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ABSTRACT

In this note we present a operator formulation of gauge theories in a quantum phase space which
is specified by a operator algebra. For simplicity we work with the Heisenberg algebra. We
introduce the notion of the derivative (transport) and Wilson line (parallel transport) which
enables us to construct a gauge theory in a simple way. We illustrate the formulation by a
discussion of the Higgs mechanism and comment on the large N masterfield.
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1 Introduction

Recently there has been much interest in the study of non-commutative (nc) geometry
in the context of quantum field theory (including gauge theories) and string theory
[1, 2, 3, 4, 5, 6, 7, 8, 9] There are several directions of exploration. To begin with let us
cite some examples of nc geometry.

1. Witten’s open string field theory is formulated with a associative, non-commutative
product [10].

2. The BFSS matrix model formulation of M-theory. Here space coordinates are matrices
and hence there is a natural associative, non-commutative product. If we express the
Hamiltonian of this model in terms of variables that describe 2-branes the associative,
non-commutative matrix algebra is reflected in the 2-brane world volume being a 2-dim.
phase space. [11, 12].

3. World volume theories of brane systems in the presence of certain moduli fields like the
Neveu-Schwarz BNS (in the Seiberg-Witten limit) become field theories where ordinary
multiplication of fields is replaced by the Moyal star product in a phase space. [13] .

4. In the study of the large k limit of the SU(2) WZW model describing open strings moving
on a group manifold one encounters the coadjoint orbits of SU(2). These are 2-spheres
with a natural symplectic form (called fuzzy 2-spheres.) The radius of the coadjoint orbit
is j ≤ k/2. [14]

5. The fuzzy 2-sphere also occurs in the Polchinski-Strassler description of bulk geometry in
the presence of relevant perturbations of the D3 brane system [15, 16].

6. The c=1 matrix model is exactly formulated as a particular representation of the W∞
algebra, that comes from 1-dim. non-relativistic fermions. The coadjoint representation
is carried by the phase space density u of fermions constrained by the equation u ⋆ u = u,
which is a quantum statement of fermi statistics [17]. Collective field theory [18] describes
the classical geometry limit where the constraint involves the ordinary product u2 = u.

7. The gauge invariant description of 2-dim. U(N) QCD with fermions also leads to a specific
representation of the W∞ algebra. Here too the coadjoint representation is described by
the equation M ∗ M = M where M represents the gauge invariant Wilson line between
two quarks. The Regge trajectory of mesons appear as solutions of the small fluctuation
equation around the large N classical solution of M ∗ M = M [19].

The examples cited above share one important feature in common: they are theories whose
fields are valued in a quantum phase space rather than on a manifold. It is presently not clear
how Witten’s string field theory fits into this framework. 1

1Witten has recently made progress in this direction. See the note added at the end of this paper.
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The quantum phase space is specified by a operator algebra. By virtue of this, these
fields become operators and act in an appropriate Hilbert space. If one considers the coadjoint
representation of the operator algebra then one can have a correspondence between the operator
valued fields and classical functions on the coadjoint orbit. For the simplest example of the
Heisenberg algebra the coadjoint orbit corresponds to the familiar phase space. The composition
law for functions on the phase space is the Moyal star product. This point is briefly reviewed
in the next section and is called the Weyl-Moyal correspondence.

Besides the fact that space-time is non-commutative at the fundamental level, as suggested
by the Matrix model formulation of M-theory, (see also [20]) this new type of field theory
has many interesting properties. One very significant property is the IR/UV connection [21].
Such a connection is indeed novel and seems to signal a breakdown of decoupling. As has
been suggested it may be useful in understanding the cosmological constant problem [21].
Another important property of a nc theory is the role it plays in the resolution of singularities
[22, 23, 24]. Another use can be in understanding the large N limit of gauge theories.

With these and other applications in mind it is important to understand these theories in
various ways. In this note we formulate a gauge theory on a quantum phase space. Our main
point is to give a formulation directly in the language of operators, using simple rules that
physicists are familiar with. For simplicity we discuss the Heisenberg algebra and show that
the operator formulation of the gauge theory corresponds to a formulation on the coadjoint
orbit (phase space) in terms of the Moyal star product.

In section 2. we introduce the basic notion of a derivative operator which can translate
operators. We also introduce the notion of operator valued forms, the exterior derivative, the
wedge product and the Dirac operator. In section 3. we discuss the Weyl-Moyal correspondence.
In section 4. we introduce the notion of parallel transport of operators using the Wilson line.
We also introduce the corresponding gauge field , gauge transformations, field strength, action
and instanton number. In section 5. we define the Wilson loop. In section 6. comment on the
quantum theory. In section 7. we discuss the Higgs mechanism and in section 8. we make some
remarks on the large N master field.

