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involves representing the conical spaces as solutions of three-dimensional supergravity

based on the supergroup SU(1, 1|2)× SU(1, 1|2). The boundary CFT we use is based on

the D1/D5 system. The correspondence includes comparing the Euclidean free energies
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1 Introduction and Summary

The recently conjectured AdSd+1/CFTd correspondence has led to a number of remarkable

predictions for N = 4 Yang-Mills theory in four dimensions. Considering the fact that

such a correspondence potentially defines quantum gravity in these backgrounds, one

should be able to describe various interesting dynamical phenomena in gravity as well,

including, e.g. black hole formation. The case of d = 3 is particularly attractive because

both AdS3 and CFT2 are more tractable than their higher dimensional counterparts and

has nevertheless a rich physics content.

A particularly interesting class of solutions of three-dimensional gravity with Λ < 0 are

conical spacetimes [1] which are generated by a point mass at the origin (see equation (5)).

If the mass exceeds a certain critical value, the conical spacetime becomes a BTZ black

hole. Indeed, it was observed by [4] Peleg and Steif that in the context of a gravitational

collapse of a shell of variable rest mass, the resulting spacetime is conical unless the rest

mass exceeds a critical value. At this value there is a critical phase transition and a BTZ

black hole is formed.

It was pointed out by Brown and Henneaux [2] that the conical spacetimes are “asymp-

totically AdS3” and they belong to the class of geometries whose “asymptotic isometry

group” is Virasoro × Virasoro. Therefore it seems reasonable to expect, in the light of

AdS/CFT correspondence, that these spaces should correspond to boundary conformal

field theories. It is already known [3] that the “end-points” of the one-parameter family

of metrics (γ = 0, 1), namely the pure AdS3 and the zero-mass BTZ black hole (see below

equation (8)), correspond to the NS and R sectors of a N = (1, 1) superconformal field

theory (SCFT).

If we go back to the origin of the AdS3-CFT2 correspondence [6], namely to the near-

horizon limit of the D1/D5 system, the natural supersymmetry of the SCFT is N = (4, 4).

(This corresponds to a supergravity based on the group G = SU(1, 1|2)× SU(1, 1|2) [9]).

In terms of such a SCFT, there is a natural interpolation between the NS and R sectors

called spectral flow [10]. It was conjectured some time back [12] that the conical spaces

should correspond to spectral flow, the defect angle being related to the parameter of the

flow (see equation (21)). One evidence was that the ADM mass in supergravity matched
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exactly with L0 + L̄0 in the SCFT (see equation (26)) for all values of the interpolating

parameter. This connection has also been mentioned recently in [13].

In incorporating conical spaces in the ambit of AdS3-CFT2 correspondence, the first

step is to realize the conical spaces as supersymmetric solutions of three-dimensional

gravity, since the boundary theory mentioned above is supersymmetric. If one tries to

generalize to conical spaces the work of [3] which embeds BTZ and AdS3 in the framework

of (1,1)-type1 AdS3, the conical spaces turn out to be non-supersymmetric: the Killing

spinors, in particular, are quasiperiodic and hence not globally defined. If, however, one

tries to realize these as solutions of SU(1, 1|2)×SU(1, 1|2) supergravity, which is natural

from the viewpoint of the boundary theory, the Killing spinors become globally defined.

This construction also allows us to establish the main point of the bulk-to-boundary

correspondence in this case: since the same supergroup is represented in the bulk theory

and in the boundary theory, we can find the operator in the supergroup which deforms

the value of the spectral parameter in the SCFT and the operator which changes the

value of the defect angle in the supergravity. We find that the same operator causes

the one-parameter flow in both cases, thus establishing the correspondence between the

spectral flow and conical spaces.

As additional evidence for this correspondence we compute the Euclidean free energy

of the family of spacetimes and compare with the corresponding quantity in SCFT. The

BTZ free energy, which has already been discussed in [16, 17], is shown to be reproduced

by SCFT based on the symmetric product SQ1Q5
(T 4) at high temperatures. The free

energies of the conics are reproduced at low temperatures.

As an off-shoot of our construction we find a vertex operator in the SCFT which

corresponds to creation of a point mass geometry in an asymptotically AdS3 space. The

scattering of such point masses (including the cases when they form a black hole [5]) is

naturally represented in terms of correlation function of such vertex operators.

