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1 INTRODUCTION

One of the central results that has emerged from the studies of the AdS/CFT corre-

spondence [1, 2, 3] between 5-dimensional gravity in the AdS bulk and 4-dimensional

Yang-Mills theory on its boundary is the identification of the renormalization scale of

the latter with the radial coordinate of the AdS bulk and the radial evolution of the 5-

dimensional fields with RG flows of the couplings in the 4-dimensional Yang-Mills theory

[4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 43, 18, 19, 20, 21]. A conjectured generalization of

this correspondence to 4-dimensional boundary theories which include gravity [22, 23] has

also recently been studied in the context of Randall-Sundram type brane-world scenarios

[24, 25, 26, 27, 28] and the cosmological constant problem [29, 30, 31, 32].

The existence of a connection between RG flows in a D-dimensional theory, which

includes gravity, and gravitational equations in (D+1)-dimensions, was recognized and

pointed out quite sometime back in the perturbative studies of noncritical string theory

[33]. Perturbative noncritical string theory is formulated as D-dimensional matter coupled

to 2-d quantum gravity [34]. As is well-known, in this formulation of string theory the

extra coordinate of the (D+1)-dimensional space is related to the conformal degree of

freedom of the world-sheet metric [35, 36, 37] and world-sheet gravitational dressing [38]

of the various σ-model couplings gives rise to their dependence on this extra coordinate. A

connection between the RG flows of the D-dimensional fields and gravitational equations

in (D+1)-dimensions arises [33] because the dependence of the σ-model couplings on the

conformal mode of the world-sheet metric is determined by gravitational equations in

(D+1)-dimensions. In recent years this connection has been made precise in the context

of AdS/CFT correspondence. The purpose of this note is to reexamine and further expand

on the world-sheet approach of noncritical string theory to holographic RG in the light of

these recent advances. The main advantage of this approach is that it provides a natural

setting for the discussion of a generic holographic RG connection between D-dimensional

boundary theories that contain gravity and (D+1)-dimensional gravitational dynamics.
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The world-sheet approach also provides a systematic handle on stringy (i.e. α′) as well as

string loop corrections.

The key organizing principle in the first quantized approach to noncritical string the-

ory is the requirement of world-sheet reparametrization invariance. In the background

gauge-fixing method, a prescription for integrating over the 2-d metric which ensures this

requirement of reparametrization invariance automatically ensures Weyl invariance with

respect to the 2-d fiducial metric. In this approach, therefore, Weyl invariance with re-

spect to the 2-d fiducial metric emerges as the principal consistency requirement which

is needed to ensure world-sheet reparametrization invariance. For example, it is this

requirement that determines the gravitational dressing of the σ-model couplings.

In this note we will consider the σ-model partition function of noncritical strings propa-

gating in background fields. This partition function is in general not well-defined because

of divergent contributions to it arising from correlators of microscopic loop operators

whose liouville wavefunctions are not normalizable. Although this is an ultraviolet (small

area) divergence on the world-sheet, from the (D+1)-dimensional target space point of

view it is an infrared (large volume) divergence. It can be regularized by introducing

a cut-off on the integration over the liouville zero mode. This is very much like the

infrared regulator needed in the radial direction to evaluate the on-shell gravity action

in AdS space. This way of regularizing the partition function introduces a “boundary”

in the liouville direction. The regularized partition function depends on the location of

the liouville boundary only implicitly through the values of the dressed couplings at the

boundary. We will show here that a change in the location of the boundary gives rise to an

RG flow equation for the partition function which looks exactly like the Hamilton-Jacobi

constraint which an on-shell boundary gravitational action is expected to satisfy [39, 19].

The plan of this paper is as follows. In the next section we first summarize the

main results [33] from the first quantized approach to noncritical string theory as D-

dimensional matter coupled to 2-d gravity. We then discuss in detail the interpretation

of the dependence of the σ-model couplings on the extra coordinate as RG dependence
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in the D-dimensional theory. In Sec. 3 we argue that the σ-model couplings should more

correctly be interpreted as defining a boundary value problem in a (D+1)-dimensional

gravity theory. We explain how the boundary arises from the need to regularize world-

sheet ultraviolet divergences in the calculation of the partition function. We then show

that, consistent with its interpretation as an on-shell boundary action, the regularized

partition function staisfies a flow equation which looks very much like a Hamilton-Jacobi

constraint equation which an on-shell boundary gravitational action is expected to satisfy.

