Asymptotic Properties of Near Pfeifer Records

Arup Bose* and Sreela Gangopadhyay ${ }^{\dagger}$
Indian Statistical Institute, Kolkata

Abstract

Asymptotic properties of the number of near records is known in the literature. We generalize these results to the Pfiefer model which has a wider application. In particular we establish convergence in probability, in the almost sure sense and in distribution for the number of near records under the Pfiefer model.

June 20, 2009

Keywords. Pfeifer records, Near Pfeifer records, Regularly varying functions, Kolmogorov maximal inequality, Limiting distribution.

AMS 2000 Subject Classification. 60F05, 60F15, 60G70.

Address for correspondence:

Sreela Gangopadhyay
Statistics and Mathematics Unit
Indian Statistical Institute
203 B.T. Road
Kolkata 700108
India
email address: gangopadhyay7@ gmail.com
Alternate email address: res9616@isical.ac.in
Fax: 011913325776035
Alternate fax: 011913325773071.
Phone: 011913325754310
Alternate phone: 011913325753400.

[^0]
1 Introduction

Insurance companies often change their policy when they receive a claim which exceeds all previous claims, so that under the new policy such claims would be less frequent in probability. The Pfiefer model of records, Pfeifer [12]), has been used to model such situations. It is of interest to the company to study the total value and number of claims which are "very near" to the record claims. Balakrishnan et. al. [3] and Pakes [10] have studied properties of near records in classical setup where observations are i.i.d. with a common continuous distribution. See also Li [6], Li and Pakes [7] and Pakes and Steutel [11]. In this article we study properties of near records for the more general Pfeifer model (Pfeifer [12]) which we refer to as near precords for short. The setup is as follows:

Let $\left\{X_{i j}\right\}_{i \geq 0, j \geq 1}$ be a double array of independent random variables. For each fixed $i,\left\{X_{i j}, j \geq 1\right\}$ are i.i.d. with a common edf F_{i} where

$$
1-F_{i}=\left(1-F_{0}\right)^{\alpha_{i}}, \forall i=1,2, \ldots
$$

for some sequence of positive reals $\left\{\alpha_{i}\right\}$.
The first precord R_{1}^{p} is by convention X_{01}. Now consider the row $i=1$. Let

$$
\Delta(1)=\inf \left\{j: X_{1 j}>R_{1}^{p}\right\} .
$$

Having defined $\Delta(n)$, inductively define

$$
\Delta(n+1)=\inf \left\{j: X_{n+1, j}>X_{n, \Delta(n)}\right\}, \quad n \geq 1
$$

Then $X_{0,1}, X_{1, \Delta(1)}, \ldots X_{n, \Delta(n)}, \ldots$ are precords denoted by $R_{1}^{p}, R_{2}^{p}, \ldots R_{n+1}^{p}, \ldots$.
Let $a>0$. The number of near precords is a sequence of non-negative integers, $\left\{\xi_{n}^{p}(a)\right\}_{n \geq 1}$, depending on a, defined as

$$
\xi_{n}^{p}(a)=\#\left\{j<\Delta(n): R_{n}^{p}-a<X_{n j}<R_{n}^{p}\right\} .
$$

For a sequence $\left\{a_{n}\right\}$, the corresponding $\left\{\xi_{n}^{p}\left(a_{n}\right)\right\}$ will be called the number of near precords with varying window width.

The following representation for precords plays a crucial role in our analysis. Suppose Y_{1}, Y_{2}, \ldots are independent random variables and

$$
\begin{equation*}
Y_{i} \sim \operatorname{Exp}\left(\alpha_{i}\right) \tag{1.1}
\end{equation*}
$$

and for any distribution function F,

$$
\begin{equation*}
\psi_{F}(x)=F^{-1}\left(1-e^{-x}\right) . \tag{1.2}
\end{equation*}
$$

Then

$$
\left(R_{1}^{p}, R_{2}^{p}, \ldots R_{n}^{p}\right) \stackrel{\mathcal{D}}{=}\left(\psi_{F_{0}}\left(Y_{1}\right), \psi_{F_{0}}\left(Y_{1}+Y_{2}\right), \ldots \psi_{F_{0}}\left(Y_{1}+Y_{2}+\ldots Y_{n}\right)\right) \text { for all } n
$$

where F_{0} is the cdf of X_{01}, the basic underlying cdf of precords. See Arnold et. al. [2]. Unless otherwise stated we will assume that F_{0} is a continuous, strictly increasing cdf with support, $\operatorname{Supp}\left(F_{0}\right) \subset[0, \infty)$ and α_{n} non-decreasing positive reals, diverging to infinity. For convenience, we will denote $\psi_{F_{0}}$ by ψ_{0} in the sequel.
In Section 2, we derive the distributions of $\xi_{n}^{p}(a)$. In Section 3 we study asymptotic properties of $\xi_{n}^{p}(a)$ under various conditions on F_{0} and α_{n}. In Section 4, we study the limiting distributions of normalised $\xi_{n}^{p}\left(a_{n}\right)$ with varying window width.

2 Distribution of $\xi_{n}^{p}(a)$

Balakrishnan et. al. [3] have derived the distribution of $\xi_{n}(a)$ in the i.i.d. model. Using similar arguments we have the following basic formula for the joint distribution of the number of near records in the Pfeifer model. We need a few notation. For any cdf F,

$$
\bar{F}(x)=1-F(x)
$$

Note that

$$
\bar{F}_{n}(x)=\bar{F}_{0}^{\alpha_{n}}(x) \text { for all } n \geq 0
$$

Let

$$
R_{n}^{p}(x)=P\left(R_{n}^{P} \leq x\right) \text { and } \rho_{n}(x, a)=\frac{\bar{F}_{n}(x)}{\bar{F}_{n}(x-a)}
$$

Let

$$
H_{i}\left(x_{j+i}, x_{j}\right)=P\left(0<Z<-\log \frac{\bar{F}_{j+i}\left(x_{j+i}\right)}{\bar{F}_{j}\left(x_{j}\right)}\right)
$$

where $Z \stackrel{\mathcal{D}}{=} \sum_{k=j+1}^{j+i} \beta_{k} X_{k}^{*}$, where $\beta_{k}=\frac{1}{\alpha_{k}}$ and X_{k}^{*} are i.i.d. $\operatorname{Exp}(1)$ r.v.s.
Theorem 1 (i) $P\left(\xi_{n}^{p}(a)=k\right)=\int_{R} \rho_{n}(x, a)\left(1-\rho_{n}(x, a)\right)^{k} d R_{n}^{p}(x)$.
(ii) The joint distribution of $\left(\xi_{n}^{p}\left(a_{1}\right), \xi_{n+1}^{p}\left(a_{2}\right), \ldots \xi_{n+k-1}^{p}\left(a_{k}\right)\right)$ is given by

$$
\begin{aligned}
& P\left(\xi_{n}^{p}\left(a_{1}\right)=r_{1}, \ldots \xi_{n+k-1}^{p}\left(a_{k}\right)=r_{k}\right) \\
& =\int_{-\infty}^{\infty} \int_{x_{n}}^{\infty} \cdots \int_{x_{n+k-2}}^{\infty} \prod_{j=1}^{k} \rho_{n+j-1}\left(x_{n+j-1}, a_{j}\right)\left(1-\rho_{n+j-1}\left(x_{n+j-1}, a_{j}\right)\right)^{r_{j}} \prod_{j=2}^{k} d H_{1}\left(x_{n+j-1}, x_{n+j-2}\right) d R_{n}^{p}\left(x_{n}\right) .
\end{aligned}
$$