This paper is organized as follows. In section 2, we discuss the conical spaces as

solutions of three-dimensional supergravity (with Λ < 0) based on G = SU(1, 1|2) ×
SU(1, 1|2). In section 3 we make the identification with spectral flow in N = (4, 4) SCFT.

1For the definition of (p, q)-type AdS3 supergravity, please see [21]. Note the difference with the
notation N = (p, q) which represents the number of supersymmetries in the left- and right-moving
sectors respectively of the SCFT.
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In section 4 we compute the Euclidean free energies of these spaces from supergravity. In

section 5 we compute the free energies from the SCFT viewpoint and compare with the

results of section 4. In the concluding section (Sec. 6) we discuss the issue of scattering of

the point masses and black hole formation in terms of correlation functions in the SCFT.

2 Conical spaces as solutions of supergravity based on G

The action for three-dimensional supergravity (with cosmological constant Λ < 0) based

on G ≡ SU(1, 1|2) × SU(1, 1|2) is as follows [14, 15]:

S =
1

16πG
(3)
N

∫
d3x [ eR+

2

l2
e (1)

−ǫµνρψ̄µDνψρ − 8lǫµνρ(Ai
µ∂νA

i
ρ −

4iǫijk
3

Ai
µA

j
νA

k
ρ)

−ǫµνρψ̄′
µD′

νψ
′
ρ + 8lǫµνρ(A′i

µ∂νA
′i
ρ − 4iǫijk

3
A′i

µA
′j
νA

′k
ρ ) ]

where l2 = −1/Λ, G
(3)
N is the three-dimensional Newton’s constant, and Dν = ∂ν +

ωabνγ
ab/4− eaνγ

a/(2l)− 2Ai
νσ

i and D′
ν = ∂ν +ωabνγ

ab/4+ eaνγ
a/(2l)− 2A′i

νσ
i. The basic

fields appearing in the lagrangian are the vierbein ea
µ, ψρ, A

i
µ, ψ

′
µ and A′i

µ.

The same three-dimensional supergravity can be obtained from type IIB string theory

compactified on K = T 4 × S3 (with constant flux on S3). Recall that the near-horizon

geometry of the D1/D5 system involves K×AdS3 whose (super)isometries are G. Similarly

the near-horizon geometry of the five-dimensional black hole isK× BTZ [16]. This implies

in an obvious fashion that AdS3 and BTZ are solutions of (1). Furthermore, the three-

dimensional Newton’s constant G
(3)
N and the AdS radius l are given by the following string

theoretic expressions:

G
(3)
N =

4π4g2
s

V4l3
(2)

l4 =
16π4g2

sQ1Q5

V4

where V4 is the volume of T 4 and gs is the string coupling (we are working in the units

α′ = 1).
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Conical spaces

As mentioned in the introduction, there is a one-parameter family of classical solutions

of three-dimensional gravity (with Λ < 0) discovered by Deser and Jackiw which are

asymptotically AdS3 and interpolate between the AdS3 and zero-mass BTZ solutions.

These represent geometries around a point mass m, 0 < m < 1/(4G
(3)
N ) which create a

conical singularity at the origin. The metric is given by

ds2 = −dt2(γ +
r2

l2
) + dr2(γ +

r2

l2
)−1 + r2dφ2, (3)

It is easy to see that there is a conical singularity at the origin r = 0 with defect angle

∆φ = 2π(1 −√
γ) (4)

The parameter γ varies from 0 to 1, and is related to the point mass m at the origin:

m =
1 −√

γ

4G
(3)
N

(5)

We will denote these spaces by Xγ. Note that the mass m is the DeserJackiw mass which

is different from the BTZ definition of mass, denoted by M , which is given by

M = −γ/(8G(3)
N ) (6)

BTZ and AdS3 as end-points:

Recall that the metric of pure AdS3 is given by

ds2 = −dt2(1 +
r2

l2
) + dr2(1 +

r2

l2
)−1 + r2dφ2 (7)

while the metric for BTZ black holes is given by

ds2 = −
[
r2

l2
−M + (

J

2r
)2

]
dt2 +

[
r2

l2
−M + (

J

2r
)2

]−1

dr2 + r2(
−J
2r2

dt+ dφ)2 (8)

where M and J refer to the mass and the angular momentum of the BTZ black hole

(J ≤M).

