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ABSTRACT

We probe the geometry around an elementary BPS (EBPS) state in heterotic
string theory compactified on a six-torus by scattering a massless scalar off
it and comparing with the corresponding experiment in which the EBPS
state is replaced by a classical extremal black hole background satisfying the
BPS condition. We find that the low energy limit of the scattering amplitudes
precisely agree if one takes the limit my, >> mp. In the classical experiment,
beyond a certain frequency of the incident wave, part of the wave is found to
be absorbed by the black hole, whereas in case of the string scattering there
is a critical frequency (inelastic threshold) of the probe beyond which the
EBPS state gets excited to a higher mass non-BPS elementary state. The
classical absorption threshold matches exactly with the inelastic threshold in
the limit of maximum degeneracy of the EBPS state of a given mass. In that
limit we can therefore identify absorption by the black hole as excitation of
the elementary string state to the next vibrational state of the string and
consequently also identify the non-BPS string state as a non-extremal black
hole.
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0 Introduction

It is well-known that elementary particles heavier than the Planck mass have
Compton wavelength smaller than their classical ‘Schwarzschild radius’. The
suggestion that such particles may be identified with black holes and con-
versely black holes may be viewed as elementary particles has a long history
M. Stable excitations of such masses abound in N = 2 string compactifica-
tions, and if the above identification is true, it might have profound effect
on our understanding of both black hole physics and string theory. Recently
there have been a number of papers [B, B, @, B, B, [ investigating from var-
ious viewpoints the correspondence between classical extremal (BPS) black
hole solutions in toroidally compactified heterotic string and elementary BPS
states in the same theory carrying the same mass and charge as the black
hole.

In this paper we probe the geometry around an elementray BPS (EBPS)
state by the following ‘experiments’. We choose as our probe a massless scalar
excitation of the string theory (we work with heterotic string compactified
on a six-torus throughout). We scatter this probe off (a) the extremal black
hole solution and (b) the EBPS state in flat space carrying the same quantum
numbers (mass and charge). The idea is that if the background created by
the EBPS state is the same as that of the classical solution, the results should
agree. Here are the main results:

(i) The classical scattering calculation involves solving the wave equa-
tion of the massless scalar (of frequency w) in the black hole background
and calculating the phase shifts §; of the partial waves (Sec 1). The string
scattering (Sec 2) involves calculating the tree-level four-point amplitude (
EBPS-probe-probe-EBPS ). The low energy limit of this amplitude agrees
(Sec 3) precisely with the leading classical result if one further takes the limit
m >> mpl] in the string calculation, where m is the mass of the EBPS state
(equal to the ADM mass of the black hole).

(ii) The string scattering calculation explicitly involves internal polariza-
tion tensors which appear in the vertex operator for the EBPS state, whereas
these do not appear in the specification of the classical background. In the
limit mentioned above any nontrivial dependence of the string amplitude on

'We are working in Einstein units rather than string units, so the natural scale in our
problem is mp = 1/+v/a/ rather than ms = gsmp.



the ‘hair’ (internal polarization tensors of the EBPS state) disappears (Sec
2).

(iii) In the classical calculation there exists a critical frequency w,, such
that when the frequency w of the massless scalar wave exceeds w,, the phase
shifts d; start becoming complex and the incoming wave gets partly absorbed
by the black hole. On the string side there exists a critical frequency w,,
such that for w > w!,. the EBPS state can get excited to a non-BPS ele-
mentary state. These two critical frequencies exactly coincide when the ratio
|QLl/|Qr] — 0 (Qr,Qr are the left- and right-moving charges) which is
also the limit of maximum allowed degeneracy of the EBPS state of a given
mass. In that limit we are therefore led to a rather simple interpretation
of absorption of matter by the black hole as simply excitation of the string
state to a higher vibrational mode. It also implies an identification of these
non-BPS states with non-extremal black hole. We remark on the issue of the
de-excitation process and Hawking radiation in the concluding section (Sec.
4).