We end in Sec. 4 with some concluding remarks.

2 NONCRITICAL STRINGS AND HOLOGRAPHIC RG

In this section we first briefly summarize some old and rather well-known results from

noncritical string theory. We then discuss the RG scale dependence interpretation of the

gravitational dressing of the couplings. For simplicity we restrict the discussion to bosonic

string, but extension to superstring is straightforward.

The starting point of the first quantized approach to noncritical strings in background

fields is the world-sheet reparametrization invariant action

S =
1

8πα′

∫

d2ξ
√
g
[

∂αX
µ∂βX

ν
(

gαβGµν(X(ξ)) + ǫαβBµν(X(ξ))
)

+ α′R(2)Φ(X(ξ)) + T (X(ξ)) + · · ·
]

. (2.1)

Here xµ’s, which are the zero modes of Xµ(ξ)’s, parametrize a D-dimensional space with

metric Gµν(x) and other fields. The Polyakov path integral formally defines the partition

function

Z[Gµν ,Φ, Bµν , · · ·] =
∫

[Dgαβ][DXµ] e−S (2.2)

which is a functional of the D-dimensional couplings Gµν , Φ, Bµν , etc.
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Gravitational Dressing

In the quantum theory the various σ-model couplings get dressed by 2-d gravity. A

reparametrization invariant prescription for determining these gravitational dressings is

the following. One first fixes the conformal gauge

gαβ = eφ(ξ)ĝαβ.

Here φ(ξ) is the liouville mode and ĝαβ is a fiducial metric that depends on the moduli

of the Riemann surface over which the action in (2.1) is defined. One then makes a

transformation in the functional integral from the liouville mode φ(ξ) to a field η(ξ) with

gaussian measure which, in the absence of the background fields, has the following action

[40, 41]

1

8π

∫

d2ξ
√

ĝ
(

ĝαβ∂αη∂βη +QR̂(2)η
)

(2.3)

where Q =
√

(25 −D)/3. When background fields are switched on, in the presence of 2-d

gravity they get dressed, that is they become functions of η [35, 33, 37]. Thus

Gµν(x) → Gµν(x, η), Φ(x) → Φ(x, η), · · ·

The η-dependence of the various fields is fixed by demanding that the above procedure

preserve world-sheet reparametrization invariance. In particular, this means that the final

results should be invariant under Weyl transformations of the fiducial metric ĝαβ. This

leads to the familiar beta-function equations for the dressed fields

0 = RMN + 2∇M∇NΦ − 1

4
HMPLHN

PL + · · · (2.4)

0 = ∇PHPMN − 2∇PΦHPMN + · · · (2.5)

0 =
D − 25

3α′
− R(D+1) − 4∇P∇P Φ + 4∇P Φ∇P Φ
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+
1

12
HMNPH

MNP + · · · (2.6)

etc. Here the indices M,N etc. run over µ, η and the dots represent α′ and string loop

corrections. These equations have (D+1)-dimensional general covariance.

RG Flows

Although we considered D-dimensional matter in the above discussion, these consid-

erations actually apply to any matter coupled to 2-d gravity. A term in the action of the

form
∑

i

∫

d2ξ
√
g λiOi(X(ξ), gαβ(ξ)),

where Oi(X(ξ), gαβ(ξ)) is a local operator constructed from the matter fields {X(ξ)}, gets

dressed to
∑

i

∫

d2ξ
√

ĝ λi(η(ξ))Oi(X(ξ), ĝαβ(ξ))

and the η-dependence of the dressed coupling, λi(η), is determined by an appropriate

vanishing beta-function condition. In case the couplings λi correspond to a CFT coupled

to 2-d gravity, the λi(η) are independent of η. This identifies CFT’s as special points in

the space spanned by the set of all possible couplings λi, the so-called theory space. The

more general case in which the couplings get dressed can be interpreted as giving RG

flows between these special points corresponding to CFT’s.