2 The Derivative Operator on a Quantum Phase Space

A quantum phase space is specified by an operator algebra. This algebra can have finite or
infinite number of generators. Examples of finite number of generators are the Heisenberg
algebra and Lie algebras of compact and non-compact groups. The algebras with infinite
number of generators are eg. the Kac-Moody algebra and the Virasoro algebra. One can and
should include super-algebras to this list.

To simplify matters we restrict ourselves to the Heisenberg algebra.

[Xi, Xj] = iIθi,j (1)

where , I is the identity operator, i, j = 1, 2, .., 2d, and θi,j is a real anti-symmetric, invertible
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matrix, with inverse θ−1
i,j . We have to specify the Hilbert space on which these operators act. For

our present purposes we can take this to be the space of delta-function normalizable functions
in d-dimensions.

Using the basic operators (1) we can construct other operators in terms of polynomials of
Xi over the complex numbers. Instead of a polynomial basis we can more fruitfully use the
Weyl basis defined by the exponential operators

g(α) = exp iαiXi (2)

In this way we can introduce complex, self-adjoint and unitary operators in the Hilbert space.

Since we would like to develop an operator calculus, the first thing that we should do is
to define the derivative operator and the notion of translations in the space of operators. We
define the derivative by,

∂i = θ−1
i,j adXj (3)

where the adjoint action is defined by (adA)B = [A, B]. This derivative operator has a number
of important properties which we list:

1. ∂i is anti-hermitian and linear,

∂
†
i = −∂i

∂i(a1O1 + a2O2) = a1∂iO1 + a2∂iO2

(4)

2. ∂i satisfies the Leibniz rule,

∂i(O1O2) = (∂iO1)O2 + O1(∂iO2) (5)

3. ∂i commute amongst themselves,
[∂i, ∂j] = 0 (6)

4. The commutative property of the derivative enables us to introduce the notion of an exterior
derivative that acts on operator valued forms. The operator valued n-form and its exterior
derivative are defined by,

O(n) =
∑

Oi1,..,indyi1 ∧ ... ∧ dyin

dO(n) =
∑

∂i1Oi2,..,indyi1 ∧ ... ∧ dyin+1

(7)

In the above dyi are real 1-forms. The commutative property of the derivative clearly implies
that d2 = 0.

Using the above definition of the operator valued n-form we can introduce the notion of a
non-commutative wedge product

O(n)∧̄O(m) = Cn,m

∑
Oi1,.,inOin+1

, ., in+mdyi1 ∧ ... ∧ dyin+m
(8)
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Cn,m is a normalization constant. The above definition of the wedge product is associative.
One can also define ⋆O(n) the Poincare dual of O(n) in the standard fashion using the totally
antisymmetric ǫ tensor in 2d dimensions.

5. ∂i is the generator of translations in the following sense,

exp iai∂i O(X) = O(X + Ia) (9)

6. The integral of an operator is defined by its trace in the corresponding Hilbert space. Then
using the trace formula TrA[B, C] = Tr[A, B]C we have the formula for integration by parts,

TrO1(∂iO2) = −Tr(∂iO1)O2 (10)

We note that there is no ‘surface term’.

7. We can introduce the Dirac operator 6 ∂ = γi∂i, where γi are the standard Dirac gamma
matrices. Note that (6 ∂)2 = ∂i∂i.

The Landau Condition

The defining equation for the derivative operator can be understood in a more physical
setting by introducing additional momentum operators Pi and extending the algebra,

[Pi, Pj] = 0 (11)

[Pi, Xj] = −iδijI (12)

and introducing the constraint,
adPi = ∂i = θ−1

i,j adXj (13)

On states in the Hilbert space this equation becomes the Landau constraint [25, 26, 27, 28],

(Pi − θ−1
i,j Xj)|Ψ >= 0 (14)

which implies for such states the uncertainty principle,

δXiθ
−1
i,j δXj ≥ 1 (15)

3 Weyl-Moyal Correspondence

The Weyl-Moyal (WM) correspondence is best understood in terms of the operators g(α) =
exp iαiXi. Using (1) these operators satisfy the Heisenberg-Weyl algebra,

g(α)g(β) = exp (
1

2
θi,jαiβj)g(α + β) (16)

The WM correspondence is given by

O(X) =
∫

d2d α g(α, X)Õ(α) (17)
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Õ is the Fourier transform of O. Using (16) we can derive correspondence between the operator
product and the star product,

O1O2 =
∫

d2d α g(α, X)Õ12(α)

O12 = O1 ⋆ O2

O1 ⋆ O2 = exp(i
1

2
θi,j

∂

∂ξi

∂

∂ηj

)O1(x + ξ)O2(x + η) |ξ=η=0 (18)

Using the WM correspondence, we can easily prove the correspondence,

∂iO(X) =⇒ ∂iO(x)

O(X)1O(X + Ia)2 =⇒ O(x)1 ⋆ O(x + a)2

(19)

4 Parallel Transport of Operators, Wilson Lines and Gauge Fields

In section 2. we introduced the notion of translating operators. In this section we introduce the
notion of parallel transport and connection. For convenience of presentation we will suppress
the U(N) indices carried by the various operators.

