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Abstract

Asymptotic properties of the number of near records is known in the literature. We generalize these
results to the Pfiefer model which has a wider application. In particular we establish convergence in
probability, in the almost sure sense and in distribution for the number of near records under the Pfiefer
model.
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1 Introduction

Insurance companies often change their policy when they receive a claim which exceeds all previous claims,
so that under the new policy such claims would be less frequent in probability. The Pfiefer model of records,
Pfeifer [12]), has been used to model such situations. It is of interest to the company to study the total
value and number of claims which are “very near” to the record claims. Balakrishnan et. al. [3] and Pakes
[10] have studied properties of near records in classical setup where observations are i.i.d. with a common
continuous distribution. See also Li [6], Li and Pakes [7] and Pakes and Steutel [11]. In this article we
study properties of near records for the more general Pfeifer model (Pfeifer [12]) which we refer to as near
precords for short. The setup is as follows:

Let { X }i>0,j>1 be a double array of independent random variables. For each fixed i, {X;;,7 > 1} are
1.1.d. with a common cdf F; where

1—F=(1—Fy)™, Vi=1,2,...

for some sequence of positive reals {c; }.

The first precord RY is by convention Xo;. Now consider the row i = 1. Let
A(1) = inf{j : Xy; > RY}.
Having defined A(n), inductively define
A(n+1) =inf{j : Xpq1; > Xn,A(n)}v n>1.

Then Xo,1, X1,A(1), - - - Xn,A(n)s - - - are precords denoted by RY, RS, ... R} |, .. ..

Let a > 0. The number of near precords is a sequence of non-negative integers, {5 (a) },,>1, depending on
a, defined as
&(a) = #{j < Aln) : R —a < X,,; < RE}.

For a sequence {a, }, the corresponding {&h(a,,)} will be called the number of near precords with varying
window width.

The following representation for precords plays a crucial role in our analysis. Suppose Y7, Ys, ... are inde-
pendent random variables and
Yi ~ Exp(;) (1.1)

and for any distribution function F',
Yrp(z) = F ' (1—e™™). (1.2)

Then
D
(RY,RE,...RY) = (vp,(M1),¥p (Y1 +Ya),... (Y1 + Y2+ ...Y,)) foralln,

where Fj is the cdf of X, the basic underlying cdf of precords. See Arnold et. al. [2]. Unless otherwise
stated we will assume that Fy is a continuous, strictly increasing cdf with support, Supp(Fy) C [0, 00) and
o, non-decreasing positive reals, diverging to infinity. For convenience, we will denote ¢ g, by 1o in the
sequel.

In Section 2, we derive the distributions of &5 (a). In Section 3 we study asymptotic properties of &5 (a)
under various conditions on Fy and a,,. In Section 4, we study the limiting distributions of normalised
&h(ay,) with varying window width.



2 Distribution of ¢£(a)

Balakrishnan et. al. [3] have derived the distribution of &, (a) in the i.i.d. model. Using similar arguments
we have the following basic formula for the joint distribution of the number of near records in the Pfeifer
model. We need a few notation. For any cdf F',

F(zx)=1- F(x).

Note that
F,(z) = Fy""(x) forall n > 0.
Let i
F,
RP(z) = P(RY <) and p,(z,a) = ﬂ
F,(z —a)
Let

Fyti()44)
Hi(xjyi,xj) =P <O < Z < —log 12—
e Fj(z))

where Z 2 Z{::Hl Br X}, where (3, = ole and X are i.i.d. Exp(l) r.v.s.

Theorem 1 (i) P(¢h(a) = k) = [, pu(z,a)(1 — pp(z,a))*dRE (2).
(ii) The joint distribution of (&h(a1), &), 1 (a2), .- &8, (ax)) is given by

P(&h(ar) =r1,... &0y 1( ar) = r1k)
k
/ / / Pn+J 1(@ntj-1,5) (1 = pnyjo1(Tnsj—1,a5))" H dH) (Tnyj-1, Tnyj—2)dRY (2n).
Tn Tntk—2 j=1 j=2
(iii) The joint distribution of (§,(a1),&nvk(akr1)) is given by
P(&h(ar) = 1,8 p(apg1) = Tre1)

o0 o0
- / / (s 1) (L = (s @) s (e G s1) (L — Pt (@ es @i ) dH (s s 0 )ARE ().
—oo Jxnp

Proof (i) Clearly, P(&h(a) = k) = [, P = k|Rh = x)dR%(x). Using Nevzorov’s [8] deletion
argument we compute P(ﬁp ( ) = k\R{’L = x) as follows.