It is important to emphasize here that the RG flow that we are talking about is not due

to changes of cut-off in the 2-d QFT of X(ξ)’s and η(ξ). Although this cut-off is needed

to do computations, the vanishing beta-function conditions ensure that the couplings

do not depend on it. The RG flows that we are talking about are similar to finite size

scaling. The size is here provided by the invariant area of the world-sheet, or its conjugate,

the world-sheet cosmological constant [40, 41, 33]. In the conformal gauge, the flows thus

correspond to the response of the couplings to changes of the physical scale brought about

by shifts of the liouville mode, and hence of η. The vanishing beta-function equations
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describe how the dressed couplings change with precisely these shifts of η. In general,

shifts of η do not produce any simple scalings of the couplings, except near the points in

theory space described by CFT’s. The trajectories in theory space given by the dressed

couplings describe RG flows between two such points. An example of such an RG flow

between two c < 1 minimal models has been discussed in detail in [33] where an explicit

kink solution is given which describes RG flow due to a nearly marginal perturbation. 1

For D-dimensional matter coupled to 2-d gravity, constant shifts of η describe RG flows

in a D-dimensional effective theory of gravity. To see this, consider the (D+1)-dimensional

gravity theory, obtained after dressing by 2-d gravity, in the gauge 2

Gηη = 1, Gηµ = 0. (2.7)

In this gauge, the (D+1)-dimensional metric is given by

ds2
D+1 = dη2 + ds2

D,

where the metric in a constant η D-dimensional slice is given by

ds2
D = Gµν(x, η)dx

µdxν .

A shift in η produces a change in the D-dimensional metric which is dictated by the

(D+1)-dimensional gravitational equations. In general, such a change generates a local

change of scale in the D-dimensional world and hence corresponds to a local generalization

of the usual RG flows. In the particular case that

Gµν(x, η) = Ω(η)Gµν(x)

and Ω is a monotonic function of η, shifts in η give global changes of scale in the D-

1RG flows in two-dimensional theories coupled to gravity have also been considered in [42, 43].
2As we shall discuss in the next section, it is natural to guess that the partition function of noncritical

strings in background fields evaluates a (D+1)-dimensional gravitational action on-shell in this gauge.
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dimensional world and hence in this case we recover the standard RG flows in the D-

dimensional theory.

3 THE FLOW EQUATION

In this section we will argue that the partition function for noncritical strings evaluates

a (D+1)-dimensional gravitational action on-shell, in the gauge (2.7), for solutions with

a boundary. Consistent with this interpretation, we will derive a flow equation for the

partition function, which looks just like the Hamilton-Jacobi constraint that the on-shell

gauge-fixed (D+1)-dimensional action must satisfy for ensuring full (D+1)-dimensional

general covariance.

The partition function is formally given by the functional integral in (2.2) where S is

the action in (2.1). Now, it is well-known that the equations in (2.4)-(2.6) can be derived

from a (D+1)-dimensional gravitational action. Since these equations also determine the

2-d gravitational dressing of the σ-model couplings, it would seem consistent to identify

the partition function in (2.2) with the (D+1)-dimensional gravitational action evaluated

on-shell. There is, however, a problem in this identification, which we will now discuss.

The set of equations (2.4)-(2.6) are partial differential equations of second or higher

order, depending on the order to which terms are retained in α′ expansion. At the lowest

order in α′, the equations are second order differential equations in η for the dressed

couplings. A general solution for these equations depends on two independent functions

of x for each of the background fields. For example, for the dilaton the general solution

depends on Φ0(x) and Φ′
0(x), which may be taken to be respectively the value of the

dressed field Φ(x, η) at some point η = η0 and the value of its derivative ∂ηΦ(x, η) at η0.

Thus, at the lowest order in α′, the (D+1)-dimensional on-shell action should depend on

two independent functions of x for each of the background fields. The partition function

in (2.2), however, depends only on one function of x for each of the background fields

since its dependence on the background fields is inherited from the action in (2.1) which
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has this property 3.