1 Classical Scattering

We consider the extremal black hole solution in heterotic string theory com-
pactified on a six-torus [f]. We reproduce some of the formulae we will need

here. The low energy 4D lagrangian describing the dynamics of the massless
fields is

1
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where Gy is Newton’s constant and equals o//8. g,, is the Einstein metric
and indices are contracted above with respect to it. M is a 28 x 28 matrix-
valued field representing the massless scalars. L is a 28 x 28 diagonal matrix
with the first 22 entries equal to —1 and the remaining six equal to 1. The
terms denoted by ... do not involve M. The above lagrangian possesses a
black hole solution [B] given by

ds* = gy, da’de” = —p/VKdt* + VK [ pdp* + pV K dQ? (1.1)



where
K = p? 4+ 2mgcosha p + m3

tanha = |QL[/|Qr| (1.2)
mo = o’m/(4coshar)

We denote by Qr, @1, the charge vectors in the right-moving and left-moving
sectors (and by |@p g| their magnitudes) respectively. m is the ADM mass
of the black hole.

We consider the propagation of fluctuations of the massless scalar (0 M)
in such a background. The equation of motion is given by

D"0,6Mg, =0 (1.3)

This can be derived by putting My, = MS + 6 M,, in the above lagrangian.
The terms linear in 6 M vanish by classical equation of motion for the back-
ground M. The remaining terms involving §M are quadratic and lead to
(I33). The metric appearing in the above equation is the ‘Einstein’ metric.
We choose the scalars as probes because their propagation equation is partic-
ularly simple, involving only the ‘Einstein” metric and no other background.

The classical scattering of § My, off the black hole ([[.1)) is computed by
doing the partial wave analysis of ([.J) and finding out the phase shifts as
detailed below. We should remark that ([.3) is the same as the equation
Ly = Ly = 1 for the vertex operator for §M in the curved background.
Consequently a scattering calculation using curved-space sigma-model world-
sheet action and vertex operators ([.3) for the massless scalar string state is
in principle equivalent to the following analysis.

Step 1. Partial wave analysis:
We look for solutions of the form (c¢f. [§ )

OMap(p, 1,8, ¢) = My(p, 0, ¢) exp(—iwt)
Mw(puev (b) Zl IO( )wll)l( )/p

Substituting the above in ([[.3) we find that the partial waves 1, satisfy the
following equation:

(1.4)

W+ oK

- w” + V(P)w = 07 V(p) = p2 p2



This equation is exactly solvable in terms of confluent hypergemotric func-
tions. The result is [[J]

U(p) = o expliwp) (AM(a, 20 + 1), ~2iwp) + BU(a,2(1' + 1), ~2iwp)

(1.6)
Here

I'=—1/2+/(l +1/2)2 — mju?

a=1+1-—1id, a’ = mocoshaw

(1.7)

In the above A and B are integration constants. The requirement of finiteness
of the solution at p = 0 gives us the boundary condition (for mow < 1/2)

B=0 (1.8)
since U o p~2'~! as p — 0. Using the p — oo asymptotics of the confluent
hypergeometric functions we now get the phase shifts 9; of the partial waves

Y1
Uur(p) ~ Cysin(wp + 6, — wl/2)
p = p+ mycosha In(2wp) (1.9)
exp(2i6;,) =T (' +1—1d")/T({"+ 1+ id)

The symbol ~ throughout this paper will imply ‘asymptotically true for large

b

p.

Step 2. Summing up the partial waves:
In order to obtain the scattering amplitude we need to choose Cy,; in ([-9)
such that the sum over partial waves in ([[.4) is of the form (as p — o0)

My (p, 0, ¢) ~ expliw(z — mocoshalnw(p — 2))] + @ expliwp]  (1.10)

This is done in Appendix A. The result for f(0) is the following:

/

f(6) = a8mcosec29/2 1+ o(mow, w/mp) (1.11)

Note that the above scattering amplitude is independent of the ‘polarization’
(ab) of 0M,,. We shall see that in the string calculation also the scattering
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amplitude becomes independent of the polarization of the massless scalar in
a suitable limit.

