(t) has the same area for all t, so that it is lying on a single coadjoint orbit. We

“fill in” the one-dimensional trajectory to a two-dimensional one as mentioned in

the last section: the fluid profiles are called R(s, t) and the corresponding density

functions χR(s,t). The action is given by the following two dimensional integral

S0 =

∫

dt ds < χR(s,t)|[∂tUU−1, ∂sUU−1] > (62)

The group element U(s, t) is defined to be the one which brings us from a

certain “base fluid profile” R0 to the current one R(s, t):

Ã(U(s, t)).χR0
= χR(s,t) (63)

As explained earlier, U(s, t) as defined by (63) is ambiguous upto right multiplica-

tion by elements V (s, t) which do not move R0:

Ã(V (s, t)).χR0
= χR0

(64)

This means that our configuration space (space of fluid profiles of a given area

that form an orbit of w∞) is actually a coset G/H where H is the set of V ’s

satisfying (64). One can check that the action written above satisfies the creiterion

of well-definedness expressed in (43).

As mentioned in the general outline in the previous section, we can trans-

pose the U -action to rewrite (62) in terms of χR0
. The result, after one partial

integration with respect to s (in the absence of a topological obstruction), is

S0 =

∫

dt < χR0
|U−1∂tU >

=

∫

< χR|∂tUU−1 >

(65)

The hamiltonian piece: if the fluid profile is evolved by a hamiltonian function
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h(x, p) in the single-particle phase space (for instance, h = (p2 − x2)/2), then (46)

becomes

Sh = −

∫

dt < χR|Xh > (66)

By using the coadjoint property of the scalar product we can rewrite this as

Sh = −

∫

dt < χR0
|U−1XhU > (67)

The right way to interpret the above expression is: first think of U as made of

exponential of differential operators (like U = exp(Xf ) etc.) so that U−1XhU is

also a differential operator, of the form Xg for some g. Then < χR0
|U−1XhU > is

actually defined to be < χR0
|g >.

The total action is given by

S = S0 + Sh =

∫

dt < χR0
|U−1∂tU + U−1XhU > (68)

Correspondence with the action in [16]:

Let us make a brief remark to make correspondence with the W∞-action that

we wrote down in [16]. The latter action was

S = S0 + Sh, S0 =

∫

dt tr(ΛU−1∂tU),

Sh =

∫

dt tr(ΛU−1ĀU)

(69)

where U = exp(i
∫

ǫ(p, q)ĝ(p, q)) is an element of W∞-group, viewed as an operator

in the single-particle Hilbert space or equivalently as an infinite dimensional matrix

Uxy =< x|U |y >. Λ is a fixed matrix, and Ā is simply the hamiltonian operator h

appearing in the fermion theory.

It is clear that the above action is the Kirillov action for the co-adjoint orbit

of Λ under the group W∞. The coadjoint action is defined by identifying the dual

of the algebra with itself (the scalar product being defined as the trace).
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We are not going to prove the equivalence between (69) and (68) in great

detail here; we indicate the steps instead. Basically, we found in section two

that the scalar product < χR|Xf > is merely the classical limit of the quan-

tity < uF |Xf >≡
∫

x,p
f(x, p)uF (x, p) where uF (x, p) is the quantum distribu-

tion function in the state |F > (the state |F > here is defined by the prop-

erty that uF (x, p) = χR(x, p) + O(h̄)). Now the latter quantity is expressible

as
∫

x,y
fxyφF (x, y) where fxy =< x|f̂ |y > (see equation (15)). Now consider the

hamiltonian term < χR0
|U−1hU >=< χR|h > in (68). By the above remarks, this

is the classical limit of tr(hφF ) where we have suppressed the symbols x, y, treating

them as matrix indices. If we now use the fact that an arbitray state |F > state

can be written as |F >= U |F0 >, then it is easy to deduce that φF = U−1φF0
U .

Thus, if we identify Λ(x, y) = φF0
(x, y), then the hamiltonian piece in (69) equals

that in (68) plus order (h̄) terms. Similar remarks hold for the kinetic term, though

the proof is a little more lengthy
∗
.

