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ABSTRACT

We complete the proof of bosonization of noninteracting nonrelativistic fermions

in one space dimension by deriving the bosonized action using W∞ coherent states

in the fermion path-integral. This action was earlier derived by us using the method

of coadjoint orbits. We also discuss the classical limit of the bosonized theory and

indicate the precise nature of the truncation of the full theory that leads to the

collective field theory.
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1.Introduction and Summary

Bosonization of non-relativistic fermions is an important problem with a long

history. It was observed by Bloch [1] many years ago in his famous calculation of the

stopping power of charged particles that the low energy excitations of a fermi gas

can be described more suitably (within certain approximations) in terms of density

fluctuations of the fermi gas (“sound waves”) rather than in terms of individual

excited particles and holes. He also observed that if the sound waves are quantized

the quanta obey bose statistics under these approximations. In these treatments

the fermions were considered to be basically free. Bohm et al [2] considered the

effect of Coulomb interactions between the fermions and found a new kind of

collective oscillation (“plasma oscillation”) which had a characteristic frequency

independent of the wave-number for low wave-numbers. The corresponding quanta

(plasmons) again were found to be bosonic under some approximations. Tomonaga

wrote a comprehensive article [3] in which he showed the formal equivalence of

the low energy sector of a system of free non-relativistic fermions with that of

a free relativistic boson in the case of one dimension under a set of well-defined

approximations. The approximations basically consisted of (1) considering only

those states of the fermi theory which are built from holes or excited particles

(either left-moving or right-moving) which have wave-numbers between 3kF /4 and

5kF/4, where kF is the magnitude of the wave-number for the fermi surface, and

(2) ignoring sound quanta which have wave-numbers greater than kF/2. The sound

quanta under these approximations were the same as quantized density waves in

the fermi gas. Tomonaga was also able to incorporate the effect of interactions

under this scheme, exploiting the beautiful observation that interactions between

fermions, which typically require four-fermion terms in the hamiltonian, involve

quadratic (density-density) terms in the bose hamiltonian, thus keeping the theory

linear. The effect of interactions was thus incorporated in the Bose language in

terms of a simple rediagonalization of the Bose field (a Bogoliubov transformation);

the plasma oscillations for instance are trivially deduced in this way.

The question of a complete bosonization has subsequently been addressed by
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many authors. Except in the case of the Luttinger model [4] where the fermion

has a linear dispersion relation, a complete bosonization of non-relativistic fermions

has always been elusive, even in one dimension. The bosonization of relativistic

fermions is similar in spirit to Tomonaga’s approximate bosonization because the

dispersion relation in the low energy band around the fermi surface is approxi-

mately linear. Works on bosonization of relativistic fermions include Lieb and

Mattis [5], Luther and Peschel [6], Haldane [7] and, from the field theory point

of view, Mandelstam [8]. A different approach to approximate bosonization of

non-relativistic fermions was taken by Jevicki and Sakita [9] who exploited the

equivalence of the fermion problem (in one dimension) to matrix models and used

the method of collective variables.

A clue to the full solution of the bosonization problem can be obtained by

looking at the semi-classical picture of a fermi gas, which describes the states

of the fermi theory in terms of a fermi fluid of various shapes (with the same

area as the ground-state configuration of the fluid, if we insist on fermion number

conservation). This fermi fluid exists in the two-dimensional phase space of the

single fermion. We see therefore that in this semi-classical approximation changes

of the state of the fermi theory correspond to area-preserving shape changes of the

fermi fluid. This is similar in spirit to Bloch’s observation mentioned in the last

paragraph except that we are now talking about fluctuations of the phase space

density rather than that of the ordinary density. This classical picture has been

elaborated in [10]. In [11] we extended this bosonization in terms of the phase space

density to the quantum theory. In this paper we present a first principles proof of

the bosonization starting from the fermion path integral using the techniques of

coherent states. We will also present a brief discussion of the precise nature of the

truncation of the bosonized theory that leads to collective field theory [9, 12].

2. Derivation of the Path-Integral using Coherent States

In the following we will consider the specific example of the fermion field theory

which emerges in the double scaling limit of the c = 1 matrix model. The discussion
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is however easily generalized to other one-dimensional fermi systems.