Absorption Threshold: Note that the phase shifts §;, given by ([.9), re-
main real as long as mow < 1/2, that is, as long as

W< Wepy,  Wer = 1/(2my) (1.12)

For w > w,,, the phase shifts become complex, signalling absorption. One
can explicitly calculate the flux through a small 2-sphere around p = 0 and
show that at w > w,, this becomes non-zero.

2 String-string scattering

We work with the heterotic string theory compactified on a six-dimensional
torus. We will use the notation x*(z,z),u = 1,...,4 for the 4 non-compact
coordinates, r%(z),7 = 1,...,6 for the 6 compact right-moving coordinates
and :):i(z), j =1,...,22 for the 22 compact left-moving coordinates. The
right-moving fermions will be denoted by *(z) and ¥%(2). To calculate
the scattering of a massless scalar off an elementary BPS state we need the
following ingredients:
(a) Vertex operator for the massless scalar (My):

Vurinw; k2, 2) = Vie(nr, k, 2)Var(nr, 2) explik.z(z, 2)]
VM(HR, k‘, Z) = nR.(ﬁza:R + ikuwuwR) (21)

VM(UL> 2) = nL~82$L

(b) Vertex operator for the elementary BPS state:
The elementary BPS states satisfy a mass formulaf]

m? = |Qg|* = |QL|* + 2(N, — 1) (2.2)

where QQr, Q)1 are the left-moving and right-moving charges. Given some
mass m, Ny, is not fixed, so one has to consider various cases.

2TIn the rest of this section we will work with the convention o/ = 2.



Case Ny = 1: The vertex operator in this case is given by

Ve(CriCrik; 2, 2) = Ve (Cr, k, 2)VB(Cr, 2) expliQr.2r + iQp.xp, + ik.2(2, Z))]
V(¢ k,2) = Cpapp(z) e ?)

Ve((r, 2) = (.0s2r
(2.3)
We have chosen Vg in the ‘—1’ picture in order to provide ¢-ghost charge
—2 in the following four-point function. We have also chosen polarization
vectors of the EBPS state to lie only in the internal compact directions since
we want to make correspondence with a spin-zero black hole.

We now consider scattering a probe (particle ‘2’) off an EBPS state (par-
ticle ‘1’). The final states will be denoted ‘4" and ‘3’ respectively. We will
call the initial and final polarizations of the probe 7 g, 7} p and those of
the EBPS state (1, g,(f z- The four-point scattering amplitude is given by
(computed in Appendix B)

M(1,2,3,4) = [T]d?23 (ce(z1)cc(z2)ce(24)
Vi (Crs Coi kus 20)Var (s s ks 20) V5 (Crs € s 23) Var (nlgs 1 ks 24))
_ [K}z—( M2 per t(t+2)2 K3 — ) pea |

s—m?2)(u—m?) 2(s—m?2) 2(u—m?)
[Ki ot s K} 4 i K + (umtﬁ%f{ﬂfh(s t,u)
(2.4)
where
t._m?—u m2—s t u—m2._ s—m
Ai(s,t,u) = —nl(—5)I( + I +1)/[I(5 + 2)I'( IN(
2 2 2 2 2
and
K =1rNrCrCh K7 = Cr-Crnr-QrNRr-Qr (2.5)
K} = CrrChnm,  Kp = Crnplhnr
K =nniCoCr, K7 = CoCone-Qunr,-Qr (2.6)

K} = Conrng,  Ki= Conilrnc

In the above V,(B_) indicates that the corresponding vertex operator carries
charge —Qr, —@r, ensuring charge conservation. Since our probe here is
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neutral, the left and right moving charges of the EBPS state cannot change
in the scattering process.