Consider the set of operators Φ(X), which transform under the right action of the group of
unitary operators {Ω(X)}

Φ(X) → Φ(X)Ω(X) (20)

Then clearly
Φ(X)Φ(X + Ia)† (21)

is not gauge invariant under the gauge transformations

Φ(X) → Φ(X)Ω(X) (22)

Φ(X + Ia) → Φ(X + Ia)Ω(X + Ia) (23)

The standard way to form a gauge invariant operator is to introduce the Wilson line
U(X, X + Ia), with gauge transformation

U(X, X + Ia) → Ω(X)†U(X, X + Ia)Ω(X + Ia) (24)

and the property that U(X, X) = I and U(X, X + Ia)† = U(X + Ia, X). The operator

Φ(X)U(X, X + Ia)Φ(X + Ia)† (25)

is gauge invariant.
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Now a similar construction is possible for those operators Ψ(X) which transform under the
left action of the group of unitary operators,

Ψ(X) → Ω(X)Ψ(X) (26)

In this case the gauge invariant operators are given by,

Ψ(X)U(X, X + Ia)†Ψ(X + Ia)† (27)

The Connection:

Using the Wilson line for infinitesimal ai = ǫi we can introduce the definition of the operator
valued connection,

U(X, X + Iǫ) = exp(iAi(X)ǫi) (28)

The operator Ai(X) is Hermitian and the gauge transformation of the Wilson line implies the
gauge transformation of the operator valued gauge field.

Ai(X) → Ω(X)†(Ai(X) − i∂i)Ω(X) (29)

Covariant Derivative and Field Strength:

The operator covariant derivative and the field strength are defined by,

Di = −i∂i + Ai(X) (30)

Fij(X) = i[Di,Dj] (31)

Both the covariant derivative and the field strength are gauge covariant and the Jacobi identity
for the covariant derivative implies the Bianchi identity for the field strength,

[Di, Fjk] + [Dj, Fki] + [Dk, Fij] = 0 (32)

The Action and Equations of Motion:

The gauge invariant action is given by

S =
1

4g2
Tr(F(X)∧̄⋆F)

=
1

4g2
Tr(Fij(X)Fij(X)) (33)

In the above we have chosen the euclidean metric. From the above action we can easily
derive the equations of motion by requiring the action to be stationary w.r.t the variation
Ai(X) → Ai(X) + δAi(X),

Di Fi,j(X) = 0 (34)
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We can also define the nc version of the instanton number

I = Tr(F(X)∧̄F)

= Tr(Fi,j(X)Fk,l(X)ǫijkl) (35)

(In the above formulas the trace can also includes a trace over U(N).)

It is also possible to introduce the following operator current,

Ji = ǫijkl(Aj∂kAl + i
2

3
AjAkAl) (36)

so that (35) can be written as,
I = 4 Tr(∂iJi) (37)

Using the WM correspondence it is easy to prove that the operator formulation given above
goes over into a gauge theory formulated in terms of a real connection, and the star product,
e.g.

Ai(X) −→ Ai(x)

Fij(X) −→ ∂iAj − ∂jAi + i(Ai ⋆ Aj − Aj ⋆ Ai)

(38)

In the operator formulation the gauge group is generated by all unitary operators. The
generators of this gauge group are the set of all Hermitian operators: {H(X)}, and {Ω(X) =
exp iH(X)}. Expressing the exponential as a series we can easily obtain the correspondence
for the gauge group,

exp iH(X) −→ (1 + H(x) +
1

2
H(x) ⋆ H(x) +

1

6
H(x) ⋆ H(x) ⋆ H(x)...) (39)

5 The Wilson Loop

Let us now present the expression for the Wilson loop operator. Consider a curve Γ in R2d and
divide it into n → ∞ infinitesimal segments each denoted by a tangent vector ǫm

i . i = 0, 1, 2..n
and ǫ0

i = 0. Since the loop is closed we have
∑

i = 1nǫm
i = 0. The Wilson loop is composed of

a product of Wilson lines around the curve,

W (Γ) = Tr
n∏

m=0

U(X + Iǫm, X + Iǫm+1)