On the nth row of the rectangular array, we delete those observations X,,; such that X,,; < z — a. The
remaining observations on the nth row are all greater than z — a and are conditionally independent given
Rl = . Denoting these remaining observations by Y,,;, we have

P(Y”U < y) :P(an < y|Xn] >x — CL)

:Fn(y)_— F.(z—a) 1
E,(z—a)

Fu(y)
F.(z—a)
Therefore,

P(P(a)=Fk|RY =2)=P(You <z,Ypo <z,...Yor < z,Yor11 > )
=[1—- pn(m,a)]kpn(a:, a).



and (i) follows. The proofs of (ii) and (iii) follow from the two simple observations:

(a) For any finite increasing sequence n; < ng < ..... < n; and any positive reals a1, ao, . . ., a;,
P(a1),&h,(az2),. .., &h, (a;) are conditionally independent given Rh,, Rb,, ... R ..
and
(b) Hi(xj44, ;) is the transition probability function P(R]ﬂ < ij\R? = x;). Hence
J+i
P(R]—H < $J+Z|R = z;) Zﬁka: < ¢FO Tj+i |Zﬁka = T/JFO (z5))
k=1 k=1
J+i
= P( Y BXi < (0j04) — ¥R, (7))
k=j+1
Jti
Fy
= P(Y A < —log Lo,
k=j+1 0(z;)

3 Asymptotic behaviour of 7 (a)

Let
1
rr, = sup{support(Fo)}, lg, = inf{support(Fy)} and 5, = —.

«a

n

Note that 7, may equal oo. Balakrishnan et. al. [3] have shown that in the i.i.d. model, if rr, < oo, then

&n(a) — oo almost surely (a.s.) as n — oo. The fact that the records R,, have the closed form density

dﬁl‘ = W< log F(z))"~! plays a crucial role in the above work.

Though in the Pfeifer model dR” exists, it is not known in a closed form. Hence their arguments cannot be
used, unless {a, } are constant for all n. Our goal is to establish some of their results for {£h(a)} under the
Pfiefer model. We need the following Lemma.

Lemmal (i) If Y °°, 3, = oo then RY — rg, a.s..

(ii) If > 07| Bn < 0o then RS, — W a.s. where W is a continuous random variable with the same support
as Fy and with a strictly increasing cdf on its support.

Proof (i) Since > | 3; — o0, y_i"; 3i X} — oo as. where X are i.i.d. Exp(l), by the Kolmogorov
Three-series Theorem. Therefore, 1o(> 7, 3;iX) — rr, a.s. Hence R}, 2 o> 1 BiX]}) — rR, in
distribution and hence in probability. Since R}, are increasing, this convergence holds a.s..

Gi)If S0, B < oothen Y " | 2 < oo. Therefore, Y1 Var(B8;X;— ;) = > i 2 < co. Khinchine-
Kolmogorov’s 1-series Theorem implies that ) ;" | 5; X — V a.s. where V is a finite random variable.
Note that P(V > K) > P(41 X} > K) > 0 forany K > 0, however large. So V' is a non-degenerate GGC
(generalised gamma convolution) and hence has a strictly positive pdf for = > Iy = inf{support(V')}. See

Bondesson [4], page 30. Therefore V, an absolutely continuous random variable, has a strictly increasing
cdf on its support.



Consequently, R}, — W = ¢o(V) in distribution and hence a.s., by monotonicity of R%. Fy is continuous
and strictly increasing on (I, 7r,) by our assumption. So W is continuous and has strictly increasing cdf
on (Yo(ly),rr,). Now, for any € > 0,

PV <e) > [[P(BX] < W Z BiX; < (3.1)

=1 i=n+1

By Kolmogorov’s maximal inequality,

k 2
Z BiX; < Z Bi+=) > lim P( max | > (@-Xj—ﬁi)]<2)21—w (3.2)

i=n+1 i=n+1 e ntlsksm i=n+1 (4)
. n [e’e] Zzoovz()+l fB
Since ) " | 3; converges, we choose ng so large that Zi:no 410 < jand Tz < 2
4
Hence, from (3.2), P (3 C o 41 BiX <5)> % Further, for 1 < i < ng, P(3; X} < 551) > 0. It follows
from (3.1), P(V <€) > 0. Therefore lV = 0 and hence support(W) = (Ig,,rr,) = support(Fp). O

From now on, we will assume without loss of generality, [, = 0.

