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Abstract. We review the theory of the microscopic modeling of the 5-dim. black hole of type 11B
string theory in terms of th®;—D;5 brane system. A detailed discussion of the low energy effective
Lagrangian of the brane system is presented and the black hole micro-states are identified. These
considerations are valid in the strong coupling regime of supergravity due to the non-renormalization
of the low energy dynamics in this model. Using Maldacena duality and standard statistical me-
chanics methods one can account for black hole thermodynamics and calculate the absorption cross
section and the Hawking radiation rates. Hence, at least in the case of this model black hole, since
we can account for black hole properties within a unitary theory, there is no information paradox.
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1. Quantum mechanics and general relativity

The application of quantum field theory to general relativity (GR) leads to some basic
problems:

1. The problem of ultra-violet divergences renders GR an ill-defined quantum theory.
This specifically means that if we perform a perturbation expansion around flat Minkowski
space-time (our world!) then to subtract infinities from the divergent diagrams we have
to add an infinite number of terms to the Einstein—Hilbert action with coefficients that are
proportional to appropriate powers of the ultraviolet cutoff.

There is good reason to believe that string theory solves this ultra-violet problem because
the extended nature of string interactions have an inherent ultra-violet cutoff given by the
fundamental string lengtk/a’. One also knows that in string theory the Einstein—Hilbert
action emerges as a low energy effective action for energy scales much larger than the
string length and Newton’s constant (in 10-dim.) is given by

Gho = k7o = 8nlgla'?, (1)

whereg; is the string coupling.
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2. The solutions of general relativity can be singular. There are a variety of singularities
that have been encountered. Examples are i) the singularity of the black hole solution, ii)
the singularities encountered in various brane solutions of supergravity, iii) singularities
of the cosmological solutions of GR etc. A quantum theory of gravity must present an
understanding about what are good and bad singularities in the sense whether one can have
a well defined quantum mechanics in their presence. String theory has resolved some of
these singularities, but a complete understanding of the issue of singularities is still lacking.

3. While the above problem is related to the high energy (short distance) behavior of
GR, there exists another problem when we quantize matter fields in the presence of a black
hole which does not involve high energy processes. This problem is called the information
puzzle and in the following we shall explain the issue and also summarize the attempts
within string theory to resolve the puzzle in a certain class of black holes.

String theory has been proposed as a theory that describes all elementary particles and
their interactions. Presently the theory is not in the stage of development where it can pro-
vide guantitative predictions in particle physics. However in case this framework resolves
some logical problems that arise in the applications of quantum field theory to general
relativity, then it is a step forward for string theory.

4. Finally there is the problem of the cosmological constant, which is getting renewed
attention in recent times.

In this review we will discuss only point 3. We will focus on the black hole solution
of 1IB string theory and discuss its modeling by the—D; system of branes. We will
describe the low energy excitations of this system and learn how they couple to the bulk
supergravity degrees of freedom using Maldacena duality. We will present the calcula-
tion of the Hawking rate for a class of massless particles which agrees with supergravity
calculations due to the high degree of supersymmetry abtheDs; system.

2. Organization of the notes

e Sections 3 and 4 present a general description of black hole thermodynamics and the
information puzzle.

e Section 5 presents the string theory framework for black holes.

e Section 6 presents various supergravity solutions of relevance to our discussion: The
BPS and the non-BPS black hole solution, the Maldacena limit arsty AdS?3, and
the solution with a non-zero value of the Neveu—Schwizifeld in the4 compact
dimensions. We also discuss the semi-classical derivation of Hawking radiation.

e Section 8 presents the;—D; system and th&/ = 4, U(Q1) x U(Q5) gauge theory
in 2-dimensions. We discuss low energy degrees of freedom and the conformally
invariant sigma model at the infrared fixed point.

e Section 9 presents the discussiondf branes as solitonic strings of tii& gauge
theory. We discuss the moduli space of instantons which forms the target space of
the solitonic strings.

e Sections 10-12 discuss thé = 4 super conformal algebra, thé = (4,4) SCFT
on the orbifold(7*)?+%5 /S(Q1Q5), and the classification of states of the SCFT in
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terms of the supergrol§lU (1, 1|2). We identify the maximally twisted sector of the
SCFT with the set of states that constitute the black hole.

e Section 13 compares the near horizon supergravity moduli and correspondence with
SCFT operators.

e Section 14 discusses the microscopic derivation of Hawking radiation.

e Section 15 discusses some future directions.

In sections 10-12 there is overlap with Justin’s PhD thesis [10]. The details of the
construction of all the chiral primaries have been presented there.

3. The classical black hole horizon

Classically a black hole is a solution of the GR equations, and it is characterized by an event
horizon, which is a null surface. The horizon is a one way gate, in the sense that once we
are inside it we cannot get out because of the causal structure of the black hole spacetime.
Physically one can imagine the formation of an event horizon due to the bending property
of light by the matter that makes up the black hole.

Let us list a few properties of classical black holes: (see e.g. the text book by Wald [1]).

Firstly the event horizon has an area and there is a area law which states that in any
adiabatic process involving black holes the final area of the event horizons is never less
than the initial area(s):

Ars > Ay + As. (2

The ‘no hair theorems’, tell us that the state of a classical black hole is completely char-
acterized by its mass, angular momentum and global gauge charges. In particular the area
of the event horizon depends only on these quantities. If we perturb a black hole then the
perturbation decays in Planck time, and the new state of the black hole is again charac-
terized by a event horizon whose area has increased and is characterized by the changed
mass, angular momentum or charge of the final state.

The area law (2) prompted Bekenstein [2] to associate a entropy with the black hole that
is proportional to its area:

S = aA, (3)

where @’ is a universal constant. The area law (2) then resembles the second law of
thermodynamics where the black hole is treated as a macroscopic object,

Si2 > S1 + Ss. (4)

From the viewpoint of classical general relativity there is no information puzzle because
the stuff that went inside a black hole stays inside because the horizon is a one way gate.
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4. Quantum mechanics and the information puzzle of black holes

In the quantum theory since the absorption process is described by the matrix element
of a hermitian hamiltonian, the emission amplitude is necessarily non-zero. Black holes
radiate.

Application of quantum field theory to matter propagating in a black hole background
leads to the following results which we briefly summarize:

Black holes behave like black bodies. They emit thermal radiation and they are char-
acterized by a temperature which depends only on the mass, angular momentum and the
global charges of the black hole. The fundamental formula for the temperature, due to
Hawking [3] is given by

hk
- (5)

k is surface gravity (acceleration due to gravity felt by a static observer) at the horizon of
the black hole. For a Schwarzschild black hole:

1
N AGNM

The constant of proportionality in (3) is determined using the first law of thermodynamics
and the temperature formul&@ds = dM,

(6)

3

T 4GNR

Using this we can now interpret (4) as the second law of black hole thermodynamics.

Formula (7), called the Bekenstein—Hawking formula is very fundamental because it is
a formula that counts the effective degrees of freedom of the black-holk.is a basic
unit of area and it has all the 3 fundamental constants in it.

The Hawking radiation as calculated in semi-classical GR is a mixed state. It turns
out to be difficult to calculate the correlations between the ingoing and outgoing Hawking
particles in the standard framework of general relativity. Such a calculation would require
a good quantum theory of gravity where controlled approximations are possible.

If we accept the semi-classical result that black holes emit radiation that is EXACTLY
thermal then it leads to the information puzzle:

Initially the matter that formed the black hole is in a pure quantum mechanical state.
Here in principle we know all the quantum mechanical correlations between the degrees
of freedom of the system. In case the black hole evaporates completely then the final state
of the system is purely thermal and hence it is a mixed state. This evolution of a pure state
to a mixed state is in conflict with the standard laws of quantum mechanics which involve
unitary time evolution of pure states into pure states.

Hence we either have to modify quantum mechanics, as was advocated by Hawking
[4], or as we shall argue, the other possibility is to replace the paradigm of quantum field
theory by that of string theory. In string theory we retain quantum mechanics and resolve
the information puzzle (for a certain class of black holes) by discovering the microscopic
degrees of freedom of the black hole. In string theory the Hawking radiation is NOT
thermal and in principle we can reconstruct the initial state of the system from the final
state.

(7)

Sbh = aAh, a
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In standard statistical mechanics, for a system with a large number of degrees of freedom
we introduce a density matrix to derive the thermodynamic description. The same thing
can be done for black holes in string theory. In this way the thermodynamic formulas for
black hole entropy and decay rates of Hawking radiation can be derived from string theory.
In particular the Bekenstein—Hawking formula is derived from Boltzmann’s law:

S=InQ, (8)

where(2 is the number of micro-states of the system.