(iii) The joint distribution of $\left(\xi_{n}\left(a_{1}\right), \xi_{n+k}\left(a_{k+1}\right)\right)$ is given by

$$
\begin{aligned}
& P\left(\xi_{n}^{p}\left(a_{1}\right)=r_{1}, \xi_{n+k}^{p}\left(a_{k+1}\right)=r_{k+1}\right) \\
& =\int_{-\infty}^{\infty} \int_{x_{n}}^{\infty} \rho_{n}\left(x_{n}, a_{1}\right)\left(1-\rho_{n}\left(x_{n}, a_{1}\right)\right)^{r_{1}} \rho_{n+k}\left(x_{n+k}, a_{k+1}\right)\left(1-\rho_{n+k}\left(x_{n+k}, a_{k+1}\right)\right)^{r_{k+1}} d H_{k}\left(x_{n+k}, x_{n}\right) d R_{n}^{p}\left(x_{n}\right)
\end{aligned}
$$

Proof (i) Clearly, $P\left(\xi_{n}^{p}(a)=k\right)=\int_{R} P\left(\xi_{n}^{p}(a)=k \mid R_{n}^{p}=x\right) d R_{n}^{p}(x)$. Using Nevzorov's [8] deletion argument we compute $P\left(\xi_{n}^{p}(a)=k \mid R_{n}^{p}=x\right)$ as follows.

On the nth row of the rectangular array, we delete those observations $X_{n j}$ such that $X_{n j} \leq x-a$. The remaining observations on the nth row are all greater than $x-a$ and are conditionally independent given $R_{n}^{p}=x$. Denoting these remaining observations by $Y_{n j}$, we have

$$
\begin{aligned}
P\left(Y_{n j} \leq y\right) & =P\left(X_{n j} \leq y \mid X_{n j}>x-a\right) \\
& =\frac{F_{n}(y)-F_{n}(x-a)}{\bar{F}_{n}(x-a)}=1-\frac{\bar{F}_{n}(y)}{\bar{F}_{n}(x-a)} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P\left(\xi_{n}^{p}(a)=k \mid R_{n}^{p}=x\right) & =P\left(Y_{n 1} \leq x, Y_{n 2} \leq x, \ldots Y_{n k} \leq x, Y_{n k+1}>x\right) \\
& =\left[1-\rho_{n}(x, a)\right]^{k} \rho_{n}(x, a)
\end{aligned}
$$

and (i) follows. The proofs of (ii) and (iii) follow from the two simple observations:
(a) For any finite increasing sequence $n_{1}<n_{2}<\ldots .<n_{i}$ and any positive reals $a_{1}, a_{2}, \ldots, a_{i}$, $\xi_{n_{1}}^{p}\left(a_{1}\right), \xi_{n_{2}}^{p}\left(a_{2}\right), \ldots, \xi_{n_{i}}^{p}\left(a_{i}\right)$ are conditionally independent given $R_{n_{1}}^{p}, R_{n_{2}}^{p}, \ldots, R_{n_{i}}^{p}$.
and
(b) $H_{i}\left(x_{j+i}, x_{j}\right)$ is the transition probability function $P\left(R_{j+i}^{p} \leq x_{j+i} \mid R_{j}^{p}=x_{j}\right)$. Hence

$$
\begin{aligned}
P\left(R_{j+i}^{p} \leq x_{j+i} \mid R_{j}^{p}=x_{j}\right) & =P\left(\sum_{k=1}^{j+i} \beta_{k} X_{k}^{*} \leq \psi_{F_{0}}^{-1}\left(x_{j+i}\right) \mid \sum_{k=1}^{j} \beta_{k} X_{k}^{*}=\psi_{F_{0}}^{-1}\left(x_{j}\right)\right) \\
& =P\left(\sum_{k=j+1}^{j+i} \beta_{k} X_{k}^{*} \leq \psi_{F_{0}}^{-1}\left(x_{j+i}\right)-\psi_{F_{0}}^{-1}\left(x_{j}\right)\right) \\
& =P\left(\sum_{k=j+1}^{j+i} \beta_{k} X_{k}^{*} \leq-\log \frac{\bar{F}_{0}\left(x_{j+i}\right)}{\bar{F}_{0}\left(x_{j}\right)}\right) .
\end{aligned}
$$

3 Asymptotic behaviour of $\xi_{n}^{p}(a)$

Let

$$
r_{F_{0}}=\sup \left\{\operatorname{support}\left(F_{0}\right)\right\}, l_{F_{0}}=\inf \left\{\operatorname{support}\left(F_{0}\right)\right\} \text { and } \beta_{n}=\frac{1}{\alpha_{n}}
$$

Note that $r_{F_{0}}$ may equal ∞. Balakrishnan et. al. [3] have shown that in the i.i.d. model, if $r_{F_{0}}<\infty$, then $\xi_{n}(a) \rightarrow \infty$ almost surely (a.s.) as $n \rightarrow \infty$. The fact that the records R_{n} have the closed form density $\frac{d R_{n}}{d F}=\frac{1}{(n-1)!}(-\log \bar{F}(x))^{n-1}$ plays a crucial role in the above work.

Though in the Pfeifer model $\frac{d R_{n}^{p}}{d F_{0}}$ exists, it is not known in a closed form. Hence their arguments cannot be used, unless $\left\{\alpha_{n}\right\}$ are constant for all n. Our goal is to establish some of their results for $\left\{\xi_{n}^{p}(a)\right\}$ under the Pfiefer model. We need the following Lemma.

Lemma 1 (i) If $\sum_{n=1}^{\infty} \beta_{n}=\infty$ then $R_{n}^{P} \rightarrow r_{F_{0}}$ a.s..
(ii) If $\sum_{n=1}^{\infty} \beta_{n}<\infty$ then $R_{n}^{p} \rightarrow W$ a.s. where W is a continuous random variable with the same support as F_{0} and with a strictly increasing cdf on its support.