It is clear that the space Xγ becomes AdS3 for γ = 1, whereas for γ = 0 it becomes

BTZ with M = 0 (M = 0 ⇒ J = 0).
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We have already remarked that AdS3 and BTZ are supersymmetric solutions of (1).

We will now show that the entire family of spaces Xγ can be obtained as supersymmetric

solutions of (1).

It is known [19]2 how to embed the conical spaces (3) as supersymmetric solutions in

(2, 0)-type AdS3 supergravity. The solution looks like:

Aµdx
µ = − l

2
γdφ (9)

where Aµ is the U(1) gauge field appearing in the graviton supermultiplet.

The embedding into N = (4, 4) is a straightforward extension of the above:

A3
µdx

µ = − l

2
γdφ, A±

µ dx
µ = 0 (10)

where the superscripts 3,± refer to the R-parity group SU(2).

It can be explicitly checked that the equations of motion following from (1), as well as

the Killing spinor equations ensuring supersymmetry are satisfied by the above solution.

The equations of motion reduce to those of the U(1) problem [19] with the ansatz (10). As

far as the Killing spinors are concerned, the solution in our case is a doublet constructed

out of the solution of the U(1) problem. The Killing spinor equation in the present case

is

Dνǫ =

[
∂ν +

ωabνγ
ab

4
− 1

2l
eaνγ

a +
i

l
A3

ν

]
ǫ = 0 (11)

The solution is given by

ǫ =



ǫ1

ǫ∗1


 , (12)

where ǫ∗1 is the complex conjugate of ǫ1, the latter being the Killing spinor in the U(1)

problem [19].

Connection with (1, 1)-type AdS3 supergravity:

We emphasize that extended supersymmetry is quite essential to construct the conical

spaces as supersymmetric solutions. The Killing spinors have holonomies under both the

spin connection and the gauge connection. Under either one of them the spinors are

2We thank P.Townsend for pointing out reference [19] to us.
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quasiperiodic, corresponding to the fact that the (1, 1)-type Killing spinors constructed

using the formulae of [3], which see only the spin connection, are quasiperiodic. With

extended supersymmetry (i.e., (p, q)-type AdS3 supergravity, with either p or q or both

greater than 1) there is a U(1) gauge field. The holonomy under this gauge connection

cancels that under the spin connection, making the Killing spinors periodic and hence

globally defined. The NS or R boundary conditions of the spinors of [3] for γ = 1, 0 now

refer to the condition that the holonomy under the gauge connection, represented by the

Wilson line

W = Tr exp[
i

l

∫
Aµdx

µ], (13)

is −1 or 1 respectively.

Conics as one-parameter family of gauge transforms

It is clear from the above discussion that the family of solutions can be parameterized

uniquely by the value of the Wilson line W (the metric is fixed once we specify this).

We can, therefore, change from the classical solution Xγ=0 to Xγ by making a “gauge

transformation”

Aφ → U−1AφU + iU−1∂φU, U(t, r, φ) = exp[iζ(φ)T 3], ζ(φ) = φ
√
γ (14)

The reason why the Wilson line W changes is that U is not single-valued. In other words,

(14) describes an improper gauge transformation.

The equations of motion demand that the metric changes appropriately from its value

at γ = 0 to the value at γ. It is interesting to note that this change in the metric can also be

understood as an (improper) SL(2, R)×SL(2, R) gauge transformation. Following [20, 21]

we combine the dribein eM
µ and the spin connection ωM

Nµ into an SL(2, R)×SL(2, R) vector

potential A±. For the metric (3), it turns out to be

A± ≡ Aa
µ±T

adxµ =
1

2




±dρ −√
γe∓ρdt±

−√
γe±ρdt± ∓dρ


 (15)

where r = γ sinh ρ and t± = t ± φ. One can show that this can be transformed to the

value at γ = 0 by the following SL(2, R) × SL(2, R) gauge transformation

A± → V −1
± A±V± + V −1

± dV± (16)
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V± = V1±V2±

V1± ≡



e∓ρ/2 0

0 e±ρ/2




V2± ≡ exp[(1/2)ζ(φ)σ1]

ζ(φ) being the same function as in (14). Here σ1 is the Pauli matrix.