31 Casel. rp < oo

Proposition 1 (i) &5 (a) — oo in probability.

(ii) Suppose, o, T 00 in such a way that (a) > 2 (1 = A% < oo, ¥ X > 0and (b) > > —% < 0.
Then &5 (a) — oo a.s.

Proof. (i) It is enough to show that for any fixed k£ > 0, P(¢h(a) < k) — 0, as n — oco. Observe that
ko oo '
P(&(a) < k) = Z/ pn(x,a)(1 = pn(x, a))’ dRy (x)
=07

- /OO [1— (1= pu(x,0) ™ ]dRE (2)

— 00

<tb+1) [ pulwa)ami (o)

—00

= (k+1)E(pn(Ry, a)).

Recall that

pola,a) = F(fj,(_)) and p, (x,a) = po(, a)°*"

Fix any € € (0,77,).

P, < k) < (k+1)E(pn(R7, a))
= (k+ D E(pn(By, a)Igp <o) + (k + D) E(pn (R, a)Ipp>)
= (k + 1)[E1,n,6 + E2,n,e] (SaY)-

Since 0 < p,(RE,a) <1,
Eine < P(RP < e). (3.3)



Recall Lemma 1. If RY, — r F, a.s. then the probability in (3.3) converges to 0.

On the other hand, if R}, — W a.s. (see Lemma 1) then this probability converges to P(W < ¢). Since W is
continuous and greater than 0 a.s., by choosing € small enough, we can make P(W < ¢) and consequently,
Ej 5. as small as we like, for all n large enough. For Ej ,, ., observe that for any € € (0,75,), po(x,a) <
(1=X), V z € [e,rp,], for some A > 0 depending on e. Therefore, Fs, < (1 — X)* — 0, as by our
assumption, o, T co.

(ii) Now it is enough to show that ) (E1 5,.c + Eo ) < oo for small enough e.
Condition (a) implies that for any € > 0, Zn Es e < 00.

Now observe that,

El,n,e < P(Rg < 6)

= P(Y_BiX] <e)

n
P( E X; < eay,) since «; are non-decreasing.
i=1

As Y | X ~T'(n), the last probability above has an upper bound (60:177)” which is summable by condition
(b), if we choose € € (0,1). Now using Borel-Cantelli Lemma we have the desired result. O

)

Example. Let o, = n°, 0 < § < 1. Then conditions (a) and (b) of Proposition 1 are satisfied.

We now show that with an appropriate random scaling, &/ (a) has an exponential distribution. The result is
analogous to that in Balakrishnan et. al. ([3], Theorem 3.1(i1)), the proof is also similar.

Theorem 2 p,,(R%, a)¢k(a) 2 € where & ~ Exp(1).

Proof. Consider the moment generating function of p,, (R}, a)éh(a).

> e,gpn(Rg,a)gg(a)} = E[E(e frn(Bra)&i(a)) pp)

= [ 3 K )1 — o))
R k=0
= Ep [ pu(Fn, a)

34
1 _ e—@pn(erDua)(l - pn(R?rij (l)) ( )

Now, po(Rh,a) — 0if R}, — rp, a.s. and po(Rh, a) — po(W,a) < 1 as. if R, — W a.s. Since o, T oo,
in both the cases p,,(R%,a) — 0 a.s. Therefore, e~ (Fn:a) — 1 — 0p (R a) + o(p,(RY, a)). Using this
in (3.4) we get

1

0(pn(R£L7a))
1 + 9 + Pn(Rvaa)

E e—epnmﬁ,a)sz(a)] —E

As 0 < pu(RE,a) < 1, the integrand is bounded for any fixed 6 with |#] < 1 and hence by Bounded
Convergence Theorem the above expression converges to ?19 which is the moment generating function of
E(1). g

Remark. It follows that RY and p,, (R}, a)&h(a) are asymptotically independent.