In order to start comparing with the classical scattering, let us work in
the rest frame of the initial EBPS state (particle 1). We use the following
notation:

ki = (m,0), ko = (w, k), ks = (E',k — k'), ks = (0, K'); kK = ww' cos b
(2.7)
With this, t = —dww’sin® §, s = m?+2wm and u = m? — 2mw +4ww' sin* £,
where by momentum conservation, w' = w(1 + 2(w/m)sin?(9/2))~*. Tt fol-
lows that for w << mp (which implies w << m)
2

Aq(s,t,u) = WQ,%COSGCZg[l + o(w/m)] (2.8)

and that the all terms in (B.4) other than the one containing the product
KLK} are either down by w/mp or they are down by (mp/m)% Thus we
get

2

M(1,2,3,4) = Wa'%coseczg[Kl + o(w/m) + o(m/mp)?] (2.9)

with
K, = KpK] (2.10)
In equations (-§) and (P.9) we have reinstated o/ (= 1/m3).

Case Ny > 1: The holomorphic part of the vertex operator for the EBPS
state, Vp(z), remains as above, while there are now many choices of the
antiholomorphic part, corresponding to the various ways a state with a given
N > 1 can be constructed. Let us choose a basis Vg"’(z) for these vertex
operators. In general these will satisfy an OPE:

Z?“S
(2 —w)?Ne

Vg (2)Vs) (@) = (2.11)
In the following (see the normalization convention in Appendix C) we will
use an orthonormal basis of vertex operators so as to make Z™ = §,,. We
will denote the full vertex for the EBPS state as

Ve(Cr;Tik; 2, 2) = Vp((, k, Z)Vg)(é) expliQr.zr +1Q .z + ik.x(z, 2)]
(2.12)



Examples are: Vg)(i) = (1,,0%2" or = (1, ;;0;2"0527 for N, = 2.
Let us denote the initial and final polarizations of the EBPS state as
(Cr,7) and (Ck, s). The four-point amplitude is now given by (Appendix B)

M(l, 2, 3, 4) = f d223 <CE(21)CE(22)CE(Z4>
Vi (Crs s ks 21, ) Vs (s s Ko 22, 22) Vi (Chos 5 s 23, 28)Vir (Ml 11 s 24, 24)
= Ai(s,t, u)[K1 + o(w/mp) + o(m/mp)’]
(2.13)
K is once again defined by (2:10) with K} this time given by
KL =y, 27 (2.14)

The low energy (and m >> mp) limit of the amplitude M(1,2, 3,4) is given
once again by the equation (2.9).

No hair: Note that the internal polarization of the probe and the EBPS
state are decoupled in the factor K; for both N, =1 and N, > 1. By way
of contrast, terms like K3 (Eqn. (B)) have inner products between the
internal polarizations of the probe and those of the EBPS state. Amplitudes
involving the term K% can be used, by sending in probes in suitable internal
state of polarization, to measure the state of internal polarization of the
EBPS state, in contradiction to the no-hair theorem. However, as we have
seen above, such terms disappear in the low energy limit.

Inelastic threshold: It is easy to deduce the inelastic threshold, namely
w,., such that for w > w!,. the probe can excite the EBPS state to the next

higher mass state with the same charges Qr, Q1 (remember that the probe,
being neutral, cannot change these charges). The general mass formula

m? = |Qr|* + 2Ng — 1 = |Q[* + 2N, — 2 (2.15)

(BPS condition is N = 1/2) says that the next higher mass state (mass m’)
above the EBPS state is the one obtained by letting Np — Ng + 1, N, —
Ny + 1, so that

m? =m?* 42 (2.16)

The state obtained by Ny — Ngi +n, N, — Ny + n has a mass m(™ where

[m™)? = m? + 2n (2.17)
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It is a simple exercise in relativistic kinematics to show that the state m’
cannot be excited unless the probe has a frequency w > w’ [] (in the rest
frame of the original EBPS state) where

wl,. = 2/(ma) (2.18)

cr

where we have reinstated o'.