As emphasized before, the gauge transformation of the metric can be regarded as a

consequence of the gauge transformation (14) and the equations of motion. For compari-

son with the boundary CFT, we note that the gauge transformation (14) is implemented

in the quantum theory by the operator

Û = exp[i
√
γφĴ3] (17)

where Ĵa, a = 1, 2, 3 are generators of the SU(2) part of SU(1, 1|2).

3 Correspondence with spectral flow

We have already remarked that the Brown-Henneaux Virasoro algabra can be supersym-

metrized [3] by embedding the AdS3 or BTZ solutions in N = 1 supergravity, and that

the realizations of the superconformal algebra corresponding to the AdS3 and BTZ solu-

tions respectively map to the NS and R sector of the boundary conformal field theory.

In the context of extended supersymmetry, as we have remarked above, the AdS3 and

BTZ solutions correspond to a Wilson line W equal to −1 or 1. In order to facilitate

comparison, let us define the gauge-invariantized fermion

ψ̃ ≡ U [A]ψ, U [A] = exp[
i

l

∫ P

P0

A] (18)

The AdS3 and BTZ solution correspond to antiperiodic or periodic ψ̃ respectively. It is

this ψ̃ of supergravity that maps to the fermion ψ of CFT.

Now, we know that there is a one-parameter flow, called spectral flow, between periodic

and antiperiodic boundary conditions in the case of N = 4 superconformal theory [10].

This corresponds to quasiperiodic boundary condition on ψ:

ψ(ze2πi) = exp(iπη)ψ(z) (19)
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Let us compare this flow with the one-parameter flow caused by the Wilson line (Eqs. (14)

and (17)). We note that the gauge-invariantized fermion ψ̃ satisfies, under φ→ φ+ 2π

ψ̃(ze2πi, r → ∞) = exp(iπ
√
γ)ψ̃(z) (20)

where z = ei(t+φ). This suggests that the Hilbert space corresponding to spectral flow is

the realization of boundary SCFT for the conical spaces, with the identification

η =
√
γ (21)

The fact that this is the right correspondence follows by noting that spectral flow in the

SCFT is defined in terms of the generator [10, 11]

Û = exp[i
√
γφĴ3] (22)

where Ĵ3 is the SU(2) R-parity current. Thus the SU(2) generator for spectral flow (22)

is the same as the SU(2) generator (17) in the bulk that changes the conical defect angle.

This is exactly as it should be for the proposed AdS/CFT correspondence to work.

The equality of (17) and (22) under the AdS/CFT correspondence proves our assertion.

A rather important consequence of the above correspondence is that we know exactly

what state in the CFT corresponds to a point mass in the bulk that creates the conical

singularity, namely it is the state

|γ〉 ≡ Û |0〉, (23)

This suggests a boundary representation in terms of CFT vertex operators of a point

mass in the bulk and consequently a representation of their scattering in terms of CFT

correlation in the sense of [7, 8]. We will make some more remarks on this in the concluding

section. Related remarks also appear in [24] in a somewhat different context.

We note that we are parameterizing the flow in supergravity by the Wilson line only,

by adopting the attitude that the metric gets fixed as a consequence of the equation of

motion. For example, the ADM mass for the metric corresponding to the Wilson line (10)

is

M = −γ/8G(3)
N (24)

The counterart of this statement in CFT is that by performing a spectral flow along J3

we automatically change the value of L0 on the ground state from 0 to

L0 = − c

24
η2 (25)

9



Similar remarks apply to L̄0. Using (2) and the fact that c = 6Q1Q5 (see Section 5) for

the AdS3 and BTZ points, it is easy to see that

M =
L0 + L̄0

l
. (26)

We see that (24) and (25) agree with (26) if we use γ = η2, which is the same condition

as in Eqn. (21). This provides additional support to our proposed correspondence. This

matching has recently also been mentioned in [13].

We will continue to explore this correspondence in the rest of the paper in the context

of the Euclidean free energy.

4 The Euclidean free energy of asymptotically AdS3 solutions

In this section we will compute the Euclidean free energy of conical spaces (also of AdS3

and BTZ) following the method of Gibbons and Hawking [22]. Let us recall that the free

energy is given by

Z ≡ exp[−βF (α)] =
∫

Dα[fields] exp[−S] (27)

where S is now the Euclidean version of the action written in (1).