The possible connection of the degeneracy of the fundamental string spectrum with the
black hole entropy has been speculated by many authors and more recently by Susskind [5].
The approximate verity of this suggestion was demonstrated for the first time by Sen [6] for
supersymmetric extremal black holes with a small horizon area. Subsequently Strominger
and Vafa [7] gave a brane construction for a extremal black hole of 1IB string theory and
exactly verified the Bekenstein—Hawking formula using the Boltzmann’s formula. This
paper led to a lot of activity in the microscopic modeling of black holes and the description
and derivation of Hawking radiation from near extremal black holes to which this review
is devoted.

It is well worth pointing out that the existence of black holes in nature (for which there
is mounting evidence) compels us to resolve the conundrums that black holes present. One
may take recourse to the fact that for a black hole whose mass is a few solar masses the
Hawking temperature is very tiny(10 —8 degs. Kelvin), and not of any observable conse-
guence. However the logical problem that we have described above cannot be wished away
and its resolution makes a definitive case for the string paradigm as a correct framework
for fundamental physics as opposed to standard local quantum field theory.

5. The string theory framework for black holes

The basic point in the string theory description is that a black hole is described by a density
matrix:

p=g5 Il
S:md 9)

where|i) is a micro-state.

Given this we can calculate formulas of black hole thermodynamics just like we cal-
culate the thermodynamic properties of macroscopic objects using standard methods of
statistical mechanics. Here the quantum correlations that existed in the initial state of the
system are in principle all present and are only erased by our procedure of defining the
black hole state in terms of a density matrix. In this way one can account for not only the
entropy of the system which is a counting problem but also the rate of Hawking radiation
which depends on interactions.

Let us recall the treatment of radiation coming from a star, or a lump of hot coal. The
‘thermal’ description of the radiation coming is the result of averaging over a large number
of quantum states of the coal. In principle by making detailed measurements on the wave
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function of the emitted radiation we can infer the precise quantum state of the emitting
body. For black holes the reasoning is similar.

Hence in the string theory formulation the black hole can exist as a pure state: one among
the highly degenerate set of states that are characterized by a small number of parameters.
Let us also note that in Hawking’s semi-classical analysis, which uses quantum field theory
in a given black-hole space-time, there is no possibility of a microscopic construction of
the black hole wave functions.

We summarize the four basic ingredients we need in string theory to calculate Hawking
radiation from low temperature near extremal black holes:

1. The microscopic constituents of the black hole. In the case of the 5-dim. black hole of
type 1B string theory the microscopic modeling is in terms of a system gfD; branes
wrapped or§* x M,, whereM, is a 4-dim. compact manifold, which can be eit@ieror
K. Here we will considef 4.

2. The spectrum of the low energy degrees of freedom of the bound state/®f tHe
system. Usually these are arrived at weak coupling and we need to know if the spectrum
survives at strong coupling.

3. The coupling of the low energy degrees of freedom to supergravity modes.

4. The description of the black hole as a density matrix. This implies expressions for
decay and absorption probabilities which are related to S-matrix elements between initial
and final states of the black hole.

The decay probability from a stag to a statd f) is given by

, 1 .
Paecay (i = f) =) o, | (ISP (10)
,f
The absorption probability from a stdi to a statd f) is given by
. 1 e
Pavs(i = ) = D o I(fISI)*. (11)
if

In the above formulag ; and(?; refer to the number of final and initial states respectively.

One of the important issues in this subject is that 1 and 2 are usually known in the
the case when the effective open string coupling is small. In this case the Schwarzschild
radiusRs, of the black hole is smaller than the string lengthnd we have a complicated
string state. As the coupling is scaled up we go over to the supergravity description where
Rscn > I and we have a black hole. Now it is an issue of dynamics whether the spectrum
of the theory undergoes a drastic enough change, so that the description of states in weak
coupling which enabled a thermodynamic description is still valid. In the model we con-
sider we will see that the description of the weak coupling effective lagrangian goes over
to strong coupling because of supersymmetry. It is an outstanding challenge to understand
this problem when the weak coupling theory has little or no supersymmetry [8,9].

6. Black holes of 1IB string theory: Supergravity solutions

We will now present a summary of the SUGRA solutions of relevance tdtheD; sys-
tem. This will include the BPS and near BPS black hole solutions, and the near horizon
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geometry of theD,—D; system. We also discuss the geometry in the presence of the vev
of the Neveu—Schwaryg with components along the directions of the internal sfiatce
There is a huge literature on this subject and we refer the reader to the review by Mandal
[11]. The material relevant to our discussion can be found in [7,12-16].

6.1 The BPS black hole

Let us begin by describing type 1B string theory in 10-dimensions. This string theory has
32 real sypersymmetries. Its massless bosonic content in the NS-NS sector consists of the
metric G, 5, the dilatong and the 2—f0rme\fs). The R—R sector consists of the gauge
potentialsC™, n = 0,2, 4. The low energy effective action is given by

Stup = 2—22 dm:z:\/—G{e_Q“5 <R +4(Ve¢)? — L(H(3))2>

b

1
2.3! !

(F(3))2H(F(5))2} + 4—12 / CHONFO ANH®), (12)
. K

where(H®))2 = H HEMNP (p(n))2 — FJ(\Z)MMHF(”)MI“'M" and, using the stan-
dard form notation,
H® =dBg)

)

FO —go® FO — g0 _Loo) A g® L 1pe A pe (13)
’ 2 2 '

The self-duality constraintF® = F(®), is imposed at the level of the equations of
motion. Also,x? = 871Gy, WhereGyy = 8m%g2a’* is the 10-dimensional Newton’s
constant (in the convention that the dilatgnyvanishes asymptotically).

Let us now present the supergravity solution that preserves 4 out of the 32 SUSYs of
the original theory. A simple ansatz is to consider all the bosonic fields in (12) to be zero
except the metri&7,, 5, the dilatong and the Ramond 2-forr@'2. We compactify the
6,7,8,9 directions on a torug'* of volumeV, and thez; direction on a circle of radius
Rs5. We then wraff) s Ds-branes along the directiofis6, 7, 8,9 and@; D;-branes along
the x5 direction. We introducéV units of momentum along the; direction in order to
obtain a black hole of finite horizon area. The supergravity solution with these boundary
conditions is given by:

ds® = f77 {23 (—dt? + da? + k(dt — das)?)
HFE [ (daf 4 - 4 dad) + fE fy 2 (dag + -+ da),

1
—2¢ _ -1
€ =—ff
g2 ot

1 .-
Ciy =5 =),

1
F3) = (dC®) g = S€abeadafs, a,be,d=1,2,3,4 (14)

wheref;, f5 andk are given by
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167%gsa">Qq
Vir?

1671920 N
= . 1
o= R (15)

950’ Qs

=1+ -

7f5:1+

Herer? = 2} + 22 + 22 + 22 denotes the distance measured in the transverse direction to
all the D-branes.

The horizon in the above solution occurs-at 0 and we can read off the horizon area
and hence the entropy which is given by,

S: 27T\/Q1Q5N. (16)

The mass of the black hole for the above solution turns out to be a linear combination of
its 3 charges,

1
M= ?(alngl + a29sQ5 + aggSZN), (17)
S
where
R RV, 1
M=o T e PR (18)

Anticipating the microscopic modeling, this means that we have a marginal bound state
with zero binding energy. Also, since this is an extremal black hole its Hawking tempera-
ture is zero, a fact which will have an obvious explanation in the microscopic theory.