Proof (i) Since $\sum_{i=1}^{n} \beta_{i} \rightarrow \infty, \sum_{i=1}^{n} \beta_{i} X_{i}^{*} \rightarrow \infty$ a.s. where X_{i}^{*} are i.i.d. $\operatorname{Exp}(1)$, by the Kolmogorov Three-series Theorem. Therefore, $\psi_{0}\left(\sum_{i=1}^{n} \beta_{i} X_{i}^{*}\right) \rightarrow r_{F_{0}}$ a.s. Hence $R_{n}^{p} \stackrel{\mathcal{D}}{=} \psi_{0}\left(\sum_{i=1}^{n} \beta_{i} X_{i}^{*}\right) \rightarrow r_{F_{0}}$ in distribution and hence in probability. Since R_{n}^{p} are increasing, this convergence holds a.s..
(ii) If $\sum_{i=1}^{n} \beta_{i}<\infty$ then $\sum_{i=1}^{n} \beta_{i}^{2}<\infty$. Therefore, $\sum_{i=1}^{n} \operatorname{Var}\left(\beta_{i} X_{i}^{*}-\beta_{i}\right)=\sum_{i=1}^{n} \beta_{i}^{2}<\infty$. KhinchineKolmogorov's 1 -series Theorem implies that $\sum_{i=1}^{n} \beta_{i} X_{i}^{*} \rightarrow V$ a.s. where V is a finite random variable.

Note that $P(V>K) \geq P\left(\beta_{1} X_{1}^{*}>K\right)>0$ for any $K>0$, however large. So V is a non-degenerate GGC (generalised gamma convolution) and hence has a strictly positive pdf for $x>l_{V}=\inf \{\operatorname{support}(V)\}$. See Bondesson [4], page 30. Therefore V, an absolutely continuous random variable, has a strictly increasing cdf on its support.

Consequently, $R_{n}^{p} \rightarrow W=\psi_{0}(V)$ in distribution and hence a.s., by monotonicity of R_{n}^{p}. F_{0} is continuous and strictly increasing on $\left(l_{F_{0}}, r_{F_{0}}\right)$ by our assumption. So W is continuous and has strictly increasing cdf on $\left(\psi_{0}\left(l_{V}\right), r_{F_{0}}\right)$. Now, for any $\epsilon>0$,

$$
\begin{equation*}
P(V<\epsilon) \geq \prod_{i=1}^{n} P\left(\beta_{i} X_{i}^{*}<\frac{\epsilon}{2^{i+1}}\right) \cdot P\left(\sum_{i=n+1}^{\infty} \beta_{i} X_{i}^{*}<\frac{\epsilon}{2}\right) \tag{3.1}
\end{equation*}
$$

By Kolmogorov's maximal inequality,

$$
\begin{equation*}
P\left(\sum_{i=n+1}^{\infty} \beta_{i} X_{i}^{*}<\sum_{i=n+1}^{\infty} \beta_{i}+\frac{\epsilon}{4}\right) \geq \lim _{m \rightarrow \infty} P\left(\max _{n+1 \leq k \leq m}\left|\sum_{i=n+1}^{k}\left(\beta_{i} X_{i}^{*}-\beta_{i}\right)\right|<\frac{\epsilon}{4}\right) \geq 1-\frac{\sum_{i=n+1}^{\infty} \beta_{i}^{2}}{\left(\frac{\epsilon}{4}\right)^{2}} \tag{3.2}
\end{equation*}
$$

Since $\sum_{i=1}^{n} \beta_{i}$ converges, we choose n_{0} so large that $\sum_{i=n_{0}+1}^{\infty} \beta_{i}<\frac{\epsilon}{4}$ and $\frac{\sum_{i=n_{0}+1}^{\infty} \beta_{i}^{2}}{\left(\frac{\epsilon}{4}\right)^{2}}<\frac{1}{2}$.
Hence, from (3.2), $P\left(\sum_{i=n_{0}+1}^{\infty} \beta_{i} X_{i}^{*}<\frac{\epsilon}{2}\right)>\frac{1}{2}$. Further, for $1 \leq i \leq n_{0}, P\left(\beta_{i} X_{i}^{*}<\frac{\epsilon}{2^{i+1}}\right)>0$. It follows from (3.1), $P(V<\epsilon)>0$. Therefore $l_{V}=0$ and hence $\operatorname{support}(W)=\left(l_{F_{0}}, r_{F_{0}}\right)=\operatorname{support}\left(F_{0}\right)$.
From now on, we will assume without loss of generality, $l_{F_{0}}=0$.

3.1 Case 1. $r_{F_{0}}<\infty$

Proposition 1 (i) $\xi_{n}^{p}(a) \rightarrow \infty$ in probability.
(ii) Suppose, $\alpha_{n} \uparrow \infty$ in such a way that (a) $\sum_{n=1}^{\infty}(1-\lambda)^{\alpha_{n}}<\infty, \forall \lambda>0$ and (b) $\sum_{n=1}^{\infty} \frac{\alpha_{n}^{n}}{n!}<\infty$. Then $\xi_{n}^{p}(a) \rightarrow \infty$ a.s.

Proof. (i) It is enough to show that for any fixed $k>0, P\left(\xi_{n}^{p}(a) \leq k\right) \rightarrow 0$, as $n \rightarrow \infty$. Observe that

$$
\begin{aligned}
P\left(\xi_{n}^{p}(a) \leq k\right) & =\sum_{j=0}^{k} \int_{-\infty}^{\infty} \rho_{n}(x, a)\left(1-\rho_{n}(x, a)\right)^{j} d R_{n}^{p}(x) \\
& =\int_{-\infty}^{\infty}\left[1-\left(1-\rho_{n}(x, a)\right)^{k+1}\right] d R_{n}^{p}(x) \\
& \leq(k+1) \int_{-\infty}^{\infty} \rho_{n}(x, a) d R_{n}^{p}(x) \\
& =(k+1) E\left(\rho_{n}\left(R_{n}^{p}, a\right)\right) .
\end{aligned}
$$

Recall that

$$
\rho_{0}(x, a)=\frac{\bar{F}_{0}(x)}{\bar{F}_{0}(x-a)} \text { and } \rho_{n}(x, a)=\rho_{0}(x, a)^{\alpha_{n}}
$$

Fix any $\epsilon \in\left(0, r_{F_{0}}\right)$.

$$
\begin{aligned}
P\left(\xi_{n}^{p} \leq k\right) & \leq(k+1) E\left(\rho_{n}\left(R_{n}^{p}, a\right)\right) \\
& =(k+1) E\left(\rho_{n}\left(R_{n}^{p}, a\right) I_{R_{n}^{p}<\epsilon}\right)+(k+1) E\left(\rho_{n}\left(R_{n}^{p}, a\right) I_{R_{n}^{p} \geq \epsilon}\right) \\
& =(k+1)\left[E_{1, n, \epsilon}+E_{2, n, \epsilon}\right](\text { say }) .
\end{aligned}
$$

Since $0 \leq \rho_{n}\left(R_{n}^{p}, a\right) \leq 1$,

$$
\begin{equation*}
E_{1, n, \epsilon} \leq P\left(R_{n}^{p}<\epsilon\right) \tag{3.3}
\end{equation*}
$$