Boundary Conditions:

In the above equation, α denotes boundary conditions on the fields. As noted in [16],

the boundary (corresponding to r → ∞) is T 2, coordinatized by φ and the Euclidean time

τ ≡ −it, with appropriate identifications. For the AdS3 solution, the identifications are

(τ, φ) ≡ (τ + β, φ+ 2π) (28)

where β denotes inverse temperature and is arbitrary. For the BTZ solution (with mass M

and Euclidean angular momentum JE = iJ) the identifications are (dictated by smooth-

ness of metric)

(τ, φ) ≡ (τ + β0, φ+ Φ) (29)

where β0 and φ are given by

β0 =
2πr+l

2

r2
+ − r2

−
(30)

10



Φ =
2π|r−|l2
r2
+ − r2

−

r+ =



 l
2M

2



1 +

√

1 +
J2

E

M2l2








1/2

r− = −i


 l
2M

2




√

1 +
J2

E

M2l2
− 1








1/2

In anticipation we note that implication of the identifications is that the boundary geom-

etry is that of a torus with the modular parameter proportional to β0 + iΦ. Therefore the

partition function of the dual CFT need to be evaluated on the torus with the modular

parameter proportional to β0 + iΦ. The boundary condition on the fields is that the

bosonic fields must have the same values at identified points whereas the fermion fields

must have the same value upto a sign (periodic (P) or antiperiodic (A)). Since we are

talking about identifications on a two-torus, the fermion boundary conditions can be

α = (P, P ), (P,A), (A,P ), (A,A) (31)

where the first entry denotes boundary condition in the φ direction and the second entry

denotes boundary condition along the τ direction.

For the conical spaces, the identification is the same as for AdS3, except that the

specification of the functional integral includes the Wilson line (equation (10)) as a part

of the boundary condition.

Saddle points

We will evaluate (27) by finding saddle points of the action subject to specific boundary

conditions. These are Euclidean versions of the classical solutions that we have described

in the previous section. By virtue of the equation of motion R = −6/l2, the Euclidean

action S of a classical spacetime X is simply its volume times a constant. To be precise,

S(X) =
1

4πl2G
(3)
N

Vol(X)

Vol(X) =
∫ β

0
dτ
∫ R

r0

dr
∫ 2π

0
dφ

√
g (32)
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The ranges of φ, τ follow from the identifications mentioned above. The lower limit r0

of the r-integral is identically zero for AdS3 and the conical spaces, whereas for BTZ

it denotes the location of the horizon (the Euclidean section is defined only upto the

horizon). The upper limit R is kept as an infrared regulator to make the volume finite.

We will in practice only be interested in free energies relative to AdS3 and the R-dependent

divergent term will disappear from that calculation.

Free energy of BTZ:

We will now compute the free energy of BTZ relative to AdS3. The AdS3 solution can

be at any temperature β while the temperature of the black hole is fixed to be β0. To

compare with the AdS3 background one must adjust β so that the geometries of the two

manifolds match at the hypersurface of radius R (in other words, we must use the same

infrared regulator on all saddle points of the functional integral). This gives the following

relation

β0 = β

√√√√ 1 + l2/R2

1 −M2l2/R2
(33)

S(BTZ) − S(AdS3) =
1

4πl2G
(3)
N

[∫

BTZ
d3x

√
g −

∫

AdS3

d3x
√
g
]

(34)

=
1

4πl2G
(3)
N

[
πβ0(R

2 − r2
+) − πβR2

]

Substituting the value of β0 in terms of β and taking the limit R → ∞ we obtain

S(BTZ) − S(AdS3) =
1

4πl2G
(3)
N

[
πβ0l

2 − π2r+l
2
]

(35)

For convenience let us define the left and right temperatures [16] as

β+ =
2πl2

r+ + r−
(36)

β− = β̄+ =
2πl2

r+ − r−

Using these variables the difference in the action becomes

S(BTZ) − S(AdS3) =
1

4πl2G
(3)
N

[
π

2
(β+ + β−)l2 − π3l4

(
1

β+

+
1

β−

)]
(37)
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It is easily seen that the BTZ black hole dominates when (1/β+ + 1/β−) is much larger

than (β+ + β−) and vice versa. Thus at high temperatures we can ignore the first term

in the above equation.