It is well-known [13-16] that the c = 1 matrix model is described by the field

theory of noninteracting nonrelativistic fermions in one space dimension, defined

by the action

S =

+∞∫

−∞

dt

+∞∫

−∞

dx ψ+(x, t)(i∂t − hx)ψ(x, t) (1)

where the single-particle hamiltonian h is given by

hx =
1

2

(
−∂2

x + V (x)
)

V (x) = −x2 +
g3√
N
x3 + · · ·

N =

+∞∫

−∞

dx ψ+(x, t)ψ(x, t)

(2)

In the above we have chosen the zeros of energy and x-axis such that the (quadratic)

maximum of the potential occurs at x = 0 and that Vmax = V (0) = 0. The

continuum (double scaling) limit is obtained by letting N → ∞ and the bare fermi

energy ǫF → 0 while keeping the renormalized fermi energy (measured from the

top of the potential) µ ∼ NǫF fixed. The string coupling gstr is then given by

gstr ∼ 1
|µ| . (µ is negative in our conventions.)

In a previous work [11] we presented a bosonization of (1) using the method

of coadjoint orbits of W∞. A heuristic derivation of this action, starting from the

fermion path integral, was also discussed previously in [17]. Here we will complete

the proof of bosonization of (1) by deriving the boson action of ref. [11] using the

method of coherent states of W∞ in the fermion path-integral.

The use of W∞ coherent states in the fermion path-integral is made possible

by the observation [17] that the bosonized problem is analogous to that of a spin

in a magnetic field. Let us recall this analogy here. The most general (elementary)
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boson operator is the fermion bilocal

φ(x, y, t) ≡ ψ+(x, t)ψ(y, t) (3)

By virtue of the fermion anticommutation relation, φ satisfies the closed operator

algebra

[φ(x, y, t), φ(x′, y′, t′)] = φ(x,y′, t)δ(x′ − y)

− φ(x′, y, t)δ(x− y′)
(4)

Also, using the fermion equation of motion one can derive an equation of motion

for φ. Introducing the compact “matrix” notation,

〈x|Φ(t)|y〉 ≡ φ(x, y, t), (5)

this equation of motion can be written as

i∂tΦ + [h,Φ] = 0, (6)

where the matrix elements of h are given by 〈x|h|y〉 = hxδ(x − y). Equations (4)

and (6) describe a W∞ ‘spin’ system, with h acting like an external magnetic field.

The W∞ algebra [18,11] (4) can be written in a more familiar form in terms of

the new operator

W (α, β, t) ≡
∫
dx eiαxφ(x+ β/2, x− β/2, t) (7)

which satisfies the algebra

[W (α, β, t),W (α′, β′, t)] = 2πi sin
1

2
(αβ′ − α′β)W (α+ α′, β + β′, t) (8)

In the single-particle Hilbert space the W∞ algebra is generated by all differential

operators in one-dimension, i.e. by operator of the type x̂np̂m, where [x̂, p̂] = i. A
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convenient basis is given by

g(α, β) = ei(αx̂−βp̂) (9)

which satisfies the algebra

[g(α, β), g(α′, β′)] = 2πi sin
1

2
(αβ′ − α′β)g(α+ α′, β + β′) (10)

The W (α, β, t) realize this algebra in the fermion fock space.

The vacuum of the fermion theory is easily constructed by filling the fermi sea

to a certain fermi level, which is determined by the number of fermions. Let us

denote this vacuum state by |F0〉. Coherent states are constructed by the action

of the W∞ group elements on |F0〉 [19]

|Fθ〉 = u(θ)|F0〉, u ∈ GW∞ (11)

GW∞ is the Lie group corresponding to the W∞ algebra. In terms of the generators

W (α, β), u(θ) can be parametrized as

u(θ) = exp[i

∫
dα dβ W (α, β)θ(α, β)] (12)

In general, for certain functions θ(α, β), u(θ) would leave |F0〉 invariant. This

subset of u(θ)’s clearly forms a subgroup H of GW∞. So, the distinct coherent

states |F0〉 in (11) are given by the elements of the coset GW∞/H . This coset

depends on the filling of the fermi sea. (To illustrate this point, consider the

simpler case of a finite level system instead of W∞ (e.g. one may consider u(N)).