6.2 The near extremal limit and non-zero Hawking temperature

In order to have a black hole with a non-zero temperature we have to consider a non-BPS
and non-extremal black hole solution. This solution preserves none of the original 32 su-
persymmetries of the type 1B theory and can be obtained by allowing the total momentum
N to be distributed in both directions around thedirection. The solution in 10-dims. is
given by:

1 2 2\ —1
e2¢:—2<1+r—3><1+r—;> :
93 r r

2r?
F® = ZDe3 +2g.e %17 #g €3,

Js
F2\ M2 F2\ M2
1 5 2 2
2
(cosh odt 4 sinh odxs)? + (1 + %) 9sQs(dzd + -+ + d:ng)]

2 1/2 2 1/2
™ s
+ <1 + 7'_2> <1 + 7'_2>
wherexg is the Hodge dual in the six dimensiomng, . .., z; andes is the volume form
on the unit three-spherer; is periodically identified with perio@r R5; and directions

ds®

+

ﬁm|oﬁm

2N\ —1
(1 - ’"—°> dr? + r2d02 | | (19)

r2
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zg, ..., Lo are compactified on a tordE* of volumeV,. Qs is the volume of the unit
three-sphere in the transverse directions. This solution is parameterized by six independent
quantities: ry, 5,19, 0, Rs andV,. These are related to the numberi®f-branes,Ds5-

branes and Kaluza—Klein momentum:monas follows,

Vi 2¢ V47'2
A @ - 41
@ 6476g2a’3 /e o 16mta’g,’
1 r2
=—— | F® =_5
@s A2/ / gsa'’
R2Vyr2
N=_—2"20_xjnh 2. 20
ariarig? sinh 20 (20)

ro is the non-extremality parameter. A§ = 0, the two classical horizons coincide. On
compactifying this solution to five dimensions using the Kaluza—Klein ansatz one obtains
a five-dimensional black hole with a horizormvat ry. The entropy and the mass of this
black hole is given by

5 A 2m’ryrsr cosh 20
4G5 4G ’
T r2 cosh 20
M:E<r%+r§+%>, (21)
where the five-dimensional Newton’s constant is
471'50(,492
G = _—— I8 22
= TR (22)

Let us now discuss the restrictions on the various parameters which result from the
requirement that the above solution makes sense in the quantum theory and that we are
actually describing a macroscopic black hole whose horizon is much larger than the string
lengthl; = v/o'. The above classical solution has a quantum significance only if the string
couplinggs — 0. This implies that the Newton couplings — 0, and hence the entropy
formula (16) implies that we have a finite horizon area only if

gs — 0,
With 9,01, 6.5, g2V fixed (23)

The formulae in (20) indicate that this is also equivalent to

gs = 0,
with 1, r5, rp, fixed. (24)

wherery = rgsinho. For a macroscopic black hole we require that the string length
is much smaller than the horizon area, or equivalently from (21) we conclude that
r1,75,rN > ls. Thisimplies

9sQ1 > 1, gsQs5 > 1, g2N > 1. (25)
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Sinceg;Q1, gs@5 correspond to the effective open string coupling constants, the macro-
scopic black hole exists at strong coupling!
The non-BPS black hole has a small Hawking temperature given by

To To€Xp —0
~J

Ty = < 1. (26)

27ryrs cosh o TriTs

In the near extremal limit, when for large ro ~ exp —a, we see thaly ~ 0(r3).
We also note that the black hole has a positive specific hddt= ¢T3 > 0. This is
unlike the case of the Schwarzschild bh A/ < 0.

6.3 The near horizon limit of Maldacena

In this section we will exhibit the form of the classical solution in the so called near horizon
limit of Maldacena [17]. To explain the basic point let us study the metric of the black hole
with the KK chargeN = 0. In this case the horizon area shrinks to zero, but that is not
relevant to the physical point we want to make. The metric then takes the form,

ds® = f 2 fs 2 (—dt* + dzd) + f7 f2 (dxi + -+ + dx})
+f2 f5 2 (dag + -+ + dz3),
1, .
e = —2f5f1 !

1
035 = §(f1 )7
1
Figg = ( )abc = §€abcd8df57 aabacad: 1727374 (27)
wheref; andf; are given by

167g.a’ N
flz%&a 5= L 4] Q5 (28)

4T T

herer? = z? + z% + 2% + =% denotes the distance measured in the transverse direction to
all the D-branes.

The basic idea of the near horizon limit is that, near the horizon of a black hole, the
energies of particles as seen by the asymptotic observer get red-shifted:

E =VGOE. (29)
In the metric at hand the red-shift factor is
VG = (fifs)M (30)

Clearly asr — oo the red shift factor is unity. However near the horizon we get the
equation

T
Ey = —E, 31
7 (31)
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whereR? ~ a'\/g2Q:1 Qs is the typical length scale that characterizes the geometry. For
r < R we see that the energy observed by the asymptotic observer goes to zero for finite
values ofE. This means that near the horizon (characterized by IR)gn excitation of
arbitrary energy looks massless. For massless modes this means that they have almost in-
finitely long wavelengths and for massive modes they appear as long wavelength massless
excitations. If one examines the potential energy of a particle in the above geometry then
in the near horizon limit the potential barrier becomes very high so that the modes near
the horizon cannot get out. In the exact limit@f and@; going to infinity the horizon
degrees of freedom become exactly massless and decouple from the bulk degrees of free-
dom. As we shall see later it is in this limit that the bulk string theory is dual to a SCFT
which also exhibits massless behavior in the infrared.

A more precise scaling limit of the geometry is given by

a =0, L,EU:fixed
(0]

_ W
v

= W = ﬁxed, ge —

95 .
o fixed. (32)

In this limit the metric in (27) becomes

U? dU?
ds? = o [m(—dxg + dxg) + gﬁ\/Q1Q5W + g6/ Q1Q5d9§

-H/%(dxg + ...+ dzd). (33)

Thus the near horizon geometry is that of%dx S3 x 7. Our notation for coordinates
here is as follows: A3 : (zo,25,7); S : (x,0,9); T* : (v6,77,28,29). 7,X,0,0
are spherical polar coordinates for the directionsz., 23, 4. The radius ofS® and the
anti-deSitter space B = va/(g2Q1Qs)"/*.

Note that the effective string coupling in the near horizon limit is given by

Gt = 96/ Q1/Qs. (34)

The formulas for the black hole entropy and temperature, which depend only on the near
horizon properties of the geometry, do not change in the near horizon limit.

It is important to mention the symmetries of the near horizon geometry. The bosonic
symmetries arise from the isometries of pdx S3. The isometries of the Ash
space form the non-compact grod®)(2,2), while the isometries ofS3 form the

groupSO4)g = SU(2)g x SU(2)y. The supergroups that contain this bosonic sub-
groupS0(2,2) x SO(4)g = (SL(2,R) x SU(2)) x (SL(2,R) x SU(2)) are either
Osp(3|2, R) x Osp(3|2, R) andSU (1, 1]2) x SU(1,1|2). ltis the latter that corresponds

to the symmetry of thé,—D5 system because the supercharges in this case transform as a
spinor ofSO(4) . We shall see that the identification of the near horizon symmetry group
SU(1,1]2) x SU(1,1]2) plays a crucial role in matching SCFT operators with the (dual)
supergravity modes.

Pramana — J. Phys.Vol. 56, No. 1, January 2001 11
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6.4 Supergravity solution with non-zero vevBks

Our discussion so far has been devoted to SUGRA solutions in which the values of all
the moduli fields were set to zero. Such solutions have the characteristic that the mass
of the D;—Dy system is a sum of the charges that characterize the system. Such bound
states are marginal, without any binding energy, and can fragment into clusieks-6f;
branes. The corresponding CFT has singularities. In order to obtain a stable bound state
and a non-singular CFT we have to turn on certain moduli fields. We will consider the case
whenBys iS non-zero.

The construction of the supergravity solution that correspond%tBBS configuration,
with a non-zeraByg was presented in [16]. See also [18]xs has hon-zero components
only along the directions 6,7,8,9 of the internal torus. From the view point of open string
theory this is then a non-commutative torus.

Here we will summarize the result. The solution contains, besitiesnd D5 brane
charges D3 brane charges that are induced by Bhes. For simplicity we consider only
non-zero values foB7y and Bgg. The asymptotic values are given 53;g°> = by9 and

ng’) = bgg. Itis important that at least 2 components of fiigs are non-zero, in order
to be able to discuss the self-dual and anti-self-dual components.
Below we present the full solution which can be derived by a solution generating tech-
nique. Details can be found in [16].
ds® = (fifs) 72 (=dt? + (da®)*) + (fufs) "/ (dr® + r°d)
(S 2 { 250 (@) + (@®)?) + 251 (daT)? + (d2*)) ), (35)
& = f1fs/ZpZy, (36)
Bl(\128) = (Z;1 sin p cos o(fi — fs) + beg)dx® A da®
+(Zy singpcosp(fi — f5) + brg)dx” A da, (37)
F® = cos p cos 1/1]2<3) + sin psin ’L/JK(B), (38)
F®) = Z;'(—f5cospsin VE® + fi cospsinpK®) A dzb A da®

+ZJ1(—f5 cossin K ®) + fy cos psin K ) A da™ A da®, (39)

2 72

Hy = [ sin? 9 + s cos® 1. (40)

A -1 Ho,p (O‘_l> _ 22 2
op =1+ » Mo = M1 8IN7 @ + 5 COS™ @,

Herebgs andbrg are arbitrary constants which we have added at the endbgaality
transformation that shifts the NB-field by a constant. Note that fgr = ¢ = 0 and
bes = byg = 0, the above solution reduces to the known solutiongr-D5 system
without B-field.