5. The String Representation:

In this section we shall employ a different, in a sense more intrinsic, represen-

tation of the fermi fluid, which we shall call the “string representation”. Let us

consider for the moment a fermi fluid which occupies one single filled region (that

is, a connected simply connected two-dimensional region of the phase plane). One

example is the ground state distribution. If the hamiltonian is h = (p2+x2)/2 then

the ground state distribution is a fermi fluid filling the region p2 +x2 ≤ 2µ where µ

is the fermi energy. If the hamiltonian is h = (p2−x2)/2 (and we restrict to x < 0,

cf. [15]) then the ground state distribution is x ≤ −
√

p2 − 2µ. We point out

that the choice of signature (Euclidean or Minkowski) in the 2-dimensional target

space dictated in [15] the choice of the hamiltonian (actually, in the Euclidian case

the hamiltonian was h = −(p2 + x2)/2 so that the fermi fluid filled the outside

of the circle mentioned above– this difference will not matter for most part of our

∗ Note that we have used the same notation U above for the single-particle operator
U = exp[i

∫

dp dq ǫ(p, q)ĝ(p, q)] and for the many-body operator U = exp[i
∫

dp dq ǫ(p, q)W (p, q)].
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discussion below and we’ll choose to ignore it). As is clear from the example of the

ground state distributions, the boundary of the fermi fluid can either be closed or

open.

In the “string representation” we describe the fermi fluid by specifying the

boundary as the map xi(σ) from a one-dimensional parameter space σ ∈ [0, 2π] or

σ ∈ (−∞, +∞) (depending on whether the boundary is closed or open respectively)

to the phase plane xi, (x1 = x, x2 = p). Indeed since we are considering filled

(simply connected) regions, let us invent a two-dimensional parameter space σ, τ

(which is a disc or a half-plane) which maps onto the two-dimensional region filled

by the fermi fluid. The map is (σ, τ) 7→ xi(σ, τ). If we parametrize the disc by

τ ∈ [0, 1] then the boundary is given by τ = τ0 ≡ 1 (in the case of the half-

plane, parametrized by σ ∈ (−∞,∞), τ ∈ (−∞, 0] the boundary is τ = τ0 ≡ 0)).

The ‘string’ is simply the image of the one-dimensional boundary τ = τ0 of the

parameter space.

Action of w∞ on the ‘string’:

Again, according to (58), we evolve the point (x, p) of the phase plane (“target

space”) under the hamiltonian h = f : xi → xi + ǫik∂kf , which means that entire

two-dimensional image xi(σ, τ) changes by

ã(f).xi(σ, τ) ≡ ǫik∂kf(x(σ, τ), p(σ, τ)) (70)

and the one-dimensional image of the τ -boundary (the string xi(σ, τ0)) transforms

by

ã(f).xi(σ, τ0) ≡ ǫik∂kf(x(σ, τ0), p(σ, τ0)) (71)

We should remark that it is only the ‘string’ that is the real dynamical variable.

If we make any transformation that moves the fermions inside the fermi fluid,

leaving the boundary unchanged, then the physical state of the system is unchanged

(because the phase space density is unchanged– the original reason for this of
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course is the indistinguishability of identical fermions). In concrete terms, any

transformation in the target space (x, p) → (x′, p′) that leaves the image xi(σ, τ0)

invariant, does not change the “fermi fluid”. Indeed the statement is even stronger.

Even if the map xi(σ, τ0) is changed in a manner such that a reparametrization of

the boundary σ → σ′ can account for the change, then we havent really changed

the fluid profile.

It is interesting to ask what are the canonical transformations that change the

string only upto reparametrization. The answer is, all those transformations h that

satisfy

ã(h).xi(σ, τ0) ∝ ∂σxi(σ, τ0) (72)

The proportionality ‘constant’ can be a function of σ (indeed if the function is g(σ)

the reparametrization that is implied here is dσ′/dσ = g(σ)). To see what these

functions precisely are, let’s combine (71) and (72). We get

∂ih∂σxi = ∂σh(xi(σ, τ0)) = 0 (73)

which implies that the “string” is a surface of constant h. It is clear that for the

fermi fluid in the ground state, any function of the energy is a candidate h. Since

such h’s do not change the fermi fluid, the space of fermi fluids is actually a coset

G/H [15].