Then, it is clear for example that in the extreme case of filling of all levels, the

coset consists of a single point, the fermi vacuum. For partial filling there is clearly

a nontrivial coset and it may be verified by the reader in simple cases that the

coset depends on the filling.)
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Having specified the GW∞ coherent states defined on the fermi vacuum |F0〉,
let us explain their significance in bosonizing the fermion path integral. Firstly,

let us note that we are interested in evaluating correlation functions involving only

the bilocal boson operator φ(x, y, t) or some (fourier) transform of it. Because of

this it is sufficient to consider intermediate states in the path-integral from the

linear span of {
∏

i

φ(xi, yi)|F0〉} ≡ F . These states form a complete set and give a

resolution of the identity. On the other hand, we may consider the linear span of

the set of coherent states {|Fθ〉} ≡ E . Clearly, any element in the linear span of F
is in the linear span of E and vice versa. Hence, we may consider a resolution of the

identity in terms of the coherent states, even though they form an overcomplete

set,
∫
dµ(θ)|Fθ〉〈Fθ| = 1 (13)

The derivation of the path-integral now rests on the evaluation of the short

time kernal

Kt+ǫ,ǫ = 〈Fθ(t+ǫ)|eiǫH |Fθ(t)〉 (14)

where H =
∫
dx ψ+hxψ is the hamiltonian of the fermion field theory and is an

element of the W∞ algebra. One may equivalently write it in terms of the bilocal

operator Φ as H = tr(hΦ), where we have introduced the notation tr(AB) =
∫
dx dy〈x|A|y〉〈y|B|x〉. Expanding (14) in ǫ, we get

Kt+ǫ,ǫ = 〈Fθ(t+ǫ)|Fθ(t)〉 + iǫ〈Fθ(t)|H|Fθ(t)〉 +O(ǫ2) (15)

To evaluate the first term in (15) we use (11) and expand in ǫ. We get

〈Fθ(t+ǫ)|Fθ(t)〉 = 1 + iǫ〈F0|u+(θ(t))i∂tu(θ(t))|F0〉 +O(ǫ2) (16)

The operator inside the expectation value in (16) is an element of the W∞ algebra
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and so it can be expanded in the basis provided by W (α, β),

u+(θ(t))i∂tu(θ(t)) =

∫
dα dβ Cαβ(θ(t), ∂tθ(t))W (α, β) (17)

Let us now define the single-particle analogue of (12),

g(θ) = exp[i

∫
dα dβ g(α, β)θ(α, β)] (18)

Because W (α, β) and g(α, β) satisfy an identical algebra it follows that the single-

particle operator g+(θ(t))i∂tg(θ(t)) has an expansion in g(α, β) with coefficients

identical to Cαβ in (17):

g+(θ(t))i∂tg(θ(t)) =

∫
dα dβ Cαβ(θ(t), ∂tθ(t))g(α, β) (19)

Now using 〈x|g(α, β)|y〉 = δ(x− y+β)eiα(x+y

2 ) and (7) it can be easily shown that

〈F0|W (α, β)|F0〉 = tr(g(α, β)φ0) (20)

where we have defined

〈F0|Φ|F0〉 ≡ φ0 (21)

From (17), (19) and (20) we then get

〈F0|u+(θ(t))i∂ǫu(θ(t))|F0〉 = tr(φ0g
+(θ(t))i∂tg(θ(t))) (22)

Let us now evaluate the second term in (15). Since the single-particle hamil-

tonian h is an element of the W∞ algebra we can expand it in the basis g(α, β) as

h ≡
∫
dα dβ hαβg(α, β). This implies that the fermion field theory hamiltonian
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H has the expansion H =
∫
dα dβ hαβW (α, β), where we have used (7) to set

tr(g(α, β)Φ) equal to W (α, β). We may now write the second term in (15) as

〈Fθ(t)|H|Fθ(t)〉 =

∫
dα dβ hαβ〈F0|u+(θ(t))W (α, β)u(θ(t))|F0〉

=

∫
dα dβ hαβ

∫
dα′ dβ′ Cαβ,α′β′(θ(t))〈F0|W (α′, β′)|F0〉

=

∫
dα dβ hαβ

∫
dα′ dβ′ Cαβ,α′β′(θ(t))tr(g(α′, β′)φ0)

where in the second step above we have used that u+Wu is an element of W∞

algebra to reexpand it in W (α, β) and in the last step we have used (20). Denoting

the single-particle representative of u(θ(t)) by g(θ(t)) as before, and using in the

above an argument similar to the one given for the identity of coefficients in (17)

and (19), we get

〈Fθ(t)|H|Fθ(t)〉 =

∫
dα dβ hαβtr(g

+(θ(t))g(α, β)g(θ(t))φ0)