The above solution depends upon 4 parameters:s, and the angleg and, and in
general represents a systemi®f, D5 and D3 branes. Since we are seeking a solution
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that has no sourc®3; branes we require that the; brane charges are only induced by
the presence of the non-zelBys. This leads to certain conditions on the solutions which
we do not derive here, but whose physical implication we analyze. We discuss both the
asymptotically flat and near horizon geometry.

Asymptotically flat geometry

In this case the inducefl; brane charges along the (5,7,9) and (5,6,8) directions are
Qs =BYYQs, Qb =B Qs, (41)
where
BYY =bry, By = bes. (42)

There is a induced contribution to tii&, brane charge. The char@g of the sourceD,
branes is

Q1s = Q1 — bss brg @5, (43)

while the D5 brane charge remains unaffected by the moduli.

Mass

Let us now study the mass formula as a function of the charges and the moduli. The mass
corresponding to th% BPS solution [15], which coincides with the ADM mass, is given
in terms of the appropriate charges by

M? = (Q1 +Q5)* + (@3 — @3)*. (44)
This can in turn be expressed in termgof;, Q5 andbgs, bro
M? = (Q1s + besbroQs + Q5)” + Q3 (bss — brg)” (45)

We must consider the mass as a function of the moduli, holdingand@ ;5 fixed. We see

that for non-zero moduli we have a true bound state that turns marginal when the moduli
are set to zero. To locate the values of the moduli which minimize the mass, we extremize
the mass w.r.t the moduli. The extremal values of the moduli are

bes = —brg = £/ Q1s/Q5 — 1, (46)

This says that thé&xgs moduli are self-dual, in the asymptotically flat metric. The mass at
the critical point of the true bound state is then given by

M? = 4Q15Qs. (47)
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Near horizon geometry

In this case, absence Df;-brane sources is ensured if we set

o = B, o =BG, “
where
Bég) e R R, © cos i + bgg, (49)
)
B = % sin 4 cos ¢ + bry, (0)
Y

are the horizon values of the two nonzero components oBtffield. Moreover, we see
that in this case
h h
B((iS) _ _Bég) : (51)
Hy He
which is the self-duality condition on thB-field in the near horizon geometry. We also
note that the volume df* at the horizon is given by
V(h) _ Hips YSL) (52)
g = — = ==
r Hop oy Qs

The D, -brane charge that arises from soufze-branes in this case is given by

QY =" - BB Qs. (53)
One can show that
QY = Qus, (54)

where@ s is given by (53). Thus we see that not only do the paramétgrand b,
have the same values here as in the asymptotically flat case, even thel3pthanes are
identical, despite the totdD, -brane charges being very differentin the two cases.

Mass

Thei BPS mass formula in terms of the various charge densities in this case is

Mm\* (oW 2 QU QU 2
(h) = (h) + QS + - . (55)
Vs Viya V911999 /966988

Using (48)—(54) it can be easily seen that

(™) = Vi (40125 (56)
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Apart from the extra factor of th&* volume in the near horizon geometry, this is exactly
the same as (47). The extra volume factor correctly takes into account the difference in
the 6-dimensional Newton’s constant between the asymptotically flat and near horizon
geometries because of the difference inZrfevolume in the two cases. We have already
seen that thé3-field is automatically self-dual in the near horizon geometry and that the
volume ofT# satisfies the condition given by (52) and (53). We now see that the mass of
the bound state is already at the fixed point value. Thus the solution we have here provides
an explicit demonstration of the attractor mechanism [19].

The significance of this solution is that it is the description of a stable bound state in
the near horizon geometry. As we shall discuss later this situation corresponds to a non-
singular dual CFT.

6.5Semi-classical absorption cross-section and semi-classical Hawking radiation formula

Now that we have discussed the various classical solutions we want to summarize the basic
steps in the calculation of the semi-classical absorption cross-section and its relation to the
emission rate of Hawking radiation from a black hole [20-22]. We do the calculation for
minimal scalars in the-wave. These fields satisfy a linear equation in which only the
Einstein metric is present, leading to a great simplification in the calculation.

D,o"ep =0. (57)

For the 5-dim. black hole discussed earlier theave radial equation becomes

h d 5 d 9 .

[r3 o <hr dr) + fw } R,(r)=0 (58)
wheref = f, f5 and

© = Ry (r) exp[—iwt]. (59)
Introducingy) = r3/2R andr, = r + 2 In :jr:g we have the Scldinger type equation

d2

[—d—rz + vwm)] $=0 (60)

where
3
Vi (74) :—w2f+ﬁ(1+2r§/r2—3r§/r4). (61)

The basic idea is to solve the equation in 2 regions with appropriate boundary conditions
and then match the solution in the overlapping region. In order to do so we need to choose
the parameters characterizing the solution to be in the following range,

T0,Tn <<T1,7'5,
wry <K 1,
TL ~ T5, TQ ~ Tp. (62)
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Also the wave length of the incident radiatibfw is comparable to the thermal wavelength
specified by thd /T The far and near solutions are matched at a pojnsuch that

7o, Ty L Im K 11,75, wry K T/ (63)

Far Zone ¢ > ry,):

Here the potentidl’,, becomes (in terms of = wr)

Vu(p) = —w? <1 — %) : (64)

This is Bessel’s equation, so that
¥ = aF(p) + BG(p)
F(p) = /mp/2Ji(p), G(p) = /mp/2N1(p). (65)

Forp — oo one can easily see the coefficients of the incoming wavé™ and the outgo-
ing wavee™" .,

Near zone« < r,,,):

This is the region near the pit of the potential, or the throat region. Here we get a hyper-
geometric equation,

2 2,..2,..2
h d <hr3iR> + [(W"””’) YIS R =0 (66)

r3dr dr rb rt
which is solved by
R = ARi,, + BRout,
Rin = 2 Mt /2F(—jq, —ib 1 — ia — ib, ),
Rou = 2100/ 2F(—ia, —ib, 1 — ia — ib, 2),
2= (1= 7}/,
a=w/(4rTg),b=w/(47TL). (67)

The temperatureéBg, 1, are given by

Tp g = —0 etc, (68)
27Ty

The important boundary condition that we imposéis= 0. This says that at the black
hole horizon there is no outgoing wave.

R and d%R can now be matched in the overlapping region (below the potential barrier)
at some point,,,. The matching conditions imply

V2w )2 = Aey,
T(1 - ia — ib)
T(1— )1 —ia)’
Bla < 1. (69)

€1 =
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Now that we have constructed the solution we can calculate the flux from the
Schiddinger equation

F(r)= 2%,[R*fmﬁdR/dr —c.c.] (70)

This flux is ‘conserved. 7 = 0.

The fraction of the flux that gets absorbed at the horizon is given by the ratio of the flux
calculated from the solution at the horizon (where we used the horizon boundary condition)
and the flux due to the incoming spherical wave from infinity,

. 5 a+b
Ry = Fl(ro)/F"(00) = r =

———win /2. 71

Absorption cross-sectionTo calculate the absorption cross-section of an incident plane
wave as opposed to the spherical wave that we did the above calculation with, we have
to introduce a conversion factor. This is easily done by the expansion of a plane wave in
terms of spherical waves,

e W = (4 Jw?)e " Zogo + other partial waves. (72)
Taking this into account we get [22]
Oabs = (47r/w3)R1
_ 271'27“27”2@ exp(w/Ty) — 1 _
52 (exp(w/2TR) — 1)(exp(w/2TL) — 1)
In thew — 0O limit, one gets [20]
Tabs = Ap (74)

whereA;, denotes the area of the event horizon.
The decay rate is given by the well known formula of Hawking,

(73)

Vi d*k -
F = PrObdecayéw, R = QlQlR (75)
giving
. dYk
Th = oaps (/T8 — 1)~ - (76)

With this we conclude our discussion of supergravity aspects and now turn to explaining
some of the important thermodynamical formulas from the viewpoint of string theory.