Recall Lemma 1. If $R_{n}^{p} \rightarrow r_{F_{0}}$ a.s. then the probability in (3.3) converges to 0.
On the other hand, if $R_{n}^{p} \rightarrow W$ a.s. (see Lemma 1) then this probability converges to $P(W<\epsilon)$. Since W is continuous and greater than 0 a.s., by choosing ϵ small enough, we can make $P(W<\epsilon)$ and consequently, $E_{1, n, \epsilon}$ as small as we like, for all n large enough. For $E_{2, n, \epsilon}$, observe that for any $\epsilon \in\left(0, r_{F_{0}}\right), \rho_{0}(x, a) \leq$ $(1-\lambda), \forall x \in\left[\epsilon, r_{F_{0}}\right]$, for some $\lambda>0$ depending on ϵ. Therefore, $E_{2, n, \epsilon} \leq(1-\lambda)^{\alpha_{n}} \rightarrow 0$, as by our assumption, $\alpha_{n} \uparrow \infty$.
(ii) Now it is enough to show that $\sum_{n}\left(E_{1, n, \epsilon}+E_{2, n, \epsilon}\right)<\infty$ for small enough ϵ.

Condition (a) implies that for any $\epsilon>0, \sum_{n} E_{2, n, \epsilon}<\infty$.
Now observe that,

$$
\begin{aligned}
E_{1, n, \epsilon} & \leq P\left(R_{n}^{p}<\epsilon\right) \\
& =P\left(\sum_{i=1}^{n} \beta_{i} X_{i}^{*}<\epsilon\right) \\
& \leq P\left(\sum_{i=1}^{n} X_{i}^{*}<\epsilon \alpha_{n}\right) \text { since } \alpha_{i} \text { are non-decreasing. }
\end{aligned}
$$

As $\sum_{i=1}^{n} X_{i}^{*} \sim \Gamma(n)$, the last probability above has an upper bound $\frac{\left(\epsilon \alpha_{n}\right)^{n}}{n!}$ which is summable by condition (b), if we choose $\epsilon \in(0,1)$. Now using Borel-Cantelli Lemma we have the desired result.

Example. Let $\alpha_{n}=n^{\delta}, \quad 0<\delta<1$. Then conditions (a) and (b) of Proposition 1 are satisfied.
We now show that with an appropriate random scaling, $\xi_{n}^{p}(a)$ has an exponential distribution. The result is analogous to that in Balakrishnan et. al. ([3], Theorem 3.1(ii)), the proof is also similar.

Theorem $2 \rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a) \xrightarrow{\mathcal{D}} \mathcal{E}$ where $\mathcal{E} \sim \operatorname{Exp}(1)$.
Proof. Consider the moment generating function of $\rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a)$.

$$
\begin{align*}
E\left[e^{-\theta \rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a)}\right] & =E\left[E\left(e^{-\theta \rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a)}\right) \mid R_{n}^{p}\right] \\
& =\int_{\mathcal{R}} \sum_{k=0}^{\infty} e^{k\left(-\theta \rho_{n}(x, a)\right)} \rho_{n}(x, a)\left(1-\rho_{n}(x, a)\right)^{k} d R_{n}^{p}(x) \\
& =E_{R_{n}^{p}}\left[\frac{\rho_{n}\left(R_{n}^{p}, a\right)}{1-e^{-\theta \rho_{n}\left(R_{n}^{p}, a\right)}\left(1-\rho_{n}\left(R_{n}^{p}, a\right)\right)}\right] \tag{3.4}
\end{align*}
$$

Now, $\rho_{0}\left(R_{n}^{p}, a\right) \rightarrow 0$ if $R_{n}^{p} \rightarrow r_{F_{0}}$ a.s. and $\rho_{0}\left(R_{n}^{p}, a\right) \rightarrow \rho_{0}(W, a)<1$ a.s. if $R_{n}^{p} \rightarrow W$ a.s. Since $\alpha_{n} \uparrow \infty$, in both the cases $\rho_{n}\left(R_{n}^{p}, a\right) \rightarrow 0$ a.s. Therefore, $e^{-\theta \rho_{n}\left(R_{n}^{p}, a\right)}=1-\theta \rho_{n}\left(R_{n}^{p}, a\right)+o\left(\rho_{n}\left(R_{n}^{p}, a\right)\right)$. Using this in (3.4) we get

$$
E\left[e^{-\theta \rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a)}\right]=E\left[\frac{1}{1+\theta+\frac{o\left(\rho_{n}\left(R_{n}^{p}, a\right)\right)}{\rho_{n}\left(R_{n}^{p}, a\right)}}\right]
$$

As $0 \leq \rho_{n}\left(R_{n}^{p}, a\right) \leq 1$, the integrand is bounded for any fixed θ with $|\theta|<1$ and hence by Bounded Convergence Theorem the above expression converges to $\frac{1}{1+\theta}$ which is the moment generating function of $\mathcal{E}(1)$.

Remark. It follows that R_{n}^{p} and $\rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a)$ are asymptotically independent.

Corollary 1 (i) If $\sum_{i=1}^{n} \beta_{i}^{2} \rightarrow \infty$, then

$$
\frac{\log \xi_{n}^{p}(a)-\alpha_{n} \sum_{i=1}^{n} \beta_{i}}{\alpha_{n} \sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}} \xrightarrow{\mathcal{D}} N(0,1) .
$$

(ii) If $\sum_{i=1}^{\infty} \beta_{i}^{2}<\infty$ and $\sum_{i=1}^{n} \beta_{i} \rightarrow \infty$, then

$$
\frac{\log \xi_{n}^{p}(a)-\alpha_{n} \sum_{i=1}^{n} \beta_{i}}{\alpha_{n}} \xrightarrow{\mathcal{D}} V_{1} .
$$

(iii) If $\sum_{i=1}^{\infty} \beta_{i}<\infty$, then

$$
\frac{\log \xi_{n}^{p}(a)}{\alpha_{n}} \xrightarrow{\mathcal{D}} V_{2} .
$$

Here V_{1} and V_{2} are continuous random variables with densities.
Proof. (i) By Theorem 2, $\rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a) \xrightarrow{\mathcal{D}} \mathcal{E}$. Taking log on both sides we have

$$
\begin{equation*}
\alpha_{n} \log \left(\bar{F}_{0}\left(R_{n}^{p}\right)\right)-\alpha_{n} \log \left(\bar{F}_{0}\left(R_{n}^{p}-a\right)\right)+\log \xi_{n}^{p}(a) \xrightarrow{\mathcal{D}} \log \mathcal{E} . \tag{3.5}
\end{equation*}
$$

Now, $-\log \left(\bar{F}_{0}\left(R_{n}^{p}\right)\right) \stackrel{\mathcal{D}}{=} \sum_{i=1}^{n} \beta_{i} X_{i}^{*}$, where $X_{i}^{*} \sim \operatorname{Exp}(1)$. Since $\sum_{i=1}^{n} \beta_{i}^{2} \rightarrow \infty$, by CLT

$$
\frac{\sum_{i=1}^{n} \beta_{i} X_{i}^{*}-\sum_{i=1}^{n} \beta_{i}}{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}} \xrightarrow{\mathcal{D}} N(0,1) .
$$

Note that $\bar{F}_{0}\left(R_{n}^{p}-a\right) \rightarrow \bar{F}_{0}\left(r_{F_{0}}-a\right)$, a constant (>0) a.s. Therefore, adding and subtracting $\alpha_{n} \sum_{i=1}^{n} \beta_{i}$ on left side of (3.5) and dividing both sides by $\alpha_{n} \sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}$ we get (i).