3 Comparison between String Scattering and Classical
Scattering

Scattering amplitude: The string amplitude M(1,2,3,4) leads to the
following scattering cross-section (Appendix C) in the rest frame of ‘1":

2

0= _ 4
do/d 75, T

IM(1,2,3,4)](2m) (3.1)
and 0 = [sin0dfd¢ do/dS), where 6, ¢ are the relative angles between the
vectors k4 and ky. On the other hand, the cross-section in the classical
scattering is given by

do/dQ = | f(0)[? (3-2)

If the geometry around the EBPS state is indeed correctly reproduced by
the classical black hole solution, then the two scattering cross-sections should
agree. Therefore we must have

— E4
1(0) = 21 Eo\/E1 Es

upto a constant phase factor.
Now the low energy w/mp — 0 limit of ([.11]) and (2.9) are, respectively,

M(1,2,3,4) (3.3)

f(0) = o/%coseczg (3.4)

and
2
M(1,2,3,4) = o/%cose(?g[l + o(m/mp)?] (3.5)

3We have explicitly checked, for w > wl,., that the tree level amplitude for the process

EBPS + probe — non-BPS (mass m') + probe is non-zero.
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In the last equation we have used the fact that K; gives rise to 1 when
we sum and average |K;|? in (B-1]) over final and initial polarization states
respectively. Noting that to leading order in w/mp, £y = E3 =m, FE, =
E; = w, we find that the right hand side of (B.3) is

a'%cose(?g[l + o(m/mp)?] (3.6)

which precisely agrees with (B-4) in the limit mp/m — 0.

We should note that in ([[.T1) there are correction terms of the form
wmg = 4(w/mp)(m/mp) which implies that we must first expand to leading
order in w/mp before taking the large m/mp limit; alternatively we should
define w << mp(mp/m) as the appropriate low-energy limit.

Disappearance of hair: As we remarked after (B.14), terms in the scat-
tering amplitude which potentially constitute a measurement of the internal
polarizations (‘hair’) of the EBPS state disappear in the same limit as dis-
cussed above.

Thresholds: It is trivial to see that the inelastic thrsehold is given by
w.. = 2/a'm = cosha/(2my) (3.7)

which agrees with the absorption threshold ([.12) in the limit cosha — 1, or
equivalently N — Npax = 1+a’m?/4 (note that by (B.2) or (R.17) this is the
maximum possible value of Ny for a given mass). Since the degeneracy of the
BPS state essentially comes from the number of left-moving oscillators (in
the right sector the BPS condition forces Ng = 1/2), therefore N = Npax
is also the limit when the degeneracy of the EBPS state, for a given mass, is
maximized.

4 Concluding Remarks

We have seen that the geometry around the large mass EBPS state is the
same as that of the classical extremal black hole solution as seen by a masslass
scalar probe. The agreement has been verified to the leading order in the low
energy expansion. It is interesting to note that a curved space sigma model
description of string theory which is normally supposed to describe a ‘string
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condensate’” of massless modes represents a very high mass elementary string
state in our scattering experiment.

It is also interesting to observe that the low energy limit (w << mp) re-
stores the no-hair theorem, since the terms capable of measuring the internal
polarization state of the EBPS state (which is responsible for its degeneracy,
given the mass and the charges) drop out in this limit. The interpretation
of such terms in the case w ~ mp or in the case where the leading term in
(B9) is made to disappear by choosing the initial and final polarization of
the probe to be orthogonal remains an interesting open problem.