One might worry that the functional intergral in (2.2) defining the partition func-

tion for the noncritical string is only formal and that a more rigorous definition of this

functional integral would show some subtility in counting the number of independent

couplings. That in fact there is no proliferation of couplings in a more rigorous setting

can be easily seen by reformulating (2.2) in the framework of dynamically triangulated

random surfaces. 4 Thus the partition function in (2.2) cannot be identified with a

(D+1)-dimensional gravitational action evaluated on-shell for general solutions.

Actually, there are solutions to the differential equations (2.4)-(2.6) which depend

on only one function of x for each background field. These solutions involve (D+1)-

dimensional spaces with a D-dimensional boundary 5, and a regularity condition in the

bulk generally picks up only one of the two possible (at the lowest order in α′) solutions

which evolves the boundary data into the bulk. The (D+1)-dimensional action evaluated

on-shell for such solutions depends on only one function of x for each of the background

fields, which together constitute the boundary data.

A simple example of the above is provided by the coupling corresponding to the tachyon

field in the noncritical string theory corresponding to the flat space linear dilaton solution

of the equations (2.4)-(2.6). The gravitationally dressed tachyon coupling satisfies the

following equation in this background [33, 35]:

(∂2
η −Q∂η + ∂2

x)T (x, η) − ∂V

∂T
= 0, (3.1)

where V = −T 2 + O(T 3) is the tachyon potential. Ignoring the cubic and higher order

terms in the potential, and going to the momentum space conjugate to x, we get the two

3The situation becomes worse when higher order corrections in α′ are included in the differential equa-
tions in (2.4)-(2.6) since then the order in η derivatives in these equations increases with a corresponding
increase in the number of independent functions of x, for each background field, characterizing the general
solution.

4See, for example, [44].
5We will assume the D-dimensional boundary metric to have a Euclidean signature
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solutions

T̃±(k, η) = e
Q

2
ηψ±,k(η) (3.2)

where ψ±,k(η) is the liouville wavefunction,

ψ±,k(η) = e±η
√

(k2−D−1

12
) ψ±,k. (3.3)

If we place a D-dimensional “boundary” in the liouville direction at η0, we see that only the

solution ψ−(η) is regular at η → +∞. The other solution, ψ+(η), is regular at η → −∞.

The liouville wavefunctions for both these solutions are not normalizable. 6

A more nontrivial example is provided by AdS gravity, which has been extensively

studied recently in the context of the AdS/CFT correspondence. In this case the Fefferman-

Graham theorem [45] guarantees that there is a unique regular solution that evolves

boundary data into the AdS bulk. The regular solution is, however, not normalizable

[3, 2], just like the liouville wavefunctions for microscopic states in the above example

of tachyon in flat space and linear dilaton background. For example, the regular solu-

tion to linearized equations for a scalar field in the AdS background behaves at large r

as λ(x)r∆−D, where ∆ is the dimension of the corresponding operator in the dual CFT

description and D is the dimension of the boundary. 7

We propose to identify the partition function in (2.2) with a “boundary” action eval-

uated on regular solutions obtained as described above. The boundary in η is the D-

dimensional space parametrized by the xµ’s and the background fields appearing in the

σ-model action S, (2.1), essentially account for the boundary values of the corresponding

dressed fields. 8 Moreover, since no independent functions of x corresponding to the com-

6For D ≥ 1 this is true only if k2 ≥ D−1

12
, and then these wavefunctions correspond to microscopic

states. Wavefunctions corresponding to operators with k2 < D−1

12
are normalizable and hence these

correspond to macroscopic states. See, for example, [46] for a review of liouville theory.
7The other solution, which behaves at large r as r−∆, is normalizable.
8It is important to note here that the σ-model couplings are not equal to the values of the dressed

couplings at the boundary. The former can, however, be traded for the latter once the dressings are
known. The example of the dressing of the tachyon in noncritical string theory considered above provides
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ponents Gηη and Gηµ of the (D+1)-dimensional metric appear in S, we propose that the

partition function actually evaluates the boundary action in the gauge (2.7). As evidence

for this we point out that, by construction, the partition function has D-dimensional gen-

eral covariance, as is required by the second of the conditions in (2.7). A more non-trivial

check for our proposal is provided by the first gauge-fixing condition which requires the

partition function to satisfy a Hamilton-Jacobi type of constraint equation. Later in this

section we will derive a flow equation for the partition function which has a remarkable

resemblance to such an equation.