7. Microscopic modeling of the black hole in terms of theD 1 —D5 system

Our aim here is to study the low energy collective excitations oftheD; system. There

are two ways to proceed and we shall discuss both of them. The first method is a description
in terms of a 2-dim. gauge theory and the second method involves identifyirtsranes

with instantons of a 4 dim. gauge theory. The latter description is more accurate and is
valid for instantons of all sizes. The 2-dim. gauge theory description is valid for small
instanton size but it is more physical and gives a feeling for the dynamics. We will discuss
this more approximate description first.
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8. The D1—Ds system and theN'=4, U (Q:) xU (Qs) gauge theory in
2-dimensions

Consider type 1IB string theory with five coordinates, sa;- - -,z°, compactified on
S x T*. The microscopic model consisty, D;-branes and); Ds-branes [7,12]. The
D, -branes are parallel to the coordinate compactified to a circie* of radiusR, while
the Ds-branes are parallel te® andz®, - - -, z? compactified on a torug* of volumeVs.
The chargeV is related to the momenta of the excitations of this system afohgwe
take thel™ radii to be of the order af’ and smaller tha® which, in turn, is much smaller
than the black hole radius.

We shall see that the low-energy dynamics of thidorane system is described by a
U(Q1) x U(Q5) gauge theory in two dimensions wifi = 4 supersymmetry [13,23].

The gauge theory will be assumed to be in the Higgs phase because we are interested
in the bound state where the branes are not seperated from each other in the transverse
direction. In order to really achieve this and prevent branes from splitting off we will turn

on the Fayet-llliopoulos parameters. In supergravity these correspond to the vev of the
Neveu—-SchwarBys. In principle we can also turn on tife¢erm in the gauge theory. This
corresponds to a vev of a certain linear combination ofte0-form and4-form.

The elementary excitations of thig-brane system correspond to open strings with two
ends attached to the branes and there are three classes of such strings: the (1,1), (5,5) and
(1,5) strings. The associated fields fall into vector multiplets and hypermultiplets, using
the terminology ofV = 2, D = 4 supersymmetry.

(1,1) strings

The part of the spectrum coming from (1,1) strings is simply the dimensional reduction,
to 1 + 1 dimensions (thdt,z%)-space), of theV = 1, U(Q;) gauge theory ir® + 1
dimensions [27].

The bosonic fields of this theory can be organized into the vector multiplet and the
hypermultiplet of N = 2 theory in four-dimensions as

Vector multiplet: AV, A% v/(D m = 1,2,3,4
Hypermultiplet:y;) i = 6,7,8,9. (77)

TheA(()l),Aél) are thelU (()1) gauge fields in the non-compact directions. Yl;{é)’s and

Yi(l)’s are gauge fields in the compact directions of Mie= 1 super Yang-Mills in ten-
dimensions. They are hermitiéh, x (), matrices transforming as adjointsiéf@, ). The
hypermultiplets ofN = 2 supersymmetry are doublets of t8&/(2) r symmetry of the

theory. The adjoint matricééi(l)’s can be arranged as doublets unflen2) i as

(1) (1) | (1)
N Yy 4 1Y,
N — 1 = 9 8 . 78
( N DT > (Y7<1> _iy o > (78)
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(5,5) strings

The field content of these massless open strings is similar to th@ thestrings except
for the fact that the gauge groupl&@s) instead ofU (()1). Normally one would have
expected the gauge theory of tfie 5) strings to be a dimensional reduction®f= 1
U(Qs5) super Yang—Mills td5 + 1 dimensions. Since we are ignoring the Kaluza—Klein
modes orT* this is effectively a theory i + 1 dimensions. The vector multiplets and the
hypermultiplets are given by

Vector multiplet: A, AP V(3 m =1,2,3,4

m

Hypermultiplet:y;”) i = 6,7,8,9. (79)

TheA((f),AS) are thelU (@)5) gauge fields in the non-compact directions. Yl;éé)’s and

Yi(S)’s are gauge fields in the compact directions of the= 1 super Yang—Mills in ten-
dimensions. They are hermitigy x )5 matrices transforming as adjointsié{@ ). The

hypermultipletsYiw)’s can be arranged as doublets unfien2) i as

v = [ N (v e (50)
N2(5)T Y7(5) _ iY6(5)
Sincez™ are compact, the (1,1) strings can also have winding modes aroufittthe
These are, however, massive states in(th¢ 1)-dimensional theory and can be ignored.
This is because their masses are proportionak to> v/a'. Similarly, the part of the

spectrum coming from (5,5) strings is the dimensional reductidin-iodimensions, of the
N =1,U(Qs) gauge theory i + 1 dimensions. In this case, the gauge field components

ASE) (m = 6,7,8,9) also have a dependencesft. Momentum modes corresponding to

this dependence are neglected because the size of the 4-torus is of the order of the string
scalev/a/. The neglect of the winding modes of thke 1) strings and the KK modes of the

(5,5) strings is consistent wit'-duality. A set of fourl'-duality transformations along

2™ interchange®:- andD5-branes and also converts the momentum modes of the (5,5)
strings alongl™ into winding modes of (1,1) strings around the dual torus [28]. Since
these winding modes have been ignored;-duality covariant formulation requires that

we should also ignore the associated momentum modes.

(1,5) and (5,1) strings

The field content obtained so far is thatéf= 2, U(Q ) x U(Qs) gauge theory, in + 5
dimensions, reduced fio+ 1 dimensions ofT'%.

The SO(4) ~ SU(2)L x SU(2)g rotations on the tangent space of the torus act on
the components of the adjoint hypermultiplécfé%ﬁ) as anR-symmetry. To this set of
fields we have to add the fields from the (1,5) sector that are constrained to live in
dimensions by the ND boundary conditions. These strings have their ends fixed on different
types of D-branes and, therefore, the corresponding fields transform in the fundamental
representation of botti(Q;) andU (Q5). The ND boundary conditions have the important
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consequence that the (1,5) sector fields form a hypermultiplet which is chiralSgx) ;.
The chirality projection is due to the GSO projection. Hence Rhgymmetry group is

SU(2)g.
A _
Xab = (B%’; ) : (81)

A few comments are in order:

1. The inclusion of these fields breaks the supersymmetry by half, to the equivalent of
N =1in D = 6, and the final theory only h&&U (2) r R-symmetry.

2. The fermionic superpartners of these hypermultiplets which arise from the Ramond
sector of the massless excitationg df5) and(5, 1) strings carry spinorial indices
underSO(4) g and they are singlets und€O(4) ;.

3. TheU(1) x U(1) subgroup is important. One combination leaves the hypermulti-
plet invariant. The other combination is active dnt, ., B,',) haveU (1) charges
(+1,-1).

4. x is a chiral spinor ofSO(4) ; with conventio 6759 x = —X.-

5. Since we are describing the Higgs phase in which all the branes sit on top of each
other we have’, ") = 0.

6. In the above discussion, the fieldsand X; along the torus directions are assumed
to be compact. However it is not obvious how to compactify the rangesof that
the integration over this field in the path integral is finite.

In summary, the gauge theory of tlie —D; system is a + 1 dimensional4,4) su-
persymmetric gauge theory with gauge gréi(d) 1) x U(Qs). The matter content of this
theory consists of hypermultipleis(!)’s, ¥ (5)’s transforming as adjoints df (Q,) and
U(Qs) respectively. It also has the hypermultiplgiswhich transform as bi-fundamentals

of U(Q1) x U(Qs).

8.1 The potential terms

The lagrangian of the above gauge theory can be worked out from the dimensional reduc-
tion ofd = 4, N' = 2 gauge theory.The potential energy density of the vector and hyper
multiplets is a sum of 4 positive terms. In this section for convenience of notation we have

definedy;" = v;, ;¥ = X;, ;i) = V,,, Vi) = X,y

V=WV+V+Vs+Vy, (82)
1 1

Vi = == >t Ym Yal” = 15 D truos [Xm, Xal’, (83)
gl m,n g5 m,n
1 1

Vo= =53 3 truqu Y Yal® = 53 DX Xl (84)
91 im 95 i,m
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V= iztrU(Ql)(XXm - YmX)(AXmXJr - XTYm)Z: (85)
1 1\°
1
1 1\°
+ZtrU(Q5) <X+irin + i[Xi,Xj]+ — Z@) . (86)

The potential energyy comes from a combination d and D terms of the higher dim.
gauge theoryl';; = %[Fi, I';] are spinor rotation matrices. The notat'm)]j denotes the
self-dual part of the anti-symmetric tensgy.