≡ tr(g+(θ(t))hg(θ(t))φ0)

(23)

Putting together (14)− (16), (22) and (23) we get for the short time kernel

Kt+ǫ,ǫ = exp[iǫtr{φ0(g
+i∂tg + g+hg)}]

Hence the finite time kernal is

K =

∫ ∏

ǫ

dµ(g(θ(t))) exp[i

∫
dt tr{φ0(g

+i∂tg + g+hg)}] (24)

where dµ(g(θ(t))) is an appropriate measure over the coset GW∞/H . The path-

integral in (24) had earlier been heuristically argued for in [17].
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Let us now make contact with the boson action and path-integral measure

given in ref. [11], which we write below (see eqns. (44) − (46) of this ref.):

K̃ =

∫ ∏

t

dµ(φt) exp iS[φ] (25)

S[φ] = i

∫
ds dt tr(φ[∂tφ, ∂sφ] +

∫
dt tr(φh) (26)

dµ(φ) = δ(tr φ−N)
∏

x,y

δ(φ2
xy − φxy)

∏

x,y

dφxy. (27)

In the above, φ is a hermitian matrix with elements φxy = 〈x|φ|y〉. Also, φ(t, s)

is an extension of φ(t) such that for −∞ < t < ∞ we have −∞ < s ≤ 0 and

the boundary conditions φ(t, s)
∣∣
s=0

= φ(t) and φ(t, s)
∣∣
s=−∞

= time-independent

constant matrix. We note that if we set φ = g+φ0g, g ∈ GW∞ and φ0 fixed by

(21), then the action (26) and the measure (27) reduce to that appearing in (24).

The reason for the measures being identical is that if we fix φ0 then the integration

in (25) is only over the coset obtained by modding out GW∞ by that subgroup

which commutes with φ0 (i.e. satisfies for all elements v, v+φ0v = φ0). But this

is precisely the coset GW∞/H over which the integration in (24) is done. Let us

prove this. Consider the definition (21) of φ0. Let v be an element of H and let

V be its representative in the fermion fock space. Then, using V |F0〉 = |F0〉, for

V ∈ H , we get

φ0 ≡ 〈F0|Φ|F0〉

= 〈F0|V +ΦV |F0〉

= vφ0v
+

The last step follows from arguments similar to those used in deriving (22) and

(23). Thus the two cosets are the same.

For complete identity of the path-integrals in (24) and (25) we must, then,

explain what restricts the integration over hermitian matrices in (25) to only over
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the W∞ “angles”. To see this let us make the change of variables in (25) to the

“angles” and eigenvalues of the hermitian matrix φ:

φ = gV 0g+, g ∈ GW∞, V 0 diagonal (28)

Putting in (26) it is easy to show that

S[φ] = S[g, V 0] =

∫
dt tr{V 0(g+i∂tg + g+hg)} (29)

The measure changes to

dµ(φ) = δ(

∫
dνV 0

ν −N)
∏

ν

[dV 0
ν δ(V

02

ν − V 0
ν )]J(V 0)dµ(g) (30)

Here dµ(g) is the measure over the coset obtained by modding out the subgroup

from GW∞ that commutes with V 0 and the label ν displays the basis in which φ

is diagonal (typically this is the energy basis). J(V 0) is the Jacobian of change of

variable and depends only on the eigenvalue matrix V 0. The important point to

note is that the V 0 integration can be restricted to a single instant of time. This is

because the δ-function imposing φ2 = φ implies that the eigenvalues of φ are only

0 and 1. Because of the other δ-function, there are always precisely N number of

ones (fermion number conservation). This means that the diagonal matrix V 0 at all

times has 1 in N number of places and the rest zeros. Time-dependence can come

only in shuffling of the positions of these zeros and ones. Since that is achieved

by a GW∞ Weyl transformation, it is already included in the “angle” integration.