Another intriguing result that we found is the emergence of the N;, —
Nnax limit where the classical absorption threshold and the inelastic thresh-
old of the string scattering agree. In a sense the test provided by this agree-
ment is more stringent than the agreement of the scattering amplitude, since
absorption is a rather essential feature of black hole geometry as against
scattering in conventional central fields of force. Note that we need Ny, to be
large also for the agreement [J] between the degeneracy of the EBPS state
and the Beckenstein-Hawking entropy of the classical black hole (the degen-
eracy formulae do not hold for N, of order 1). We have already remarked
that N, = Npax corresponds to the maximum degeneracy of the EBPS state
for a given mass. The existence of a limit where the two thresholds agree
gives a rather simple picture in that limit of what happens when matter falls
into the black hole. The black hole absorbs the energy and gets excited to
a higher vibrational state of the string. This higher mass state is a non-
BPS state and hence it decays according to standard string theory back to
the BPS state. It would be extremely interesting to see under what circum-
stances such a decay might possibly correspond to Hawking radiation. Work
in this direction is in progress.

Acknowledgement: We would like to thank A. Dhar and A. Sen for many
useful discussions. G.M. would like to thank R.S. Bhalerao, S.S. Jha, S.M.
Roy, K.V.LL. Sarma and N. Ullah for discussions regarding scattering theory
for the modified Coulomb problem.

Note added: After this paper was completed, the paper [[J] was pointed
out to us by A. Sen which has some overlap with this work.
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A Derivation of the scattering amplitude f(0)

The following sum over partial waves is well-known from the theory of scat-
tering in a Coulomb potential [§:

S020(21 + 1)it explin] Pi(cos 0) sin[wp + n, — I7/2]/(wp)

(A1)
~ expliw(z — mg cosha Inw(p — 2))] + p~' f.(0) exp[iwp)
where
m=argl'(l+1—1id), 1=0,1,...,00,
(0) = (1/2 h 20 0,
fe(0) = (1/2)mgcosha cosec® 3 exp iy (A.2)

¢ = mow cosha In sin?(6/2) + 2n,

and o’ and p are as defined in ([.7) and in ([.9). The logarithmic corrections
to the phases of the incident and the outgoing waves are characteristic of any
potential with a 1/p fall-off at infinity. The above equation is meant to be
true at asymptotically large distances p.

Since we have a modified Coulomb potential ([[.5), our phase shifts ¢,
determined in ([[.9), differ from 7. However, for small mqw, it is easy to see
that

I'=1-— (mow)2/(2l +1)+ o(mow)4 (A.3)
so that )
. _ 2
=m+ A, A = ST 1[0(m0w) ] (A.4)

In order to arrive at a sum over partial waves analogous to ([A.l]) for our
present problem we do the following manipulations [§:

(wp) 1 35726 (21 + 1)it exp[id] Py (cos ) sin|wp + & — I /2]
= (2iwp) ™' (21 + 1)i’ explin] ([exp(QiAl) — 1] expliwp] exp i — I /2]+
sinfwp +n, — l7r/2]>Pl(cos 0)
~ expliw(z — mg cosha Inw(p — 2))] + p~ [ fe(0) + fin(0)] expliwp],
(A.5)
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Ful) = £ 37(20 4 1) expl2in) SPZEL

w5 21
Using ([A-4) it is easy to see that the sum in ([A) is convergent and f,,(0) =
mo X [o(mow)]. Noting further that ¢ = o(mew) in (A.J), we find that (A.F)
reduces to the right hand side of ([[.I0) with f(#) given in ([[.T1)). In order
that M, given by ([.4) and ([.9), reduces to the left hand side of (A.5) we

need to choose
Cur = \/4m (21 + 1)i’ exp[2i6;] /w

This concludes the derivation of ([.I1]). The additional o(w/mp) correction
has been added in ([.11]) because the metric itself can get corrected to the
next order in o/, leading to such corrections.

Py(cos ) (A.6)

B Details of String Scattering

We reproduce only the essential steps here. The basic method is the same

as in [[L0].