The scalar product: in this parametrization we have

< χR|f >=

∫

R

dx dp f(x, p) =

∫

D

dσdτǫik∂σxi∂τx
kf(x(σ, τ), p(σ, τ)) (74)

where D denotes the entire parameter space σ, τ (disc in case of closed strings and

half-plane in case of open strings).
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To write the action consider xk as a function of time t and the additional

variable s. Then, (40) applied to our case is

∂xk

∂b
= ã(fb).x

k = ǫkl∂lfb, b = s, t (75)

The classical action (62) now reads

S0 =

∫

dt ds

∫

D

dσ dτ (∂σfs∂τft − (s ↔ t)) (76)

Using (75), we can evaluate the partial derivatives involved in (76). The result is

S0 =

∫

dt ds dσ dτ FστFst (77)

The field strength is defined as

Fµν = ǫik∂µxi∂νx
k (78)

which can be derived from a gauge potential

Aµ = ǫikx
i∂µxk (79)

Here µ, ν run over all coordinates of the four-dimensional space ξµ = (s, t, σ, τ).

Some interesting features of this gauge theory are:

(1) The gauge transformations Aµ → Aµ+∂µθ correspond to making canonical

transformations xi → xi + ǫik∂kf where

θ = (2 − xi∂i)f (80)

(2) In the notation of differential forms, the gauge potential is given by a
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one-form

A = Aµdξµ = ǫikx
idxk = xdp − pdx (81)

and the gauge field by the two-form

F = ǫikdxi ∧ dxk = dx(ξ) ∧ dp(ξ) = X∗(Ω) (82)

where X∗(Ω) denotes the pull-back of the symplectic form Ω in the phase plane onto

the four-dimensional space ξµ (the map X refers to the embedding ξµ → xi(ξ)).

In other words, the symplectic form Ω = dx ∧ dp in the target space induces

a symplectic form in the four-dimensional space. Our field strength is precisely

equal to that.

In this notation the action looks like

S0 =

∫

M

dσ dτ ds dt (X∗(Ω))στ (X∗(Ω))st (83)

Note that the induced symplectic structure degenerates where the embedding map

X is singular. This is precisely what happens at the turning points of the profiles.

We shall come back to the issue of the turning point shortly.

The hamiltonian term (66) in the string representation can be written as

Sh =

∫

M

B ∧ X∗(Ω) (84)

where B is defined as the two-form B = (∂xh∂sx + ∂ph∂sp)ds ∧ dt.

Let us now see under what conditions we can derive the collective field theory

from the above considerations. For this purpose it is more useful to use the form

(65) of the classical action and use the string parametrization in it. The second
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line of (65) reads as

S0 =

∫

dt

∫

R

ft (85)

where ft satisfies

∂ift = ǫik∂tx
k (86)

Let us convert the area integral over the region R in (85) into a line integral

by thinking of ft as a magnetic field and inventing a vector potential ai, i = x, p.

That is, let us find ai such that

∂xap − ∂pax = ft (87)

In that case (85) becomes

S0 =

∫

dt

∫

∂R

(apdp + axdx) =

∫

dtdσ(ap∂σp + ax∂σx) (88)

Now this reduction is true for any choice of ai which satisfies (87). Let us

choose the gauge ap = 0, then from (87) we have

ax = −(∂p)
−1ft (89)

and so we get

S0 =

∫

dt dσ∂σx[−(∂p)
−1ft] (90)

In order to make connection with the collective field action we would now like to

specify points on the “string” by their x-values rather than by the parameter σ.

In other words, we attempt a change of variable in (90) from σ to x(σ). Now since

x(σ) is actually x(σ, t), how does one make the change of variable at all t?
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We will see that the way out is suggested by reparametrization invariance. Note

that a given fluid profile (more precisely the density function χR) does not change

if one simply makes a reparametrization of the boundary of the fluid. Therefore

given a classical path of a string described as xi(σ, t), physically it is the same

as another path xi(σ′(σ, t), t). Indeed one can check that the above action (90)

is invariant under xi(σ, t) → xi(σ′(σ, t), t). Note that we are talking here about

arbitray time-dependent reparametrizations σ → σ′(σ, t).