S(BTZ) − S(AdS3) = − π2l2

4G
(3)
N

(
1

β+

+
1

β−

)
(38)

Using equation (2), the high temperature partition function of BTZ is, therefore, given

by

− lnZ = π2Q1Q5l

(
1

β+

+
1

β−

)
(39)

Free energy of conical spaces

We denote the conical spaces by Xγ. The volume of Xγ is given by

Vol(Xγ) =
∫ R

0
rdr

∫ βγ

0
dτ
∫ 2π

0
dφ = πβγR

2 (40)

Once again, βγ is determined in terms of β by the requirement that the hypersurface

r = R that acts as an infrared regulator has the same 2-geometry as the corresponding

surface in AdS3. This gives:

βg

√
R2/l2 + γ = β

√
R2/l2 + 1 (41)

Using this, it is easy to find

Vol(Xγ) − Vol(AdS3) = πβ
l2

2
(1 − γ) (42)

This leads to, by (32), the following expression for the Euclidean action

S(Xγ) − S(AdS3) =
β

8G
(3)
N

(1 − γ) (43)

In the next section we will compare with the free energy computed from the boundary

CFT. For that comparison it will turn out to be more appropriate to consider as reference

spacetime the BTZ black hole with J = M = 0 (which is simply the space X0, also

denoted BTZ0):

S(Xγ) − S(BTZ0) = − lnZ(Xγ) − (− lnZ(X0)) = − β

8G
(3)
N

γ (44)
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5 The partition function from the CFT

The aim of this section is to calculate the partition function of the (4, 4) CFT on the

orbifold T 4Q1Q5/S(Q1Q5). The partition function will depend of the boundary conditions

of the fermions of the CFT. Different bulk geometries will induce different boundary

conditions for the fermions of the CFT. We will first calculate the partition function

when the bulk geometry is that of the BTZ black hole.

CFT partition function corresponding to BTZ

The fermions of the CFT are periodic along the angular coordinate of the cylinder if

the bulk geometry is that of the BTZ black hole. This can be seen by observing that

the zero mass BTZ black hole admits killing vectors which are periodic along the angular

coordinate [3]. Therefore the zero mass BTZ black hole correspond to the Ramond sector

of the CFT. The general case of the BTZ black hole with mass and angular momentum

correspond to excited states of the CFT over the Ramond vacuum with

L0 + L̄0 = Ml (45)

L0 − L̄0 = JE

where M and JE are the mass and the (Euclidean) angular momentum of the BTZ black

hole. Therefore the partition function of the BTZ black hole should correspond to

Z = TrR(e2πiτL0e2πiτ̄ L̄0) (46)

The Hilbert space of the CFT on the orbifold T 4Q1Q5/S(Q1Q5) can be decomposed into

twisted sectors labeled by the conjugacy classes of the permutation group S(Q1Q5). The

conjugacy classes of the permutation group consists of cyclic groups of various lengths.

The various conjugacy classes and the multiplicity in which they occur in S(Q1Q5) can

be found from the solutions of the equation

Q1Q5∑

n=0

nNn = Q1Q5 (47)

where n is the length of the cycle and Nn is the multiplicity of the cycle. The Hilbert
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space is given by

H =
⊕

∑
nNn=Q1Q5

⊗

n>0

SNnHPn

(n) (48)

SNH denotes the symmetrized product of the Hilbert space H, N times. By the symbol

HPn

(n) we mean the Hilbert space of the twisted sector with a cycle of length n in which

only states which are invariant under the projection operator

Pn =
1

n

n∑

k=1

e2πik(L0−L̄0) (49)

are retained. The values of L0 or L̄0 in the twisted sector of length n is of the form p/n

where p is positive integer. This projection forces the value of L0 − L̄0 to be an integer

on the twisted sector. It arises because the black hole can exchange only integer valued

Kaluza-Klein momentum with the bulk [18].

The dominant contribution to the partition function arises from the maximally twisted

sector. That is, from the longest single cycle of length Q1Q5. It is given by

Z =
∑

m,n

d(Q1Q5n +m)d(m)e2πinτe2πimτ/Q1Q5e−2πimτ̄/Q1Q5 (50)

Where d’s are the coefficients defined by the expansion

ZT 4 =

[
Θ2(0|τ
η3(τ)

]2

=
∑

n≥0

d(n)e2πiτn (51)

In the above equation ZT 4 is the partition function of the holomorphic sector of the CFT

on T 4. We will first evaluate the sum

P (m, τ) =
∞∑

n=0

d(Q1Q5n+m)e2πinτ (52)

For large values of Q1Q5 we can use the asymptotic form of d(Q1Q5n +m)

d(Q1Q5n +m) ∼ exp
(
2π
√
Q1Q5n+m

)
(53)

Substituting the above value of d(Q1Q5n+m) in P (m, τ) we obtain a sum which has an

integral representation as shown below.