In V4 we have included the Fayet—Iliopoulos (FI) terer;, which form a triplet under
SU(2)g. Their inclusion is consistent witlh = 4 SUSY. The FI terms can be identified
with the self dual part of3;;, the anti-symmetry tensor of the NS sector of the closed
string theory [29]. This identification at this stage rests on the fact thag.(iandB;; have
identical transformation properties und& (4) ; and (i) at the origin of the Higgs branch
wherex = X =Y =0, Vi ~ (;;¢;. This signals a tachyonic mode from the view point
of string perturbation theory. The tachyon mass is easily computed and this implies the
relation¢; ¢;; ~ BB

8.2D-flatness equations and the moduli space
The supersymmetric ground state (semi-classical) is characterized by the 2-ggts of

flatness equations which are obtained by sefting= 0. They are best written in terms of
the SU (2) r doublet fieldsV'.;), and N3 :

N = NV _ (Yo +i¥s
N2(1) Y +iYs )
N2(5) Xr+1Xy )’

We also defing = ¢, and(. = (&, + i(fs. With these definitions the 2 sets of
D-flatness conditions become:

(AAT — B B)ay + [N, Ny — [N, Ny = éaarbr, (88)

(AB)ory + [NV, NI,y = %m, (89)
(AYA = BBy + [N, NPTy — [N, NP = éaab, (90)
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G
Qs

The hypermultiplet moduli space is a solution of the above equations modulo the gauge
groupU (@) x U(Qs). A detailed discussion of the procedure was given in [23,16]. Here
we summarize.

If we take the trace parts of (88) we get th@meset of 3 equations as the-flatness
equations for &/ (1) theory with @, @5 hypermultiplets, withU (1) charge assignment
(+1,-1) for (44, BL,). Thus,

(ATB 1)y + [N, NPT, S (91)

> (AavAyy, — BL,BLG) = ¢, (92)
a'b
> AanBL, = (e (93)
a'b

For a given point on the surface defined by (92), (93) the traceless parts of (88) lead to
3Q?% + 3Q2 — 6 constraints amondQ? + 4Q2 — 8 degrees of freedom corresponding

to the traceless parts of the adjoint hypermultipl§ts) and N®). UsingQ? + Q2 — 2
gauge conditions corresponding3® (Q 1) x SU(Qs) we have(3Q? +3Q2 —6) + (Q? +

Q2 — 2) = 4Q% + 4Q? — 8 conditions for thg4Q? + 4Q2 — 8) degrees of freedom in

the traceless parts a)f?” andN ). The 8 degrees of freedom corresponding:f6; and

trY;, i = 6,7,8,9 correspond to the centre-of-mass of ihg and D, branes respectively.

8.3 The bound state in the Higgs phase

Having discussed the moduli space that characterizes the SUSY ground state we can dis-
cuss the fluctuations of the transverse vector multiplet scalgrandY,,, m = 1,2, 3, 4.

In the Higgs phase siné&X,,,) = (Y,,,) = 0 andy =  lies on the surface defined by (92),

(93). The relevant action of fluctuations in the path integral is,

S = Z / dtdzs (trU(Qs)aaXmaaXm + trU(Ql)aaYmaaYm)

+ / dtdzs (Vo + V3). (94)

We restrict the discussion to the case wiign= 1 and@); is arbitrary. In this case the
matrix X, is a real number which we denote by, .

x is a complex column vector with componefis,/, B,/), ¢’ = 1,...,Q;. Since we
are looking at the fluctuations of ti€,, only to quadratic order in the path integral, the
integrals over the differerit,,, decouple from each other and we can treat each of them
separately. Let us discuss the fluctuafigrand setY ). s = darpy14- Then the potential
V3, (85) becomes

Vs = (|4l +|Bu ) Grar — 1) (95)

a'
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We will prove that| A,/|? + | B,/|? can never vanish if the Fl terms are non-zero. In order
to do this let us analyze the complBxterm equation (93)

Ce

Ay By + [NV, Ny = o

Barp - (96)
We can use the complex gauge graup(C, (1) to diagonalize the complex mater(l)
[24]. Then, (96) becomes

_ G
Iy = =
‘ Q1

Fora' # V', this determines the non-diagonal componenﬂs{ﬁf)

Aw By + (nar — ) (N§T) Sary- (97)

AarB/
(NSO = = =220 (98)

Ngr — Ny

Fora = b, we get the equations

Aa’Ba’ = é_caal = 17 "'7Q1 (99)

1

which imply that

_ L6l
|Aa[|Bar| = o, (100)

with the consequence thidt .- | and| B, | are non-zero for alk’ = 1,..,@Q;. This implies
that(|A. |?> + | B |*) > 0), and hence the fluctuatigp, ., — =) is massive. If we change
variablesy,,, — y14 + 1, thenz; is the only flat direction. This corresponds to the
global translation of the 5-brane in the direction.

A similar analysis can be done for all the remaining directians 2, 3, 4 with identical
conclusions. This shows that a non-zero Fl term implies a true bound state(®f thel,

@1 = N system. IfFI = 0, then there is no such guarantee and the system can easily
fragment, due to the presence of flat direction§iip, ),y -

What the above result says is that when the FI parameters are non-zero the zero mode
of the fields(Y:,).'»r is massive. If we regard the zero mode as a collective coordinate
then the Hamiltonian of the zero mode has a quadratic potential which agrees with the near
horizon limit of the Liouville potential derived in [29,16].

The general case with an arbitrary numbertdf and Q5 branes seems significantly
harder to prove, but the result is very plausible on physical grounds. If the potential for a
single testD, brane is attractive, it is hard to imagine any change in this fact if there are 2
testD, branes, because tli& branes by themselves can form a bound state.

8.4 The conformally invariant limit of the gauge theory

The sigma model that describes the low energy modes corresponding to the hyper-multiplet
moduli defined by the equations (88) is given by the lagrangian (bosonic part),
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S = Z/dtdl‘5 (trU(Qs)aaXic‘)“Xi + trU(Ql)aaEc’)“Yi)

+ / dtdzs (e x0*xT). (101)

This is a very difficult non-linear system, witN = 4 SUSY. Since we are interested
in the low energy dynamics we may ask whether there is a SCFT fixed point. Such a
SCFT must have (4,4) supersymmetry (16 real supersymmetries) with a central charge
= 6(Q1Q5+1). Now note that the equations (92), (93) describe a hyper-Kahler manifold
and hence the sigma model defined on itis a SCFT with (4,4) SUSY. We can then consider
the part of the action involving th&; andY; which are solved in terms of theas giving
a deformation of the SCFT. Now this deformation clearly reduces the SUBY=04, but
seems to preserve the original degrees of freedom. For this reason the deformation can be
identified with a set of marginal or irrelevant operators. Inspite of the simplification at the
fixed point this theory is difficult to work with.
The sigma model action at the conformally invariant point is

/ dtdzs Y (OaAasOaAly, — OaBlyOaBL}). (102)

a'b

The sigma model fields are constrained to be on the surface defined by (92), (93). Further
after appropriate gauge fixing the residual gauge invariance inherited from the gauge theory
is the Weyl grous (Q1) x S(Qs) [23]. The Weyl invariance can be used to construct gauge
invariant strings of various lengths.df; and@; are relatively prime it is indeed possible

to prove the existence of a single winding string with minimum unit of momentum given
by @) 1Q This is associated with the longest cyclic subgroug @) x S(@s). Cyclic

subgroups of shorter length cycles lead to strings with minimum momen%pmwhere

[, andl; are the lengths of the cycles. In a different way of describing these degrees of
freedom we shall see in the next sections that strings of various lengths are associated with
chiral primary operators of the conformal field theory on the moduli space of instantons on
a 4-torus.

We conclude this section by showing that certain deductions about thermodynamic prop-
erties can be made just by the knowledge of the central charge and the level of the Virasoro
algebra. This information is sufficient to calculate the number of micro-states. To find the
microstates of thé®,—D5 black hole we look for states with, = N;, andLy = Ng. The
assymptotic number of distinct states of this SCFT is given by Cardy’s formula

0 =exp (27 (V@1Q5NL + VQ1Q5NR) ). (103)

From the Boltzmann formula one obtains

$ =27 (V1@ Nt + V@i @5 Nr) - (104)
This exactly reproduces the Bekenstein—Hawking entropy. For the extremal (BPS) case,

Ng = 0, and for the near extremal cadg, = N + n andNg = n, wheren < N. For
the near extermal cases (104) also gives the correct Hawking température
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T’l—i 05 _m [@QiQs
L ~“RoN, RV N~
T’l—i 0S 1 [Q@s
B “RONs RV Np~

T = %(T;l +Th). (105)

9. D, branes as instantons of theD5 gauge theory

In this section we take a different approach to the descriptidn pobranes [30]. We will

see that we can finB;, branes withinD5 branes! We begin with a theory &5, D5 branes

along the compact coordinates, i = 5,6, 7,8,9. The low energy degrees of freedom of

this system are described by\a= 2, U(Q5) gauge theory in 6 dimensions. This gauge
theory has a dimensional coupling constggitand hence it is not renormalizable. This
means that it cannot capture degrees of freedom at the string scale and hence is valid for
wavelengths much larger than the string scale which acts as a short distance cutoff.