The Liouville Boundary

Let us first try to understand how a boundary arises in the liouville direction. As is

well-known, in critical string theory, where the 2-d metric is non-dynamical, the back-

ground fields appearing in the σ-model action must satisfy the beta function equations

for conformal invariance. In the noncritical formulation of string theory, however, the

D-dimensional background fields appearing in (2.1) are completely arbitrary, since it is

the integration over the liouville mode that now enforces conformal invariance. To make

the discussion more general, let us rewrite (2.2) as follows:

Z[λ] =
∫

[Dgαβ] Zg[λ], (3.4)

where

Zg[λ] =
∫

[DXµ] exp
(

∑

i

∫

d2ξ
√
g λi(X(ξ)) Oi(X(ξ), gαβ(ξ))

)

(3.5)

Here the set {Oi} forms a complete basis of closed string operators and so the set of

couplings {λi} includes all the closed string modes. Now, from the point of view of the D-

dimensional matter functional integral in (3.5), the 2-d metric is just an external fiducial

metric. As is well-known, in this case for generic couplings λi, Zg[λ] in (3.5) has a confor-

a good illustration of this. The tachyon coupling that enters the σ-model is ψk which appears on the
right hand side of (3.3). This can clearly be traded for ψk(η0) using (3.3).
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mal anomaly. This anomaly has the effect that in the generic case all the couplings λi get

dressed by 2-d gravity. In perturbation theory, the liouville wavefunctions which give the

dressings of the couplings are of two types, microscopic and macroscopic [46], depending

on the operator they couple to. Since the wavefunctions which dress microscopic opera-

tors are not normalizable, integration over the liouville zero mode of correlation functions

involving a sufficient number of these operators is generically divergent. This is a source

of divergent contributions to the partition function, which thus needs a regulator to make

it well-defined.

The dressing of the coupling corresponding to the dilaton operator plays a somewhat

special role since this determines the effective string coupling. This can bring in other

problems, so let us discuss the dressing of the dilaton coupling in some detail.

Let us first separate out the integral over the zero mode of x in (3.5) and write

Zg[λ] =
∫

dDx Zg[λ; x]. (3.6)

Now, let us consider the dilaton coupling. The dressing of this coupling is controlled by

the corresponding beta function, which is essentially the matter central charge, and is

determined by the condition that the total central charge of the matter plus 2-d gravity

system should vanish. As a result when we fix the conformal gauge and change over from

the liouville mode to the variable η(ξ) in the functional integral of Zg[λ; x] over the 2-d

metric, we pick up a linear term in the action for η(ξ), similar to that in (2.3), but now

with the coefficient Q given by [47]

Q =
[

25 −D

3
+ α′(R(D) + 4∇µ∇µΦ − 4∇µΦ∇µΦ − 1

12
HµνλH

µνλ)

+O(α′2)
]

1

2

. (3.7)

For flat space we recover the result in (2.3). In general there is a linear term in η(ξ)

even in critical dimensions. Also, since the other beta functions do not vanish for generic
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couplings, Q is in general a function of x. The generic case is, therefore, difficult to deal

with. However, since the couplings are arbitrary, we can choose them to be such that Q

is a real constant, 9 independent of x, or at least sufficiently slowly varying with x so that

its dependence on x can be ignored to the first approximation. Assuming this simplifying

choice, we then have an effective string coupling that grows at one end of the η direction.

This is true even in critical dimensions. String perturbation theory, therefore, breaks

down because of this strong-coupling singularity.

In some cases this strong-coupling singularity can be removed by generating a poten-

tial for η(ξ) by switching on some additional backgrounds. For example, in the case of

flat space in noncritical dimensions, a potential for η(ξ) is generated by a 2-d cosmo-

logical constant term. We will assume here that we are dealing with such a case and

an appropriate coupling has been switched on to remove the strong coupling singularity.