Thus the integration over V 0 may be restricted to a single instant of time. Finally,

let us discuss the last ingredient needed to completely fix the functional integral in

(25), namely, a boundary condition on φ(t). This may be given in the form of its

value at, say, infinite past. For example, a complete specification would be to set

φ(t)
∣∣
t→−∞

= φ0 (31)

where φ0, defined by (21), corresponds to fermi vacuum. Clearly, other specifica-

tions correspond to different fillings of energy levels i.e. to excited states. Hence
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the complete equivalence of (24) and (25)−(27) requires specifying a boundary

condition on φ(t) in (25) (in particular, in this case this is (31)).

This completes the proof of the bosonization. This was earlier done by us

using the method of co-adjoint orbits of W∞ [11]. In fact the δ-functions in the

measure in (27) and (30) specify the co-adjoint orbit of W∞ corresponding to the

representation in terms of N , non-relativistic fermions.

3.Path integral in terms of phase space fluid density:

In this section we will reexpress the action (26) in terms of phase space density

of fermions since it is in terms of this variable that the semiclassical picture of

bosonization in terms of a fermi fluid emerges. In terms of the fermionic variables

of the action (1), the phase space density opearator is defined as

Û(p, q, t) =

∫
dxψ†(q − x/2, t)e−ipxψ(q + x/2, t) (32)

We shall denote its expectation value in a GW∞ coherent state as u(p, q, t). We

also introduce a fourier transform of u(p, q, t):

ũ(α, β, t) =

∫
dp

2π

dq

2π
ei(pβ−qα)u(p, q, t) (33)

ũ(α, β, t) is essentially the expectation value in a GW∞ coherent state of the gen-

erator W (α, β, t) of W∞ algebra.

Consider now the expansion of φ(x̂, p̂), which enters the path integral (26), in

terms of a basis for W∞ algebra in the single-particle Hilbert space:

φ(x̂, p̂, t) =

∫
dαdβg(α, β)ũ(α, β, t) (34)

This expansion is clearly valid since φ may be thought of as the expectation value

in a GW∞ coherent state of the operator Φ. In fact (33) and (34) define the Weyl

ordering of φ(x̂, p̂) corresponding to the classical function u(p, q, t).
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In order to express the action (26) in terms of u(p, q, t), we state a lemma due

to Moyal:

Lemma (Moyal):

Given two classical functions f1(p, q) and f2(p, q) and their corresponding Weyl

ordered operators f̂1(x̂, p̂) and f̂2(x̂, p̂), the classical function corresponding to the

commutator [f̂1, f̂2] is the fourier transform of the Moyal bracket,

[f̂1, f̂2] =

∫
dαdβĝ(α, β) ˜{f1, f2}MB(α, β)

{f1, f2}MB =
[
2 sin

1

2
(∂p∂q′ − ∂p′∂q)(f1(p, q)f2(p

′, q′))
]
p′=p,q′=q

(35)

Note that in the second equation above the first term in the expansion of sin(∂p∂q′−
∂p′∂q) is just the Poisson bracket. In (35) the trace identity tr[A,B] = 0 is implicit.

Restricting to such operators is equivalent to requiring
∫ ∫

dp dq{a(p, q), b(p, q)}MB =

0, for the corresponding classical functions. This can be achieved by requiring the

boundary condition that a(p, q) and b(p, q) are constant as p, q → ∞.

Using (33) , (34) and (35) we can easily see that the action (26) becomes,

S[u] =

∫
dsdt

∫
dpdq

2π
u(p, q, t, s) {∂su(p, q, t, s), ∂tu(p, q, t, s)}MB

+

∫
dt

∫
dpdq

2π
h(p, q)u(p, q, t)

(36)

and the measure (27) becomes

dµ(u) = δ

(∫
dpdq

2π
u(p, q, t) −N

) ∏

p,q

[δ(C(p, q, t))du(p, q, t)] .

This implies the constraints,

C(p, q, t) ≡
[
cos

1

2
(∂p∂q′ −∂p′∂q)(u(p, q, t)u(p

′, q′, t))
]
p′=p,q′=q

−u(p, q, t) = 0 (37)

∫
dpdq

2π
u(p, q, t) = N (38)

To derive the equation of motion from (36) we make a variation δu(p, q, t) =
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{ǫ, u}MB that preserves the constraints (37), (38). This gives

∂

∂t
u(p, q, t) + {h, u}MB(p, q, t) = 0.