For (ii) and (iii), we use similar arguments as in (i) and use the fact that $\sum_{i=1}^{n} \beta_{i}\left(X_{i}^{*}-1\right)$ converges a.s. to $S=\sum_{i=1}^{\infty} \beta_{i}\left(X_{i}^{*}-1\right)$, if $\sum_{i=1}^{\infty} \beta_{i}^{2}<\infty$. Since S is a convolution of $\beta_{1}\left(X_{1}^{*}-1\right)$ and $\sum_{i=2}^{\infty} \beta_{i}\left(X_{i}^{*}-1\right)$ and the former has a density, we infer S has a density and consequently V_{1} and V_{2} have densities.

3.2 Case 2. $r_{F_{0}}=\infty$

In this case, the asymptotic behaviour of $\xi_{n}^{p}(a)$ depends on $\rho(a)=\lim _{x \rightarrow \infty} \rho_{0}(x, a)$.
If $\rho(a)<1$ or $R_{n}^{p} \rightarrow W$, then $\rho_{n}\left(R_{n}^{p}, a\right) \rightarrow 0$ a.s. and arguments of Proposition 1 and Theorem 2 go through and we obtain the following Theorem. We omit the details of the arguments.

Theorem 3 If $\rho(a)<1$ or, $\rho(a)=1$ but $R_{n}^{p} \rightarrow W$, then
(i) $\xi_{n}^{p}(a) \rightarrow \infty$ in probability and
(ii) $\rho_{n}\left(R_{n}^{p}, a\right) \xi_{n}^{p}(a) \xrightarrow{\mathcal{D}} \mathcal{E}$.

Unfortunately, when $\rho(a)=1$ and $R_{n}^{p} \rightarrow \infty$, i.e. $\sum_{i=1}^{\infty} \beta_{i}=\infty$, the situation becomes quite complicated. We deal with a special case below. Let $\bar{F}_{0}(x)=\frac{1}{x^{\gamma}}$, as $x \rightarrow \infty$ (where $\gamma>0$ is a constant), then $\rho(a)=1$. Further,

$$
\begin{equation*}
\rho_{n}(x, a)=\rho_{0}(x, a)^{\alpha_{n}}=\left(1-\frac{a}{x}\right)^{\gamma \alpha_{n}} . \tag{3.6}
\end{equation*}
$$

Theorem 4 Assume $\bar{F}_{0}(x)=\frac{1}{x^{\gamma}}$, as $x \rightarrow \infty$ and $\sum_{i=1}^{\infty} \beta_{i}=\infty$. If

$$
\lim _{n \rightarrow \infty} \frac{q \gamma \log \alpha_{n}-\sum_{i=1}^{n} \beta_{i}}{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}}=-\infty, \text { for some constant } q>1
$$

then $P\left(\xi_{n}^{p}(a)=0\right) \rightarrow 1$.

Proof. Observe that, for all $x>\frac{a}{1-\left(1-\beta_{n}^{q}\right)^{\frac{1}{\gamma}}}\left(=x_{n}\right), \quad\left(1-\frac{a}{x}\right)^{\gamma}>1-\beta_{n}^{q}$. By the Mean Value Theorem,

$$
\begin{equation*}
x_{n}=\frac{a}{\beta_{n}^{q} \frac{1}{\gamma} \gamma_{n}^{\frac{1}{\gamma}-1}} \tag{3.7}
\end{equation*}
$$

where $1-\beta_{n}^{q}<\gamma_{n}<1$, so that $\gamma_{n} \rightarrow 1$. Now from (3.6) it follows that, for all $x>x_{n}, \rho_{n}(x, a)>$ $\left(1-\beta_{n}^{q}\right)^{\alpha_{n}} \rightarrow 1$ as $\alpha_{n} \uparrow \infty$. Therefore, given $\epsilon>0$, there exists n_{0}, depending on q and ϵ, such that for all $n>n_{0}, \quad \rho_{n}(x, a)>1-\epsilon, \forall x>x_{n}$.
Fix any $\epsilon>0$ and a $q>1$ for which the condition of the theorem holds. Then for all $n>n_{0}$,

$$
\begin{equation*}
P\left(\xi_{n}^{p}(a)=0\right)=\int_{0}^{\infty} \rho_{n}(x, a) d R_{n}^{p}(x)>\int_{x_{n}}^{\infty} \rho_{n}(x, a) d R_{n}^{p}(x)>(1-\epsilon) P\left(R_{n}^{p}>x_{n}\right) \tag{3.8}
\end{equation*}
$$

Also,

$$
\begin{equation*}
P\left(R_{n}^{p}>x_{n}\right)=P\left[\sum_{i=1}^{n} \beta_{i} X_{i}^{*}>\psi_{0}^{-1}\left(x_{n}\right)\right]=P\left[\sum_{i=1}^{n} \beta_{i} X_{i}^{*}>-\log \bar{F}_{0}\left(x_{n}\right)\right] . \tag{3.9}
\end{equation*}
$$

Using the expression (3.7) for x_{n}, we have

$$
\begin{aligned}
-\log \bar{F}_{0}\left(x_{n}\right) & =-q \gamma \log \beta_{n}+\gamma \log \gamma-\gamma\left(\frac{1}{\gamma}-1\right) \log \gamma_{n}+\gamma \log a \\
& =q \gamma \log \alpha_{n}+k+o(1)
\end{aligned}
$$

where $k(=\gamma \log (\gamma a))$ is a constant. Therefore, the probability on the right side of (3.9) can be written as

$$
\begin{equation*}
P\left[\frac{\sum_{i=1}^{n} \beta_{i} X_{i}^{*}-\sum_{i=1}^{n} \beta_{i}}{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}}>\frac{q \gamma \log \alpha_{n}-\sum_{i=1}^{n} \beta_{i}}{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}}+\frac{k+o(1)}{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}}\right] \tag{3.10}
\end{equation*}
$$

Now two cases can occur.
Case 1. $\sum_{i=1}^{n} \beta_{i}^{2} \rightarrow \infty$. Then by the Central Limit Theorem, the left side of the inequality in (3.10) converges in distribution to standard normal variate.