Corollary 1 (i) If >_I | 32 — oo, then
log &h(a) — o Yoy fBi D N
Qny/ >im1 51‘2
(i) If Y52, B2 < ooand > % | B — 0o, then
log 8(0) — a0 iy B 1, |

Qn

0,1).

(iti) If >°72, Bi < oo, then

log (@) 1 |,

Qn

Here V1 and Vo are continuous random variables with densities.

Proof. (i) By Theorem 2, p,,(R%, a)¢%(a) 2 €. Taking log on both sides we have
o log(Fo(RE)) — an log(Fo(RY, — a)) + log €(a) > log €. (3.5)
Now, —log(Fy(RD)) 2 S, BiX}, where X} ~ Exp(1). Since Y1, 32 — oo, by CLT
D1 BiX] — 3 B N

2z 5

Note that Fy(R) — a) — Fy(rg, —a), aconstant (> 0) a.s. Therefore, adding and subtracting a, > v 3;
on left side of (3.5) and dividing both sides by a1/ i 4 ﬁf we get (1).

0,1).

For (ii) and (iii), we use similar arguments as in (i) and use the fact that > | 3;(X; — 1) converges a.s. to
S =32 Bi(X; —1), if >22, 82 < co. Since S is a convolution of 31 (X; — 1) and Y 0%, Bi(XF — 1)
and the former has a density, we infer S has a density and consequently V; and V5 have densities. ([

3.2 Casel2. rp =00

In this case, the asymptotic behaviour of £} (a) depends on p(a) = lim, .o po(z, a).

If p(a) < 1or RS, — W, then p,(Rh,a) — 0 a.s. and arguments of Proposition 1 and Theorem 2 go
through and we obtain the following Theorem. We omit the details of the arguments.

Theorem 3 If p(a) < 1 o1, p(a) = 1 but Rh, — W, then
(i) & (a) — oo in probability and

(ii)pn(Rh, a)éh(a) B €.

Unfortunately, when p(a) = 1 and R}, — oo, i.e. Y ;o; 8; = oo, the situation becomes quite complicated.

We deal with a special case below. Let Fo(x) = m%, as ¢ — oo (where v > 0 is a constant), then

p(a) = 1. Further,

pulw,a) = pola, )" = (1 - =)™, (3.6)



Theorem 4 Assume Fy(z) =

7’

asx — ocoand Y .o, B = oo. If

iy 9Y1ogan — 35, Bi
RO Wiy

then P(&h(a) = 0) — 1.

—o00, for some constant q > 1

Proof. Observe that, forall z > —%—+ (=x,), (1—2)” > 1— 4. By the Mean Value Theorem,
1-(1-62)7
a
Ip = ——1_7 > (3.7
A

where 1 — 3} < 7, < 1, so that 7, — 1. Now from (3.6) it follows that, for all z > z,,, pn(z,a) >
(1 — ﬁ%)a" — 1 as a, T oco. Therefore, given € > 0, there exists ng, depending on ¢ and ¢, such that for
alln > ng, pn(z,a)>1—¢ V>,

Fix any € > 0 and a ¢ > 1 for which the condition of the theorem holds. Then for all n > ny,

P(&P(a) =0) = /000 pn(z,a)dRP(x) > /00 pn(z,a)dRE(x) > (1 — €)P(RE > xp,). (3.8)

Also,

P(R? > x,) =

P> BiX; > —log Fy(wn)| - (3.9)

i=1

EﬁzX* > 1y (xn)

i=1

Using the expression (3.7) for x,,, we have

_ 1
—log Fo(xn) = —qylog Bn + ylogy — ’y(; —1)log v, +vloga
= qylog o, + k + o(1),

where k(= ylog(vya)) is a constant. Therefore, the probability on the right side of (3.9) can be written as

P

Zz 1/87,)(»< z 1/873 > QVlogan—Z?:1ﬂz k‘—|—0 )

V 2z 5 \ 2= 5 V 2ic e

Case 1. > !, ﬂ? — 00. Then by the Central Limit Theorem, the left side of the inequality in (3.10)
converges in distribution to standard normal variate.

(3.10)

Now two cases can occur.

Case2. 3 %, ﬂ? < oo. Then by the Khinchine-Kolmogorov Theorem, the left side of the inequality in
(3.10) converges in distribution to a random variable Z. That support(Z) = (—o0,0) is easy to prove
using Kolmogorov’s maximal inequality and the fact that ) ;" | 3; — occ.