This is the ‘quantum’ version of Liouville’s equation. It is worth mentioning that

if h = 1
2(p2 − q2), the Moyal bracket equals the Poisson bracket and we get

∂tu+ (p∂q + q∂p)u = 0 (39)

4.Weak coupling (semiclassical) limit:

We are now in a position to discuss the weak coupling limit. We shall re-

strict our discussion to the single-particle hamiltonian h = 1
2(p2 − q2) which is

obtained in the double scaling limit of c = 1 matrix model. The discussion can

be easily generalized to other cases. As has been explained in detail in [11], the

semiclassical limit of this theory is obtained by expanding in a power series both

the ‘sine’ in the Moyal Bracket (35) and the ‘cosine’ in the constraint (37) and

retaining only the first term in both cases. In this limit the constraint simplifies

to u2(p, q, t) = u(p, q, t), implying that the configurations that enter the path inte-

gral are characteristic functions corresponding to regions in phase space. The only

dynamical part of a characteristic function is the boundary of the region and the

dynamics consists of changes of the boundary preserving the area enclosed. One

can indeed give a precise description of this using the classical limit of W∞ algebra

which is the algebra of classical canonical transformations in two dimensions. We

refer the reader for details to ref. [11].

Let us now see under what precise approximations does collective field the-

ory emerge from the above semiclassical limit. Consider defining the moments of
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u(p, q, t),

ρ(q, t) ≡ ρ̃(q, t)

2π
=

+∞∫

−∞

dp

2π
u(p, q, t)

π(q, t)ρ(q, t) =

+∞∫

−∞

dp

2π
pu(p, q, t)

π2(q, t)ρ(q, t) =

+∞∫

−∞

dp

2π
p2u(p, q, t) , etc.

(40)

The equations of motion for the moments ρ(q, t), π(q, t), π2(q, t) etc. can be derived

from the equation of motion (39),

∂tρ̃+ ∂q(ρ̃π) = 0

∂tπ = ∂q

(
π2

2
+
q2

2
− π2

)
+
∂qρ

ρ
(π2 − π2)

etc.

(41)

Furthermore, the constraint (37) implies certain relations among the moments. In

the semiclassical limit the ground state is described by

u0(p, q) = θ

(
µ− p2 − q2

2

)
= θ

[
(
√
q2 + 2µ− p)(p+

√
q2 + 2µ)

]

where the curve p2−q2

2 = µ defines the fermi surface. Collective field theory is

defined by parametrizing u(p, q, t) near u0(p, q) by [20]

u(p, q, t) = θ [(p+(q, t) − p)(p− p−(q, t))] (42)

where p+(q, t) and p−(q, t) are such that |p±(q, t) −
√
q2 + 2µ| is small. In other

words the collective field theory approximation to the semiclassical limit is de-

scribed by those low energy excitations of the fermi fluid near the fermi surface

which are described by a curve quadratic in p. This assumption, together with the
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semiclassical constraint u2 = u, leads to specific relations between the moments

ρ, π, π2 etc. In particular, we have

π2 = π2 +
1

12
ρ̃2 (43)

Substituting this in (41) we obtain the equations of collective field theory:

∂tρ̃+ ∂q(πρ̃) = 0

∂tπ + π∂qπ = −∂q

(
−q

2

2
+
ρ̃2

8

)
(44)

It is easy to see that a generic boundary (i.e. not necessarily quadratic in p)

violates the above equations. In fact, a generic boundary is not even described in

terms of the first two moments. We have shown in [21] in an explicit example how

this can result in physical quantities having different values from those calculated

from collective field theory even in the semiclassical limit.

We thus see that if we restrict ourselves to those shapes of the fermi fluid that

have a quadratic profile then the semiclassical approximation reduces to collective

field theory.

To summarize, in this paper we have presented a first-principles proof of

bosonization of noninteracting, nonrelativistic fermions in one space dimension

and obtained the bosonic action. In the semiclassical limit the bosonized theory

reduces to the dynamics of area-preserving fermi fluid profiles in the phase space.

Restricting to quadratic profiles gives the collective field theory.
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