Case 2. $\sum_{i=1}^{\infty} \beta_{i}^{2}<\infty$. Then by the Khinchine-Kolmogorov Theorem, the left side of the inequality in (3.10) converges in distribution to a random variable Z. That $\operatorname{support}(Z)=(-\infty, \infty)$ is easy to prove using Kolmogorov's maximal inequality and the fact that $\sum_{i=1}^{n} \beta_{i} \rightarrow \infty$.

It is clear from (3.8), (3.9) and (3.10) that both in Case 1 and Case 2, the claim of the theorem follows immediately under the given condition.
Example. If $\alpha_{n}=n^{\delta}$ and $\delta<1$ then the condition of Theorem 4 is satisfied for all $\gamma>0$. If $\delta=1$ then for $\gamma<1$ we can find a $q>1$ such that $q \gamma<1$ and hence the condition of Theorem 4 is satisfied.

Remark. If the condition of Theorem 4 is not satisfied then it appears to be hard to conclude anything about the behaviour of $P\left(\xi_{n}^{p}(a)=0\right)$. However it is easy to see that
if

$$
\lim \sup _{n \rightarrow \infty} \frac{q \gamma \alpha_{n}-\sum_{i=1}^{n} \beta_{i}}{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}}<\infty \text { for some } q>1
$$

then $\lim \inf _{n \rightarrow \infty} P\left(\xi_{n}^{p}(a)=0\right)>0$.

4 Limiting distribution of number of near precords with varying window width

Pakes [10] obtained several interesting limit theorems for number of near records with varying window width in classical setup. In this section we investigate whether analogous results can be derived for the Pfeifer model under some suitable conditions on F_{0} and α_{n}. Throughout we will assume $r_{F_{0}}=\infty$. First we will prove a lemma which we will use in the sequel.

Lemma 2 Suppose ψ_{0} is regularly varying with index $\nu>0$ such that the derivative ψ_{0}^{\prime} exists and is monotone.
(i) If $\sum_{i=1}^{n} \beta_{i}^{2} \rightarrow \infty$

$$
\frac{R_{n}^{p}-\psi_{0}\left(\sum_{i=1}^{n} \beta_{i}\right)}{\left(\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}\right) \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)} \stackrel{\mathcal{D}}{\rightarrow} N(0,1)
$$

(ii) If $\sum_{i=1}^{\infty} \beta_{i}^{2}<\infty$ and $\sum_{i=1}^{\infty} \beta_{i}=\infty$, then

$$
\frac{R_{n}^{p}-\psi_{0}\left(\sum_{i=1}^{n} \beta_{i}\right)}{\psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)} \xrightarrow{\mathcal{D}} Z
$$

where Z is a finite random variable.
Proof. Observe that by the Mean Value Theorem

$$
\begin{equation*}
R_{n}^{p}-\psi_{0}\left(\sum_{i=1}^{n} \beta_{i}\right) \stackrel{\mathcal{D}}{=}\left(\sum_{i=1}^{n} \beta_{i} X_{i}^{*}-\sum_{i=1}^{n} \beta_{i}\right) \psi_{0}^{\prime}\left(V_{n}^{*}\right) \tag{4.1}
\end{equation*}
$$

where V_{n}^{*} is a random variable lying between $\sum_{i=1}^{n} \beta_{i} X_{i}^{*}$ and $\sum_{i=1}^{n} \beta_{i}$. By our assumption on ψ_{0} and ψ_{0}^{\prime} we have ψ_{0}^{\prime} is regularly varying with index $\nu-1$. Therefore, for any $u_{n} \rightarrow \infty$, and $y>0, \lim _{u_{n} \rightarrow \infty} \frac{\psi_{0}^{\prime}\left(u_{n} y\right)}{\psi_{0}^{\prime}\left(u_{n}\right)} \rightarrow$ $y^{\nu-1}$. So the limit is continuous and by our assumption $\psi_{0}^{\prime}\left(u_{n} y\right)$ is monotone in y. Hence it follows that the convergence of $\frac{\psi_{0}^{\prime}\left(u_{n} y\right)}{\psi_{0}^{\prime}\left(u_{n}\right)}$ is locally uniform in y, (see Resnick [13], page 1). Also since $\sum_{i=1}^{n} \beta_{i} \rightarrow \infty$, by SLLN, $\frac{\sum_{i=1}^{n} \beta_{i} X_{i}^{*}}{\sum_{i=1}^{n} \beta_{i}} \rightarrow 1$ a.s. Therefore by the above discussion and setting $\sum_{i=1}^{n} \beta_{i}=u_{n}$ and $\frac{\sum_{i=1}^{n} \beta_{i} X_{i}^{*}}{\sum_{i=1}^{n} \beta_{i}}=$ y_{n}, we have,

$$
\frac{\psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i} X_{i}^{*}\right)}{\psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)}=\frac{\psi_{0}^{\prime}\left(\left(\sum_{i=1}^{n} \beta_{i}\right) \frac{\sum_{i=1}^{n} \beta_{i} X_{i}^{*}}{\sum_{i=1}^{n} \beta_{i}}\right)}{\psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)}=\frac{\psi_{0}^{\prime}\left(u_{n} y_{n}\right)}{\psi_{0}^{\prime}\left(u_{n}\right)} \rightarrow 1, \text { a.s. }
$$

Then by monotonicity of ψ_{0}^{\prime} and the fact that V_{n}^{*} lies between $\sum_{i=1}^{n} \beta_{i} X_{i}^{*}$ and $\sum_{i=1}^{n} \beta_{i}$ it follows,

$$
\begin{equation*}
\frac{\psi_{0}^{\prime}\left(V_{n}^{*}\right)}{\psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)} \rightarrow 1 \text { a.s. } \tag{4.2}
\end{equation*}
$$

Now, (i) follows by (4.1), (4.2) and CLT for $\frac{\sum_{i=1}^{n} \beta_{i}\left(X_{i}^{*}-1\right)}{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}}$. (ii) follows from (4.1), (4.2) and KhinchineKolmogorov's 1 -series Theorem for $\sum_{i=1}^{n} \beta_{i}\left(X_{i}^{*}-1\right)$.

Using the above lemma we can find the limiting distribution of $\xi_{n}^{p}\left(a_{n}\right)$ for a suitable choice of $\left\{a_{n}\right\}$. In the following, we will denote ψ_{0}^{-1} by Λ_{0}. Observe that if ψ_{0}^{\prime} exists and is monotone then Λ_{0}^{\prime} exists and is monotone, as $\Lambda_{0}^{\prime}(x)=\frac{1}{\psi_{0}^{\prime}\left(\psi_{0}^{-1}(x)\right)}$, (recall that ψ_{0} is continuous and strictly increasing by our assumption and hence $\psi_{0}^{\prime}>0$ on $(0, \infty)$, if it exists). The following theorem gives limiting distribution for $\xi_{n}^{p}\left(a_{n}\right)$.