P (m, τ) =
∞∑

n=1

e2π
√

Q1Q5n+m+2πinτ + d(m) (54)

= P i

2

∫ ∞

−∞
dw coth πωe2π

√
iQ1Q5ω+m−2πωτ + d(m) − e2π

√
m

2
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where P denotes “principal value” of the integral.

We are interested in the high temperature limit of the partition function. The leading

contribution to the integral in the limit τ → 0 is

P (m, τ) ∼
√
iπQ1Q5/τe

iπQ1Q5/2τ−i2πmτ/Q1Q5 (55)

Substituting the above value of P (m, τ) the partition function becomes

Z =
√
iπQ1Q5/τ

∞∑

m=0

d(m)e−2πimτ̄/Q1Q5 ∼ exp (iπQ1Q5(1/2τ − 1/2τ̄)) (56)

Thus the free energy at high temperatures is given by

− lnZ =
−iπQ1Q5

2

(
1

τ
− 1

τ̄

)
(57)

This exactly agrees with (39) with the identification τ = iβ+/(2πl).

CFT partition function corresponding to conical spaces

We will focus on the low temperature (large β) behaviour. At low temperature, using

τ = iβ/(2πl) (β real in this case), the partition function is given by

Z ≡ Tr exp[2πiτL0 − 2πiτ̄ L̄0)] = exp[−β(E0 + Ē0)](1 +O(exp[−β∆])) (58)

Where E0, Ē0 represent the ground state values of L0, L̄0, and ∆ represents the excitation

energy of the first excited level. According to our proposal, the boundary CFT for conical

spaces corresponds to the Hilbert space of spectral flow satisfying the relation (21). By

using (25) and (26), we find that

− lnZ =
β(E0 + Ē0)

l
= βM =

β

8G
(3)
N

(−γ) (59)

which agrees exactly with (44) (note that for the zero-mass BTZ solution the above

expression vanishes).

6 Concluding remarks

We have argued that point mass geometries in three dimensional quantum gravity with

negative cosmological constant are part of the phenomenon of AdS/CFT correspondence.
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The boundary CFT corresponds to spectral flow with the spectral flow parameter identi-

fied appropriately with the point mass, or equivalently ((21)) with the defect angle of the

conical singularity.

The above identification also leads to a correspondence between vertex operators of the

boundary CFT with states in the bulk that corresponds to the point mass, thus leading

to a possible description of scattering of such point masses in terms of CFT correlations.

In this context it would be very useful to connect with the work of Steif [5] where multi-

point-mass classical solutions were discussed. In particular, the spatial geometry of such

solutions were obtained by quotienting two dimensional hyperbolic space by appropriate

sub-groups of SL(2, R). For example, quotienting by sub-groups that generate elliptic

isometries gives rise to point particles, while those with hyperbolic isometries lead to

black holes.

The interesting thing about these multi-body solutions is that they are generally not

static, and therefore can be used to study black hole formation by collision of point

particles, or more complicated processes like collisions of black holes. In the light of the

AdS/CFT correspondence, it would be interesting to know how such processes manifest

themselves in the CFT picture. More precisely, what effect does quotienting the spatial

slice have on the CFT? We have found a hint to this answer in this paper, for the simple

case of a single point particle: it corresponds to a certain vertex operator in the SCFT

(representation of a point mass in the bulk as vertex operator in a boundary Liouville

theory has been discussed recently in [23]). The understanding of more general quotients

holds the promise of providing insights into some very interesting processes in (2+1)

dimensional gravity.

Another interesting point to emerge in this paper is that the partition function of

the dual CFT agrees exactly with that of the supergravity at high temperatures. This is

remarkable as the partition function of the CFT was computed in weak coupling and the

supergravity result is expected to be a prediction for the CFT result at strong coupling.

Note that this agreement works for arbitrary angular momentum, in particular for J = 0

which is far from extremality and hence is far from the BPS limit.
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