However, even in cases where the strong-coupling singularity can be removed in this way,

generically there is a divergence in the partition function (3.4) which comes from integra-

tion over the opposite end of the η direction where the effective string coupling becomes

arbitrarily weak. As we have already remarked, this is because of the contributions to

the σ-model partition function of correlators involving microscopic loop operators whose

liouville wavefunctions are not normalizable. Thus the partition function in (3.5) diverges

for generic couplings, {λi}. 10 From the world-sheet point of view this divergence is

ultraviolet in nature because it comes from 2-d surfaces of small area. However, from

the (D+1)-dimensional point of view, this is an infrared divergence since it arises from

the infinite volume in the (noncompact) liouville direction. One way of regulating this

divergence is by introducing an appropriate cut-off on the integration over the zero mode

of η(ξ). This is how a “boundary” gets introduced in the η direction, its location being

at the value of the cut-off.

Once a boundary has been introduced in this way, we can trade-off the couplings

9Q real is needed to ensure a space-like interpretation for η(ξ).
10This happens even when Q in (3.7) vanishes.
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appearing in (3.4) for the boundary values of the dressed couplings. Now, as discussed in

the previous section, a shift in the liouville mode generates a local scale transformation

on the boundary. Therefore, a shift of the cut-off generates an RG flow in the regularized

partition function through the boundary values of the dressed couplings, leading to a flow

equation which we will now derive.

The Equation

After fixing the conformal gauge and transforming from the liouville mode to the

variable η(ξ), the partition function in (3.4) may be written as

Z[λ; η0] =
∫

dDx Z[λ; η0; x] (3.8)

where

Z[λ; η0; x] =
∫ ∞

η0

dη L[λ(η); x], (3.9)

and η is the zero mode of η(ξ) with η0 the cut-off or the boundary value. On the right

hand side of (3.9) we have made it explicit that the η-dependence comes entirely from the

dressings of the couplings.

The flow equation can now be derived by making an x-dependent change in η0, namely

η0 → η0 + ǫ(x). 11 Denoting the value of the dressed coupling at the boundary by λi
0(x),

the flow equation is

L[λ(η0); x] = ∂η0
λi

0(x)
δZ

δλi
0(x)

(3.10)

This equation follows from the fact that a change in Z[λ; η0; x] produced by a shift in

η0 can be computed in two different ways. One is directly from the way η0 appears as

11This x-dependent change in η0 is made possible by the fact that we could have chosen an x-dependent
cut-off on η. This possibility of a local cut-off on η is compatible with the requirement of world-sheet
reparametrization invariance.
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an integration limit in (3.9). This gives the left hand side of the equation. The other

is by recognizing that Z[λ; η0; x] depends on η0 only through the boundary values of the

dressed couplings since the η dependence in L[λ(η); x] comes entirely from the liouville

dressings of the couplings and the subsequent transformation to the gaussian variable η.

This gives the right hand side of the equation.

At the lowest order in α′, we expect L[λ(η); x] to be only quadratic in η-derivatives of

the dressed couplings. Let us write this out explicitly as 12

L[λ(η); x] =
1

2
Gij∂ηλ

i(x, η)∂ηλ
j(x, η) + V [λ(η); x] (3.11)

where λi(x, η) is the dressed coupling, Gij is

the metric on the space of the couplings and V is assumed to have a local expansion

in x-derivatives of λi(x, η). We have made the reasonable assumption that L has a low

energy expansion in derivatives of η and x. Once (3.11) is given, one can show that the

variation of the partition function with respect to the boundary values of the dressed

couplings is related to the “velocities” in the standard way,

δZ

δλi
0(x)

= Gij∂η0
λj

0(x). (3.12)

The flow equation (3.10) may then be rewritten as

1

2
Gij δZ

δλi
0(x)

δZ

δλj
0(x)

= V [λ0; x] (3.13)

which is the advertized Hamilton-Jacobi type of constraint equation that the regularized

partition function must satisfy.

12We may assume the standard normalization for the “kinetic” term without any loss of generality. A
possible linear term in λi(x, η) can be removed by a field redefinition of the original sigma-model couplings
λi. We will assume that this has been done and that the couplings λi have been chosen accordingly. Also,
note that the right hand side of (3.11) is evaluated on-shell in the sense that the η-dressing of the various
couplings is determined by the requirement of reparametrization invariance. We also mention that the
form of L assumed in (3.11) can be derived close to a CFT point in theory space.