In this gauge theory let us look for configurations which break the 16 supersymmetries
to 8. The reason is that we know that the presencP pbranes would do exactly that.
Further since thé, branes are strings moving in time along thedirection and smeared
all over the 4-torus«;,i = 6,7,8,9) we look for gauge field configurations which, to
begin with, depend only on the torus coordinates. Such configurations are well known and
easy to find.

We consider the variation of the gaugino under a supersymmetry transformation and set
it to zero

S A=TuF®e=0 (106)
wherea, b run over6, 7, 8,9. It is easy to see that this is equivalent to

Fop = €apeaF, a,b,...=6,...,9 (107)
where

Tg739€ — €. (108)

These are the instanton solutions of euclidean SYWe assume that the instanton number
is positive and equal tQ);. These solutions are characterized by moduli whose variation
does not change the action of S¥MPromoting these moduli to slowly varying functions
of x5, t we obtain stringy solitons of the 5-brane theory. In order to identify these solitons
asD, branes we have to show that the instanton number density is a source of the Ramond
2-formC (),

To do this consider the Chern—Simons terms of the world volume theory aDthe
branes, [27].

s / B[O AF A F] (109)
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which shows that non-zero valuesif;, Fzo can act as a source term ﬁé?. The latter
corresponds to &, -brane stretching in the 5 direction.

We can also verify the mass of tligy branes by simply evaluating the instanton action,
and it turns out to be

1
M= ?(mgsﬁh), (110)
where
0 = E/ . (111)
(6]

This is a beautiful realization of a brane as a soliton bound within another brane. The
motions of thesé; branes inside the 5-branes represent the low lying collective modes of
the D,—D5 system.R > v/a' once more implies that we neglect the winding modes of
the soliton strings. The KK modes of the Y\Mire also neglected.

The technically difficult part here is that the moduli space of instantons on the 4-torus is
not a well known mathematical object. For example the ADHM construction [32] is valid
for R* and notT™. There is a possibility that the ADHM construction for this case, in the
limit of small instanton size involves the 2 setslofterms that we discussed in the last
section. The advertised moduli spakg of instantons of’#, is the Hilbert Scheme of the
symmetric product7*)?1%5 /S(Q1Qs). (I'* can be different from the compactification
torusT%.)

One can give physical arguments to support at least the topological aspect of the above
result [33—-35]. One uses the fact that the configuratiah pf D5, we are working with, is
U-dual to a fundamental string with winding modes. The BPS states of this fundamental
string (that is, states with either purely left moving or right moving oscillators) maps to the
ground states of thB,—D; system which is given by the dimension of the cohomology of
M.

Our attitude will be to consider the sigma model .o, as a resolution of the sigma
model on the orbifold 74)?1@5 /S(Q1Q5). It so turns out thatM is a hyper-Kahler
manifold and hence one can defind/a= (4,4) SCFT. We will explicitly construct the
N = (4,4) orbifold SCFT and discuss its blowing up modes, which turn out to be 4
marginal operators of the SCFT.

Before we do that we would like to discuss the validity of our considerations in the
strong coupling region wherg Q1 @5 > 1.

First we note that (107) is derived as a condition from supersymmetry and is indepen-
dent of the coupling constant. These instantons also do not receive any stringy corrections
[31]. After this we used the collective coordinate method to arrive at the long wavelength
approximation. However in the standard procedure we have to assungg teamall and
hence we can neglect the interactions of the collective coordinates with the other Yang-
Mills quanta. However it can be shown that the moduli space and the corresponding sigma
model does not receive any corrections in the string coupling. This is basically because the
hypermultiplet moduli space does not get renormalized by the interactions [25,26]. This
fact is crucial because it says that the SCFT that we found at weak coupling is valid at
strong coupling and hence we can use it to make comparisons with supergravity calcula-
tions.
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10. The N = 4 super conformal algebra

We now discuss the super conformal algebra generated by the holomorphic stress tensor
T(z), a doublet of supersymmetry generat6rs(z), G**(z) and.Ji(z) the SU(2) R lo-

cal symmetry. There are also corresponding anti-holomorphic genetateysG(z) and

T(z).

T()T(w) = 2T—(Ifu) + (ZQI;(Z; 20 - W)
G (w) = T 20uOT AT B
T (@) (w) = ij—kij 12(z - w)?’
76" (w) = T 4 o
T(2)G* (w) = 65(1_1[(;”) + ;ES_T(;))Q
T = s
76w = ST
JH(2)G (w) = —% (112)

The globalR-parity group, is given by the zero modes of the currdrits) andf(z). Itis

denoted bySU (2) g x SU(2) i, and it is an outer automorphism of the= (4, 4) current
algebra. TheV = (4,4) SCFT admits another glob&lO(4) symmetry which we shall
discuss subsequently.

10.1The supergrougU (1,1|2)

We now discuss the zero mode part of the current algebra of the previous section. This

is the Lie super-algebrsil/ (1, 1|2) generated by the global chargés o, J](%l)’(Q)’@) and
G‘fﬂ’fl/z. The global charges of the supersymmetry curréftsz) are in the Neveu—
Schwarz sector.

[LO,L:I:] =FLs [LJr,Lf] = 2L0,
{G(f/zaGb_T1/2} =20"Lo + QUébJ}(%i)a
{Gil/z,GliJ;z} =20"Lo — QUéng)a
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[L0,G1 ) = ;%Gfﬂ o [LeGH ] = ;%G‘fl .
odi] =0 |
[L_,Gf;/2] =G, [L+,G11/2} =G,
[
|

[L4,G1,] =0

[L,Gil] =62y LG ] =Gt
i a 1 i\ba i a 1 iba b
[J](%)’ 11/2] = §Gbil/2(‘7 )b [Jf{):GiTUJ = _5(‘7 )b G£1/2 (113)

The anti-holomorphic sector leads to an identical algebra so that the global Lie super-
algebraisSU(1,1]2) x SU(1,1|2).

One can clearly see that the global gralip(1, 1|2) has the conformal group asd/ (2)
as a sub-algebras. It also has 8 real supercharges (with spin and conformal dimension
= 1/2) and hence including both the holomorphic and anti-holomorphic sectors we have
a total of 16 real supercharges. In contrast to this the supergravity background, with zero
KK momentun along the circles, has the isometngU(1,1) x SO(4) and only 8 real
Poincag supersymmetries.

10.2Maldacena duality: geometry dual to SCFT

The puzzle of the doubling of the SUSYS is resolved by the remarkable discovery of
Maldacena [17] that the geometry dual to the SCFT is infact not the asymptotically flat
space times the internal torif (which has the isometr§O(1,1) x SO(4) g and 8 real
Poinca€ supersymmetries). Instead the dual geometry iSAd S? x 7%, with isome-

try SO(2,2) x SO(4). The duality conjecture, as far as the symmetries are concerned,
states that th8U (1, 1|12) x SU(1, 1|2) symmetry of the near horizon geometry is matched
with the global part of theV” = (4,4) SCFT onM together with the identification of the
SO(4); algebra of* andT*.

Symmetries of the bulk

Symmetries of SCFT

(a) Isometries of A3
S0(2,2) ~ SL(2,R) x SL(2, R)

(b) Isometries of5®
SO(4) = SU(2) x SU(2)

(c) Sixteen near horizon symmetries

(d) SO(4); of T*

The global part of the Virasoro group

SL(2,R) x SL(2, R)

R-symmetry of the SCFT
SU((2)r x SU(2)p

Global superchargaé ef (4,4) SCFT

SO(4); of T*

With this we conclude the general discussion of matching symmetries of the SCFT and
the AdS; x S x T* geometry that is dual to it. In the following section we discuss a
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specific representation which has further symmetries that enable us to match operators and
fields on both sides of the dual description.