Now though in the initial parametrization σ, x(σ, t) depended on t, by changing

over to σ′ we may try to keep x(σ′(σ, t), t) invariant in time by compensating

between the two sources of time-variation. In other words, let us see if we can

satisfy

dx

dt
= ∂tx + ∂tσ

′∂σx = 0 (91)

Clearly except when ∂σx = 0, we can choose the reparametrization σ′(σ, t) to

satisfy (91). Which means that except at these points we have

x(σ′(σ, t), t) = x(σ) (92)

What is the significance of the points where ∂σx vanishes? Well, these are

precisely the turning points of the fluid profile on the x-axis. The “gauge choice”

(92) cannot be validly made at these turning points. Physically this means that at

all points except where the fluid boundary has turning points in the x-direction,

one can always make a combination of vertical and horizontal motions (of the

fermions living at the boundary) appear as a purely vertical motion by giving the

fermion a suitable velocity component along the boundary (such motions do not

change the state of the system, hence one is always allowed to add them without

changing anything). At the turning point, since the tangent is vertical, adding

any amount of tangential motion will change only the vertical component, and will

never “gauge away” a horizontal component of the velocity there.
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Thus, (92) is a valid gauge choice only when one restricts to fluid profiles which

never move their x-turning points, that is, the ‘turning points’ are allowed to move

purely vertically (mathemtically, one is saying that for (91) to be valid at a point

where ∂σx = 0 one must have ∂tx = 0). Let us assume such a restriction for

the moment so that (92) is valid. Let us also assume that in the entire range of

σ there is only one turning point on the x-axis, that is, there is only one value

σ = σ0 such that ∂σx = 0 at σ0
⋆
. This assumption is equivalent to the assumption

of quadratic profiles[15], that is, that the fluid boundary is given by an equation

F (x, p) = 0 where F is at most quadratic in p. Now, in the intervals (−∞, σ0) and

(σ0,∞) the map σ → x(σ) is separately invertible. We shall call the inverse maps

σ−(x) and σ+(x) in the two intervals, respectively. We shall also use the notation

p(σ+(x), t) = p+(x, t) and p(σ−(x), t) = p−(x, t).

Note that using (86) and (92) we have ∂pft = ẋ = 0 ⇒ (∂p)
−1ft = pft. Since

∂xft = −ṗ, we have ft = −(∂x)−1ṗ. In these relations, p(σ, t) is to be interpreted

as p±(x, t) depending on whether σ ≥ σ0 or σ ≤ σ0.

Putting in all of the above, we see that (90) reduces to the ”kinectic” term of

the collective field theory action:

∫

dt

∫

dx [p+
1

∂x

dp+

dt
− p−

1

∂x

dp−
dt

]

The hamiltonian term also agrees using similar reasoning and in this way we get

the complete collective field theory action:

S =

∫

dt

∫

dx [p+
1

∂x
(
dp+

dt
) − p−

1

∂x
(
dp−
dt

) +
p3
+ − p3

−

6
−

x2

2
(p+ − p−)]

The above method of derivation clearly indicates the limitation of the collective

field description of the theory. Besides the unwarranted restriction to quadratic

⋆ We are considering for the moment the case of open string, i.e. non-compact σ; for the
closed-string case we have to assume that there are two turning points
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profiles one needs to assume that the x-turning point remains static. In general the

fluid profile will move in such a way that the turning point itself will be dynamical—

the collective field description clearly misses this dynamics of the turning point.

6. Concluding remarks:

We hope that our classical action (62)(or (83)) brings new insights into for-

mulating general principles of classical two-dimensional string theory. We wish

to emphasize that the “classical” action for the quantum W∞-symmetry and the

corresponding action for its classical limit w∞ are different. In fact, the “clas-

sical” action corresponding to w∞ is only the leading term (in powers of h̄) of

the “classical” action corresponding to W∞. Hence in this circumstance one will

not obtain the correct quantum theory by quantizing this classical action. Such a

circumstance also occurs in string theory. See, for example [30].
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