15



4 CONCLUDING REMARKS

In this note we have presented noncritical string theory as a boundary value problem,

based on the observation that the liouville or conformal mode gives rise to an additional

dimension. As we have argued, the boundary arises from the cut-off needed to regu-

late world-sheet ultraviolet divergences. We have shown that, under some reasonable

assumptions, the partition function of the noncritical string σ-model action satisfies a

Hamilton-Jacobi type of constraint equation as a functional of the boundary values of

the σ-model couplings. The dependence of the couplings on the additional dimension is

determined by the first order local RG flow equations (3.12). These equations were ob-

tained for the bosonic string, but extension to the superstring is straightforward when RR

backgrounds are absent. Since RR backgrounds couple to bilinears of space-time fermions

in the σ-model, the analysis becomes complicated when these backgrounds are switched

on [48]. For this reason it is difficult to demonstrate explicitly that a Hamilton-Jacobi

type of constraint equation continues to be satisfied in the presence of RR backgrounds,

although we expect this to be the case. Finally we mention that the structure of the

solution space of the RG flow equations (3.12) is presently not known [32]. In order to

address this issue it would be worthwhile to discuss the global topology of the RG flows

along the lines presented in [49] where the global topology of a class of c < 1 models was

exactly calculated using methods of Morse theory.

Acknowledgements

One of us (SRW) would like to thank Theory Division, CERN, for hospitality during a

visit when part of this work was done.

16



References

[1] J. Maldacena, Adv. Theor. Math. Phys 2 (1998) 231, [hep-th/9711200].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Phys. Lett. B428 (1998) 105, [hep-

th/9802109].

[3] E. Witten, Adv. Theor. Math. Phys 2 (1998) 253, [hep-th/9802150].

[4] E.T. Akhmedov, Phys. Lett. B442 (1998) 152, [hep-th/9806217].

[5] E. Alvarez and C. Gomez, Nucl. Phys. B541 (1999) 441, [hep-th/9807226].

[6] V. Balasubramanian, P. Kraus and A. Lawrence, Phys. Rev. D59 (1999) 046003,

[hep-th/9805171].

[7] V. Balasubramanian, P. Kraus, A. Lawrence and S.P. Trivedi, Phys. Rev. D59

(1999) 104021, [hep-th/9808017].

[8] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, JHEP 9812 (1998) 022,

[hep-th/9810126].

[9] J. Distler and F. Zamora, hep-th/9810206.

[10] A. Khavaev, K. Pilch and N.P. Warner, hep-th/9812035.

[11] A. Karch, D. Lust and A. Miemiec, Phys. Lett. B454 (1999) 152, [hep-th/9901041].

[12] V. Balasubramanian and P. Kraus, Phys. Rev. Lett. 83 (1999) 3605, [hep-

th/9903190].

[13] M. Porrati and A. Starinets, Phys. Lett. B454 (1999) 77, [hep-th/9903241].

[14] I. Klebanov and E. Witten, Nucl. Phys. B556 (1999)89, [hep-th/9905104].

[15] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, hep-th/9906194.

[16] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, hep-th/9909047.

17

http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/hep-th/9806217
http://arXiv.org/abs/hep-th/9807226
http://arXiv.org/abs/hep-th/9805171
http://arXiv.org/abs/hep-th/9808017
http://arXiv.org/abs/hep-th/9810126
http://arXiv.org/abs/hep-th/9810206
http://arXiv.org/abs/hep-th/9812035
http://arXiv.org/abs/hep-th/9901041
http://arXiv.org/abs/hep-th/9903190
http://arXiv.org/abs/hep-th/9903190
http://arXiv.org/abs/hep-th/9903241
http://arXiv.org/abs/hep-th/9905104
http://arXiv.org/abs/hep-th/9906194
http://arXiv.org/abs/hep-th/9909047


[17] K. Skenderis and P.K. Townsend, hep-th/9909070.