= Tr
n∏

m=0

exp i(Ai(X + Iǫm+1)(ǫm
i − ǫm+1

i )) (40)

W (Γ) is gauge invariant. It would be useful to see the connection of this formulation with the
reduced model of lattice gauge theory [30, 31].
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6 The Quantum Theory

Until now we have been dealing with a classical theory whose fields are defined on a ‘quantum
phase space’ specified by the matrix θi,j . Quantization of this theory consists of studying
fluctuations whose strength is controlled by the gauge coupling. One quantization procedure
appeals to the WM correspondence and gives a path integral prescription in which one integrates
over the histories of the gauge field Ai(x). Another approach to quantization is to quantize the
matrix elements of Ai(X) in a coherent state basis [29].

7 The Higgs Mechanism

We now discuss ‘matter fields’ in the nc gauge theory. For simplicity we discuss matter fields
Ψ(X) with gauge transformation (only left action) Ψ(X) → Ω(X)Ψ(X). The gauge invariant
action is given by

S =
1

4 g2
Tr(Fi,j(X)Fi,j(X)) +

1

2
Tr (DiΨ)†(DiΨ) +

1

4
Tr(Ψ†Ψ − a2 I)2 (41)

To discuss the Higgs mechanism, we write Ψ = UH, where U is unitary and H is Hermitian,
and perform the gauge transformation to the unitary gauge Ψ → U †Ψ. In this gauge the
potential term becomes V = 1

4
Tr(H2−a2 I)2 and the ground state is a solution of the operator

equation,
H3 = a2H (42)

or equivalently
H ⋆ H ⋆ H = a2 H (43)

If we assume that H−1 exists then (42) reduces to

H2 = a2 I (44)

Such operator equations were originally discussed in [17, 19] They have also been recently
discussed in the context of soliton solutions of nc field theories [32]. See also [33, 34] for
subsequent applications. The minimum energy solution is given by H = |a|I, where we have
absorbed a possible sign ambiguity by a gauge transformation. This leads to a ‘mass term’ for
the gauge field |a|2 Tr(AiAi). It would be interesting to look for vortex like solutions in these
models.

8 The large N Master Field

Let us now consider the nc gauge theory with additional color gauge group U(N). In ref.
[21, 35] the perturbation expansion in the maximally non-commutative regime (θ → ∞ ) was
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discussed. In this limit the leading term in the perturbation expansion consists of planar graphs
which have no theta or N dependence except for an overall phase involving θ and a multiplicative
factor of N2. Hence the problem of summing planar diagrams of the nc gauge theory is mapped
onto the problem of solving the nc gauge theory in the θ → ∞ limit.

Let us choose θij = θ

(
0 −1d

1d 0

)
and write the gauge theory in terms of the scaled

operators Xi√
θ

or after the WM correspondence, in terms of the scaled co-ordinates xi√
θ
. If we

require that the gauge field has the transformation Ai(
xi√

θ
) =

√
θAi(x), then the action becomes

S =
θ

2d−4

2

4g2

∫
d2dxtr(Fij ⋆ Fij) (45)

and the path integral is given by

Z =
∫

DAi(x)e−S (46)

For 2d > 4 and the path integral is evaluated in the θ → ∞ limit by the saddle point
δS

δAi(x)
= ∇iFij = 0. Reverting back to the operator formalism, for 2d > 4, is given by four

θ → ∞ operators Ai(x) which satisfy the n.c YM equations

DiFij = 0 (47)

It is reasonable that (38) are equations for the U(∞) master field for 2d > 4.

The situation in the most interesting dimension is certainly more complicated and the
Schwinger-Dyson equations approach [36] may help. Finally it would be interesting to make a
connection of the large N limit of nc gauge theory with non-commutative probability theory as
applied to the problem of the large N limit by Gopakumar and Gross [37].

Note added:

After this work was completed we received [38] where an approach similar to ours has been
discussed. However the derivative operator discussed in this paper (equation 2.7 ) does not
necessarily commute in different directions. Gross and Nekrasov [39] have also presented the
basic ingredients of the nc gauge theory in the operator formulation. Their derivative operator
is identical to ours. Recently, Witten [40] has shown the emergence of the Moyal product in
the large B-field limit of string field theory.

It turns out that the geometrical construction of the non-commutative gauge theory
presented here can be shown to be equivalent to the perturbation of the IKKT model [41]
around the brane configuration defined by (1). This point has been made in [30, 31]. We would
like to thank R. Szabo and A. Dhar for pointing this out to us.
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