Theorem 5 Suppose ψ_{0} is regularly-varying with index $\nu>0$ and the derivative ψ_{0}^{\prime} exists and is monotone. Let $a>0$ be given. Then there exists a sequence of positive reals $\left\{a_{n}\right\}$ such that $\xi_{n}^{p}\left(a_{n}\right) \rightarrow \xi$ in distribution, where
(i) ξ has geometric distribution with parameter e^{-a}, if $\sum_{i=1}^{n} \beta_{i} \rightarrow \infty$.
(ii) ξ has mixed geometric distribution, with probability generating function $E\left(s^{\xi}\right)=E\left[\frac{e^{-a \Lambda_{0}^{\prime}(W)}}{1-s\left(1-e^{-a \Lambda_{0}^{\prime}(W)}\right)}\right]$ where W is the almost sure limit of R_{n}^{p}, if $\sum_{i=1}^{\infty} \beta_{i}<\infty$.

Proof. Let $\left\{a_{n}\right\}$ be a sequence of positive reals to be chosen later suitably. Easy computation yields

$$
E\left(s^{\xi_{n}^{p}\left(a_{n}\right)}\right)=E\left[\frac{\rho_{n}\left(R_{n}^{p}, a_{n}\right)}{\left.1-s\left(1-\rho_{n}\left(R_{n}^{p}, a_{n}\right)\right)\right)}\right]
$$

Observe that for any fixed s with $|s|<1$ the integrand is bounded since $0 \leq \rho_{n}\left(R_{n}^{p}, a_{n}\right) \leq 1$. Hence $\left\{\frac{\rho_{n}\left(R_{n}^{p}, a_{n}\right)}{1-s\left(1-\rho_{n}\left(R_{n}^{p}\left(a_{n}\right)\right)\right)}\right\}$ is uniformly integrable. So it is enough to show that $\left.\rho_{n}\left(R_{n}^{p}, a_{n}\right)\right)$ converges in distribution to the appropriate limit. First we will prove (i). Here two cases can arise.

Case 1. $\sum_{i=1}^{n} \beta_{i}^{2} \rightarrow \infty$. For this case, define $A_{n}=\psi_{0}\left(\sum_{i=1}^{n} \beta_{i}\right), \quad B_{n}=\left(\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}\right) \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)$ and $Z_{n}=$ $\frac{R_{n}^{p}-A_{n}}{B_{n}}$. Let $g_{n}(x)=B_{n} x+A_{n}$ so that $g_{n}\left(Z_{n}\right)=R_{n}^{p}$. Recall $\Lambda_{0}(x)=-\log \bar{F}_{0}(x)$ and $\rho_{n}\left(R_{n}^{p}, a_{n}\right)=$ $\left(\frac{\bar{F}_{0}\left(R_{n}^{p}\right)}{F_{0}\left(R_{n}^{p}-a_{n}\right)}\right)^{\alpha_{n}}$. Now using the Mean Value Theorem we have,

$$
\begin{align*}
-\log \rho_{n}\left(R_{n}^{p}, a_{n}\right) & =\alpha_{n} \Lambda_{0}\left(g_{n}\left(Z_{n}\right)\right)-\alpha_{n} \Lambda_{0}\left(g_{n}\left(Z_{n}-\frac{a_{n}}{B_{n}}\right)\right) \\
& =\alpha_{n} \frac{a_{n}}{B_{n}} \Lambda_{0}^{\prime}\left(g_{n}\left(Z_{n}^{*}\right)\right) g_{n}^{\prime}\left(Z_{n}^{*}\right) \\
& =\alpha_{n} \frac{a_{n}}{B_{n}} \Lambda_{0}^{\prime}\left(B_{n} Z_{n}^{*}+A_{n}\right) B_{n} \\
& =\alpha_{n} a_{n} \Lambda_{0}^{\prime}\left(A_{n}\left(1+\frac{B_{n}}{A_{n}} Z_{n}^{*}\right)\right) \frac{\psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)}{\psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)} \tag{4.3}
\end{align*}
$$

where Z_{n}^{*} is a random variable lying between Z_{n} and $Z_{n}-\frac{a_{n}}{B_{n}}$. By our assumption on ψ_{0} (see Resnick [13], page21),

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x \psi_{0}^{\prime}(x)}{\psi_{0}(x)}=\nu \tag{4.4}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{B_{n}}{A_{n}} & =\lim _{n \rightarrow \infty} \frac{\left(\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}\right) \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)}{\psi_{0}\left(\sum_{i=1}^{n} \beta_{i}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}}{\sum_{i=1}^{n} \beta_{i}} \lim _{n \rightarrow \infty} \frac{\left(\sum_{i=1}^{n} \beta_{i}\right) \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)}{\psi_{0}\left(\sum_{i=1}^{n} \beta_{i}\right)}=0 \tag{4.5}
\end{align*}
$$

since the first limit in (4.5) is 0 and second limit is ν by (4.4). Also, if $\frac{a_{n}}{B_{n}}$ converges to 0 , then since $Z_{n} \xrightarrow{\mathcal{D}} N(0,1)$ and since Z_{n}^{*} lie between Z_{n} and $Z_{n}-\frac{a_{n}}{B_{n}}$ a.s., $Z_{n}^{*} \xrightarrow{\mathcal{D}} N(0,1)$. This together with (4.5) gives $1+\frac{B_{n}}{A_{n}} Z_{n}^{*}=1+o_{p}(1)$. Since by our assumption on ψ_{0}, Λ_{0} is a regularly varying function with index $\frac{1}{\nu}$ (see Resnick [13], page 23) and Λ_{0}^{\prime} is monotone, we can use similar argument as in the proof of Lemma
2. Here we set $A_{n}=u_{n}$ and $1+\frac{B_{n}}{A_{n}} Z_{n}^{*}=y_{n}$ and replace ψ_{0}^{\prime} by Λ_{0}^{\prime}. Consequently,

$$
\begin{equation*}
\frac{\Lambda_{0}^{\prime}\left(A_{n}\left(1+\frac{B_{n}}{A_{n}} Z_{n}^{*}\right)\right)}{\Lambda_{0}^{\prime}\left(A_{n}\right)}=\frac{\Lambda_{0}^{\prime}\left(u_{n} y_{n}\right)}{\Lambda_{0}^{\prime}\left(u_{n}\right)}=1+o_{p}(1) . \tag{4.6}
\end{equation*}
$$

Now choose

$$
a_{n}=\frac{a \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)}{\alpha_{n}} .
$$