[18] O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, hep-th/9909134.

[19] J. De Boer, E. Verlinde and H. Verlinde, hep-th/9912012.

[20] J. Polchinski and M. Strassler, hep-th/0003136.

[21] C. Schmidhuber, hep-th/9912155.

[22] L. Randall and R. Sundram, hep-th/9905221 and hep-th/9906064.

[23] H. Verlinde, hep-th/9906182.

[24] S.S. Gubser, hep-th/9912001.

[25] V. Sahakian, hep-th/0002126.

[26] R. Gregory, V.A. Rubakov and S.M. Sibiryakov, hep-th/0002072.

[27] C. Csaki, J. Erlich and T.J. Hollowood, hep-th/0002161.

[28] G. Dvali, G. Gababadze and M. Porrati, hep-th/0002190.

[29] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R. Sundram, hep-th/0001197.

[30] S. Kachru, M. Schulz and E. Silverstein, hep-th/0001206.

[31] E. Verlinde and H. Verlinde, hep-th/9912018.

[32] S.S. Gubser, hep-th/0002160.

[33] S.R. Das, A. Dhar and S.R. Wadia, Mod. Phys. Lett. A5 (1990) 799.

[34] A.M. Polyakov, Phys. Lett. B103 (1981) 207, 211.

[35] S.R. Das, S. Naik and S.R. Wadia, Mod. Phys. Lett. A4 (1989) 1033.

[36] T. Banks and J. Lykken, Nucl. Phys. B331 (1990) 173.

18

http://arXiv.org/abs/hep-th/9909070
http://arXiv.org/abs/hep-th/9909134
http://arXiv.org/abs/hep-th/9912012
http://arXiv.org/abs/hep-th/0003136
http://arXiv.org/abs/hep-th/9912155
http://arXiv.org/abs/hep-th/9905221
http://arXiv.org/abs/hep-th/9906064
http://arXiv.org/abs/hep-th/9906182
http://arXiv.org/abs/hep-th/9912001
http://arXiv.org/abs/hep-th/0002126
http://arXiv.org/abs/hep-th/0002072
http://arXiv.org/abs/hep-th/0002161
http://arXiv.org/abs/hep-th/0002190
http://arXiv.org/abs/hep-th/0001197
http://arXiv.org/abs/hep-th/0001206
http://arXiv.org/abs/hep-th/9912018
http://arXiv.org/abs/hep-th/0002160


[37] A. Dhar, T. Jayaraman, K.S. Narain and S.R. Wadia, Mod. Phys. Lett. A5 (1990)

863.

[38] V. Knizhnik, A. Polyakov and A. Zamolodchikov, Mod. Phys. Lett. A3 (1988) 819.

[39] A.M. Polyakov, hep-th/9304146.

[40] F. David, Mod. Phys. Lett. A3 (1988) 1651.

[41] J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509.

[42] I.R. Klebanov, I.I. Kogan and A.M. Polyakov, Phys. Rev. Lett. 71 (1993) 3243,

[9309106].

[43] C. Schmidhuber and A.A. Tsyetlin, Nucl. Phys. B426 (1994) 187, [hep-th/9312155].

[44] V. Kazakov and A.A. Migdal, Nucl. Phys. B311 (1988) 171.

[45] C. Fefferman and C.R. Graham, in Elie Cartan et les Mathematiques d’Aujourdhui

(Asterisque, 1985) 95.

[46] N. Seiberg, in Random Surfaces and Quantum Gravity, Eds. O. Alvarez, E. Marinari

and P. Windey, NATO ASI series, Vol.262 (Plenum, 1991) 363.

[47] C.G. Callan, D. Friedan, E.J. Martinec and M.J. Perry, Nucl. Phys. B262 (1985)

593.

[48] N. Berkovits, C. Vafa and E. Witten, JHEP 9903 (1999) 018, [hep-th/9902098].

[49] S.R. Das, G. Mandal and S.R. Wadia, Mod. Phys. Lett A4 (1989) 745.

19

http://arXiv.org/abs/hep-th/9304146
http://arXiv.org/abs/hep-th/9312155
http://arXiv.org/abs/hep-th/9902098