Case N =1
The integrand in (P.4) reduces to a product R L K where

R = (cVp(21) expliQr-wr(21)]cVar(22) VB (23) exp[—iQr-Tr(23)]cVar (24))
L = V(%) expliQr.v1(%)]cVi(22)Va(Z3) exp[—iQr.w1(23) Vi (Z4))

Before writing down the expressions for R and L let us, as in [[L0], use the
SLy(C') invariance of the four-point amplitude to choose z; = 0,25 = 1 and
z4 — 00. We will denote z3 by z. The correlation functions in this notation
evaluate to

R = (—Z)_m2_2 CRC}{”RT]}{(]- — k’g.k‘4) + z ]{?2]{?4<R’)7RC}37’]}3

9
VA zZ
ko.k4CrnpCrnr +

Cr-Canr-QrNR-Qr

1—=2 1—=2

(B.1)
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2 _ z
L= (=272 CConenl, + Z2CmnCpon, + (E)QCLWILCILWL

Co-Cone-Qrny-Qr

22

1—2
(B.2)

K — |Z‘2k1.k3‘1 _ Z|2k2.k3

We now integrate R L K using the formula [[T],
[ d?z20tm (1 — z)btn2zatns(1 — )04 = —gin b %

Bla+n+1,b+ny+1)B(—(a+b+n3+ns+1),b+n4+1)
(B.3)

We put a = k1.ks—m? —2 = —t/2—2 and b = ko.kz = (m*> —u)/2. By using
['(z + 1) = 2I'(2) repeatedly we get (B.4).

Case Np > 1

The factors R and K remain the same. Our strategy for L is as follows.
It is not difficult to see that the ng = ny = 0 term always gives rise to the
same kinetic factor (A;(s,t,u)) as in the case N = 1. Does the pattern that
other values of n3, n4 give rise to integrals which are down either by w/mp
or by (mp/m)? persist? Indeed it does. Proof: the entire set of values of
nz,n4 (ng > 0,n4 < 0) can be classified in terms of the ratio

B(—(1+a+b+ns+ns),b+ns+1)
f(n37n4> =
B(—(14+a+b),b+1)
as follows:

(n3,ng) =(0,0): f 1
ng€{0,1},y <—-1: f =o
(ng,ng) =(1,0): f =o
ny >2,n,=0: f 0
ng+ng >1,n, < —1: f 0
ny+ns <0n3>2: f =olw/m)
It is not too difficult to see that contractions corresponding to the second and
third lines do not appear in L at all. The crucial thing to note is that there

is no other term than the top line which survives the w/mp — 0,mp/m — 0
limit. This proves (2.10).
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C Normalization Convention for S-matrix

We discuss here the relative coefficient between S-matrix elements and string
scattering amplitudes. Suppose

(3,4] —iS[1,2) = CoM(1,2,3,4)[[] 2wi /2 (27)*6™ Zk (C.1)

(3| —iS|1,2) = CoM(1,2,3)] szl 1/2(2ﬂ)454(2ki) (C.2)

where M(1,2,3,4) is as defined in (B.4) and M(1,2,3) = (ccViccVaceVs).
The vertex operators are normalized to satisfy an OPE: V(2)V(w) = |z —
w|™*. In the above equations we follow the convention and notation of [f],
where € is the volume of space. The (27)*0™ (3, k;) stands for the integral
[ d*z explik.x] over a space box of volume  and a time interval T. The
constant Cy can be fixed by demanding tree-level unitarity in some simple
example. In these conventions Cj turns out to be 4.

With the above convention, the relation between the S-matrix element
and the scattering cross-section (in the rest frame of particle ‘1°) is [

do =Y "1<3,4]8]1,2> > x Q/(vsT) (C.3)
3,4

where v, is the velocity of particle 2 in the rest frame of 1. Using the standard
manipulations of squaring a delta-function etc., it is straightforward to arrive

at (B.1).
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