Observe that for this choice of $a_{n}, \frac{a_{n}}{B_{n}} \rightarrow 0$. Putting this value of a_{n} in (4.3) and using (4.6) we have

$$
\begin{equation*}
-\log \rho_{n}\left(R_{n}^{p}, a_{n}\right)=a\left(1+o_{p}(1)\right) \Lambda_{0}^{\prime}\left(A_{n}\right) \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)=a\left(1+o_{p}(1)\right), \tag{4.7}
\end{equation*}
$$

since $\Lambda_{0}^{\prime}\left(A_{n}\right) \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)=\Lambda_{0}^{\prime}\left(\psi_{0}\left(\sum_{i=1}^{n} \beta_{i}\right)\right) \psi_{0}^{\prime}\left(\sum_{i=1}^{n} \beta_{i}\right)=1$. Therefore,

$$
\lim _{n \rightarrow \infty}-\log \rho_{n}\left(R_{n}^{p}, a_{n}\right)=a \text { in probability } .
$$

This proves (i) for Case 1.
Case 2. $\sum_{i=1}^{\infty} \beta_{i}^{2}<\infty$.
We define A_{n}, B_{n}, g_{n} and Z_{n} as Case 1 . The only difference is, in this case $Z_{n}^{*} \xrightarrow{\mathcal{D}} Z$, where Z is a random variable which is not standard normal. But clearly the same proof goes through. This completes the proof of (i).

Now to prove (ii). Since $\sum_{i=1}^{\infty} \beta_{i}<\infty$ now, $R_{n}^{p} \rightarrow W$ a.s., where W is a continuous random variable (see Lemma 1). Using the Mean Value Theorem, we have

$$
\begin{equation*}
-\log \rho_{n}\left(R_{n}^{p}, a_{n}\right)=\alpha_{n} \Lambda_{0}\left(R_{n}^{p}\right)-\alpha_{n} \Lambda_{0}\left(R_{n}^{p}-a_{n}\right)=\alpha_{n} a_{n} \Lambda_{0}^{\prime}\left(R_{n}^{p *}\right), \tag{4.8}
\end{equation*}
$$

where $R_{n}^{p *}$ is a random variable lying between $R_{n}^{p}-a_{n}$ and R_{n}^{p}. Choose $a_{n}=\frac{a}{\alpha_{n}}$. Since $a_{n}=\frac{a}{\alpha_{n}} \rightarrow 0$, $\lim _{n \rightarrow \infty} R_{n}^{p}-a_{n}=W$ a.s. which implies $R_{n}^{p *} \rightarrow W$ a.s. Since by our assumption Λ_{0}^{\prime} is monotone, D, the set of discontinuities of Λ_{0}^{\prime} is at most countable. So $P(W \in D)=0$. Therefore $\Lambda_{0}^{\prime}\left(R_{n}^{p *}\right) \xrightarrow{\mathcal{D}} \Lambda_{0}^{\prime}(W)$. Thus we get from (4.8), $\rho_{n}\left(R_{n}^{p}, a_{n}\right) \xrightarrow{\mathcal{D}} e^{-a \Lambda_{0}^{\prime}(W)}$ which completes the proof of (ii).
Example. (i) If $\alpha_{n}=n^{\delta}$, with $0<\delta<1$ and $F_{0}(x)=1-e^{-x^{\frac{1}{\nu}}}$ with $\nu>0$ then $\psi_{0}(x)=x^{\nu}$ and all the conditions of Theorem 5 (i) are satisfied.
(ii) If $\alpha_{n}=n^{\delta}$ with $\delta>1$ and $\psi_{0}(x)=x^{\nu}$ with $\nu>0$, then all conditions of (ii) of the theorem is satisfied.

Remark. For Theorem 5 (ii) to hold it is not necessary for ψ_{0} to be regularly varying, as is obvious from the proof of (ii). All we need is, $\sum_{i=1}^{\infty} \beta_{i}<\infty$ and Λ_{0}^{\prime} exists and has at most countably many discontinuities. Therefore if $\alpha_{n}=n^{\delta}$, with $\delta>1$ and $\psi_{0}(x)=e^{x}$ then the p.g.f. of $\xi_{n}^{p}\left(a_{n}\right)$ converges to the same limit, with the same choice of a_{n} as in the proof of (ii) of the theorem.

Acknowledgment. The research of Arup Bose has been supported by the J.C.Bose Fellowship, Department of Science and Technology, Govt. of India. His work was done while he was visiting Department of Economics, University of Cincinnati, USA. Sreela Gangopadhyay thanks Department of Science and Technology, Govt. of India for funding this research (scheme no. SR/WOS-A/MS-02/2006) and Indian Statistical Institute, Kolkata for providing research facilities.

References

[1] Arnold, B. C. and Villaseñor, J. A. (2007). On limit laws for sums of Pfeifer records. Extremes, 10(1): 235-248
[2] Arnold, B. C.; Balakrishnan, N. and Nagaraja, H.N. (1998). Records. Wiley, New York.
[3] Balakrishnan, N.; Pakes, A. G. and Stepanov, A. (2005). On the number and sum of near-record observations. Adv. Appl. Prob., 37: 765-780
[4] Bondesson, L. (1992). Generalized Gamma Convolution and Related Classes of Distributions and Dencities. (Lecture Notes Statist. 76). Springer, New York.
[5] Bose, Arup and Gangopadhyay, Sreela. (To appear). Convergence of linear functions of Pfeifer records. Extremes.
[6] Li, Yun. (1999). A note on the number of records near the maximum. Stat. Prob. Letters, 43: 153-158
[7] Li, Yun and Pakes, A. G. (2001). On the number of near-maximum insurance claims. Insurance Math. Econom. 28: 309-318
[8] Nevzorov, V. B. (1986). On the kth record moments and generalizations. Zapiski Nauchn Sem. LOMI 153: 115-121 (in Russian).
[9] Nevzorov, V. B. (2000). Records: Mathematical Theory(Transl. Math. Monogr. 194). American Mathematical Society, Providence. Rhode Island.
[10] Pakes, A. G. (2007). Limit theorems for numbers of near records. Extremes, 10: 207-224.
[11] Pakes, A. G. and Steutel, F. W. (1997). On the number of records near the maximum. Austral. J. Stat. 39: 179-193
[12] Pfeifer, D. (1984). Limit laws for inter-record times from nonhomogeneous record values. J. Organ. Behav. Stat. 1: 69-74.
[13] Resnick, S. I. (1987). Extreme values, regular variation, and point processes. Springer-Verlag, New York.

Arup Bose

Statistics and Mathematics Unit
Indian Statistical Institute
203 B. T. Road, Kolkata 700108
INDIA.
email: bosearu@gmail.com
Sreela Gangopadhyay
Statistics and Mathematics Unit
Indian Statistical Institute
203 B. T. Road, Kolkata 700108
INDIA.
email: gangopadhyay7@gmail.com res9616@isical.ac.in

[^0]: *Work done while the author was visiting Department of Economics, University of Cincinnati, USA. Research also supported by J.C.Bose Fellowship, Government of India.
 ${ }^{\dagger}$ Research supported by the Department of Science and Technology, Government of India, scheme no. SR/WOS-A/MS-02/2006.