It is clear from (3.8), (3.9) and (3.10) that both in Case 1 and Case 2, the claim of the theorem follows
immediately under the given condition. U

Example. If o, = n® and § < 1 then the condition of Theorem 4 is satisfied for all v > 0. If § = 1 then for
v < 1 we can find a ¢ > 1 such that ¢y < 1 and hence the condition of Theorem 4 is satisfied.



Remark. If the condition of Theorem 4 is not satisfied then it appears to be hard to conclude anything about
the behaviour of P(&h(a) = 0). However it is easy to see that
if .
i QY — D i Pi
im sup

ERERY) Wiy

then lim inf,, .., P(&h(a) = 0) > 0.

< oo for some ¢ > 1

4 Limiting distribution of number of near precords with varying window
width

Pakes [10] obtained several interesting limit theorems for number of near records with varying window
width in classical setup. In this section we investigate whether analogous results can be derived for the
Pfeifer model under some suitable conditions on Fy and «,,. Throughout we will assume r g, = oo. First we
will prove a lemma which we will use in the sequel.

Lemma 2 Suppose 1) is regularly varying with index v > 0 such that the derivative 1)y, exists and is
monotone.

(i) If 2?21 /@2 — 0
Ry —o(32i, Bi)

(/220 B (i Bi)
(i) If 02,82 <ooand Y ;2. Bi = o, then

Ry —o(Xoiy Bi) D,
Yo (> izt Bi) ’

2 N(0,1).

where Z is a finite random variable.

Proof. Observe that by the Mean Value Theorem

Ry — o> 2 (38X = Bwh(Vi) @.1)
=1 =1

=1

where V,* is a random variable lying between > ;" | 3; X and > ;" | ;. By our assumption on ¢ and v, we
% (uny)
70 g (un)
y”~1. So the limit is continuous and by our assumption ¥} (u,y) is monotone in y. Hence it follows that the
convergence of 120,((“1:”'7’)) is locally uniform in y, (see Resnick [13], page 1). Also since > ; 3; — oo, by
o\Un

SLLN, 21 BXD 4 a5, Therefore by the above discussion and setting > ;" | 3; = u,, and i) BiXP

have 1 is regularly varying with index v — 1. Therefore, for any u,, — oo, and y > 0, lim,,,

E?:l /87, Z?:l ﬂz
Yn, We have,
/ n N\ iy Bi XS
Ui, A7) _ V(i B0 panyn)
Yo (i Bi) Uo(Xizs i) P (un) 7
Then by monotonicity of ¢y, and the fact that V,* lies between Y ;" , 5; X, and ) ;" , f3; it follows,
/ *
YolV) 1 a.s. (4.2)

Yo (o1 Bi)

9



Now, (i) follows by (4.1), (4.2) and CLT for % (i1) follows from (4.1), (4.2) and Khinchine-
1=1"Mq

Kolmogorov’s 1-series Theorem for ", 5;( X — 1). O

Using the above lemma we can find the limiting distribution of &} (a,,) for a suitable choice of {a,}. In

the following, we will denote ;' by Ag. Observe that if v, exists and is monotone then A}, exists and is

monotone, as Aj(x) = m, (recall that 1) is continuous and strictly increasing by our assumption
0\70

and hence ¥, > 0 on (0, 00), if it exists). The following theorem gives limiting distribution for &, (ay,).

Theorem 5 Suppose 1) is regularly-varying with index v > 0 and the derivative 1), exists and is monotone.
Let a > 0 be given. Then there exists a sequence of positive reals {a,, } such that £, (a,) — & in distribution,
where

(i) & has geometric distribution with parameter e~ %, if > " | 3; — oc.

e—ahp(W) ]

(ii) & has mixed geometric distribution, with probability generating function E(sg) =F [W
—Ss(l—e

where W is the almost sure limit of Rb, if Z;’il B; < oo.

Proof. Let {a,} be a sequence of positive reals to be chosen later suitably. Easy computation yields

Plan)y pn(Rgha”)
BE(s) = F 1__3(1__pn(5%,an»)]'

Observe that for any fixed s with |s| < 1 the integrand is bounded since 0 < p,(Rh,a,) < 1. Hence

{ Pn Rn’an
1—s(1—pp (Rh (a
bution to the appropnate limit. First we will prove (i). Here two cases can arise.

Casel.> " | 32 — ooc. For this case, define A, = ¢o(>_1- Bi), Bn = (y/ >y BHUL(, 6;) and Z,, =
R?%RA”. Let g,(7) = Bpx + Ay so that g,(Z,) = Rh. Recall Ag(z) = —log Fy(z) and pp(Rh, ap) =
( F()(RI;L) )an

} is uniformly integrable. So it is enough to show that p,, (R}, a,)) converges in distri-

. Now using the Mean Value Theorem we have,

Fo(Rh—an)
—log pn(RE, an) = anMo(gn(Zn)) — ano(gn(Zn %7;))
= g No(0n(Z))61(22)
= a"%ZA/O(BnZ; + A,)B
:%%%M(+‘JW%Q££Q 43)

Do (2iz Bi)

where Z is a random variable lying between Z,, and Z,, — %—’;. By our assumption on g (see Resnick [13],
page2l),

. xp(x)

B o) - o
Therefore,
1 Bo y (/220 B0 (i Bi)
im — = lim
n—oo Ay, n—0o0 Yo(Doim Bi)
n 2 n / n )

—  lim \/ZZ 14 i (Zz’:lﬁi)wo(Zi:Iﬂz):O 4.5)

n—00 Zz 1ﬁz ”1—{20 ¢0(Z?:1ﬁ1)

10



since the first limit in (4.5) is 0 and second limit is v by (4.4). Also, if J%LL converges to 0, then since

Zn 2 N(0,1) and since Z,, lie between Z,, and Z, — - as., Z;, A N(0,1). This together with (4.5)
gives 1+ %Z: =1+ 0p(1). Since by our assumption on vy, A is a regularly varying function with index
% (see Resnick [13], page 23 ) and A{, is monotone, we can use similar argument as in the proof of Lemma
2. Here we set A, = u,, and 1 + %:Z; = y,, and replace 1, by A{,. Consequently,

A =N " 1+ 0,(1). (4.6)

Now choose

_ (S B)

n .
Qo

an

Observe that for this choice of a,,, B = 0. Putting this value of a,, in (4.3) and using (4.6) we have

—log pn(R?,ay,) = a(l + op(l))AIO(An)i/)é(Z Bi) = a(1 + op(1)), 4.7
=1

since A (AU (S0, B:) = Ap(tio(S0y B))0h (0, i) = 1. Therefore,
lim —log p,(RY,a,) = a in probability.

This proves (i) for Case 1.
Case2. > 0, 37 < .

We define A,,, By, gn and Z,, as Case 1. The only difference is, in this case Z Ny , where Z is a random
variable which is not standard normal. But clearly the same proof goes through. This completes the proof
of (i).

Now to prove (ii). Since Efil B; < oo now, RY — W a.s., where W is a continuous random variable (see
Lemma 1). Using the Mean Value Theorem, we have

—log pn(RY ay) = anAo(RE) — anAo(RE — ay,) = anan,Ay(REY), (4.8)

where R is a random variable lying between R}, — a,, and R},. Choose a, = . Since a, = = — 0,
n n

lim,, oo RY —a, = W a.s. which implies RP* — W a.s. Since by our assumption A{) is monotone, D,
the set of discontinuities of Aj) is at most countable. So P(W € D) = 0. Therefore Ay(R)") A Ay(W).

D o—ahy(W)

Thus we get from (4.8), p,,(R5, a,) — ¢ which completes the proof of (ii). ]

1
Example. (i) If a,, = n°, with 0 < § < 1 and Fy(z) = 1 — e~*" with v > 0 then ¢o(z) = 2" and all the
conditions of Theorem 5 (i) are satisfied.

(i) If ay, = n® with§ > 1 and o(x) = x¥ with v > 0, then all conditions of (ii) of the theorem is satisfied.

Remark. For Theorem 5 (ii) to hold it is not necessary for /g to be regularly varying, as is obvious from the
proof of (ii). All we need is, Y7, 3; < co and Aj exists and has at most countably many discontinuities.
Therefore if o, = n%, with & > 1 and 1)o(x) = € then the p.g.f. of &5 (a,) converges to the same limit,
with the same choice of a,, as in the proof of (ii) of the theorem.
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