11. N = (4,4) SCFT on the orbifold (7T%)?:95 /S (Q1Qs)

The N’ = 4 superconformal algebra with = 6Q Q5 can be constructed out 6§, Qs
copies ofc = 6, NV = 4 superconformal algebra ofi*. The discussion in this and
subsequent sections is mainly taken from [44,10].

The Lagrangian is given by

- % / @z 00404 + B ()00 (2) + 04 (2)004 ()] (114)

Herei runs over thel'* coordinates 1, 2, 3, 4 (we have renamed the internal coordinates)
andA = 1,2,...,Q1Qs labels various copies of the four-torus. The symmetric group
S(Q1Q5) acts by permuting the copy indices.

Let us introduce some definitions. The complex bos&nand the fermionsl are
defined as:

Xa(z) = (X4(2), X4(2) = V1/2(z}y (2) + ix% (2), 254 (2) + iz (2)),
Ua(2) = (U4(2), ¥4(2)) = V1/2(4 (2) + 05 (2), % (2) + i (2)),
fon_ (XK _ 1 2h(2) —id?(2)
XA(Z)‘<X§T<,Z>>—\£ (Gt

> ) (115)
In terms of these we can write the generators of the SCFT,
T(2) = X A(2)0X (=) + L WA(2)0W}(2) — 500 ()W (),
N Gt Ul
Go(z) = <G28 ) ~ V2 ( ¥ ) X2 (2)
.1.
+v2 < a(2) > X (2),
A( )
. 1
Tp(2) = 5Wa(2)0" Wy (2). (116)
The charges corresponding to tReparity current are

/ Yol (2). (117)

In the above the summation ovémwhich runs froml to @ 1 @5 is implied.
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11.1TheSO(4) global symmetry of the SCFT

We now discuss global symmetries that are particular to the free field representation that
we have discussed above. There are two gléhal2) symmetries which correspond to
the SO(4) rotations of thel bosons:®. The corresponding charges are given by

i dz i dz i
11:—/ aXA—Z/%aXAUXL

/ —d 00,

. dz . 1 dz ;
Il == | Zxaoioxt — 2 | Zoxaoixt. 118
2 4/2m'A”6A 4/2m'aA”A (118)
Here
2 XlJr
XA—(XA, XAT) XT ( A2>
_XA
wlif
o, = (04, 0) o = ( o ) (119)

These charges generate 8% (2) x SU(2) algebra:
i) = ekt (1B = et
[I;’,Ig] —0. (120)

The new global charges have the following commutation relations with the local currents,
11, G*(2)] =
[Ii, ()] =0 [ )
[13,6%(2)] = gb(z)aba [13,6°1(2)] = —500,6" (2),

[12, ()] =0 [L,J(z)] =0, (121)

where
G= (¢ g = (c(:;; ) _ (122)

The chargeg;, I, constructed above gener#t€(4) transformations only on theolo-
morphicbosonsX 4(z). Similarly, we can construct chargés, I> which generat&O(4)

transformations only on thentiholomorphicbosonsX 4 (z). Normally one would expect
these charges to give rise to a gloB&l(4) o1 X SO(4)antinol SYymmetry. However a boson
field is a sum of a holomorphic and anti-holomorphic part, and hence it has a well defined
transformation property only under the charges

Ji=h+h, Ji=h+h. (123)
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These generate th€O(4); = SU(2)r x SU(2);, and fall into representations of the
N = (4,4) algebra (as can be proved by using the commutation relations (124)k$the

The bosons\ (z, z) transform ag2, 2) underSU (2) ; x SU(2),.
The following commutations relation show that the bosons transfor(2,& under
SU(2)[1 X SU(2)12

. 1 . . 1 .
[, x4] = 3 Xhohe,  [1 X5 = —5ol Xy,

(15, X5) = 5ot [B251] = 5ok, (124)

The fermions transform g2, 1) underSU (2) , x SU(2)y, as can be seen from the com-
mutations relations given below

. 1 , . 1,
(1 2%) = 5@%ote, 1, 05] = —5olel,
[, 9] =0, [1,¥%] =0. (125)

12.SU (1, 1|2) classification of states of the SCFT

The SU(1, 1]2) algebra has 2 sub-algebras: the global Virasoro algebra argLi{®)
algebra. Their representations are labeled by the conformal weagid theSU (2) g spin
j. The highest weight stat¢lsw) = |h, jr, j% = jr) are defined by,

Lijhw) =0 Lo|hw) = hlhw),
T hwy =0 7P |hw) = jgz|hw),

t2lhw) =0 G{f,lhw) =0, (126)

Jj{‘ is the raising operator for spji},.

Amongst these highest weight states those for whieh; satisfy additional conditions
szl/2|hw> =0, G1_1/2|hw) = 0. These states are calletliral primaries From the
chiral primaries one can generate multiplets by the action of the ope@lﬂﬁ2 and
G2_1/2. These multiplets are calleshort multiplets Thek = j short multiplet is given in
the following table:

States j Lo Degeneracy
lhw) h h 2h +1

G oI, G2 olhw)s  h—1/2  h+1/2  2h+2h=4h
GY, G2 5 lW)s h—1  h+1 2% — 1

(127)
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The short multiplets are usually denoted by the degeneracy ofthg state.

Since we haveSU(1,1]2) also coming from the anti-holomorphic sector the global
super-algebra isSU(1,1|2) x SU(1,1]|2) and its short multiplets will be denoted by
(2h +1,2h' +1)g. The top component of the short multiplet is the states belonging
to the last row in (127). These states are annihilatedlbihe super-charges.

12.1The chiral primaries and marginal operators of the untwisted sector

The short multiple{(2, 2)s is special, it terminates at the middle row of (127). For this
case, the top component is the middle row. These stateshhavé = 1 and transform as

(1,1) of SU(2)g x SU(2) . There aret such states for eadl2, 2)s. Hence these give
rise to 16 marginal deformations of the SCFT. We shall see that there are 4 more marginal
operators which come from th®, twisted sector of the SCFT.

The 16 marginal operators of the untwisted sector arise as short multiplets belonging to
the 4 chiral primarie$2, 2)g,

V()8 (2), ()T (2), (128)

where summation oved is implied. These four operators have conformal dimension
(h,h) = (1/2,1/2) and(j3, j%) = (1/2,1/2) under theR-symmetrySU (2) g x SU (2) .
These are the relevant operators of the SCFT.

The short multiplets corresponding to each of the above chiral primaries can be con-
structed following the table in the previous section. Each such multiplet IeadstNo4 marginal

operators with conformal weight$, 1) and transform aél, 1) underSU (2) g x SU(2) .
These operators can be derived from the pole terms of the operator product expansion of the
chiral primaries with the SUSY currents. The result agrees with the expectation thét the
top components of th&(2, 2)s short multiplets aréz*,0x’,. These top components can
be added to the SCFT as perturbations without violating\the (4,4) supersymmetry.

It is clear that these operators can be classified using the gfeb@l) ; symmetry of
the SCFT. The four toru$* actually breaks this symmetry but we assume that the target
space isk* for the classification of states. We have the following table of various quantum
numbers,

Operator SU2)r xSU((2); SUQ2)rxSU2), (h,h)
axij(z)éng (2)
1070l (2)02 (2) (3,3) (1,1) (1,1)
ozl (2)027) () (3,1) + (1,3) (1,1 1,1
Oy (2)9ry (2) (1,1) (1,1) (1,1)
(129)
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12.2Chiral primaries and marginal operators of thg, twist sector

The orbifold SCFT has twisted sectors corresponding to conjugacy classes of the symmet-
ric groupS(Q1Qs). These classes are labeled by cyclic groups of various lengthss If
the length of the cycle anly, is it's multiplicity then we have the basic equation,

Z nN, = Q1Qs. (130)

The simplest conjugacy class consists of 1 cycle of length 2(ar@; — 2 cycles of
length 1. An example of an element of this class is

(Xl—)XQ, Xz—)Xl), XA—)XA,AZI,...,Q1Q5—2. (131)

Clearly the group action has a fixed poinf¥at = X,. The linear combination that carries
a representation df, is

Xem = X1+ X5 and¢:X1—X2. (132)

Under the group action (131Y ., is invariant andp — —¢. Thus the singularity is
locally of the typeR*/Z, or equivalentlyC?/Z,. The bosonic twist operators for this
orbifold singularity are given by following OPE’s [36]

6¢)1 (Z)Ul (w,w) = (;— _(u;;),lf;z’ 6¢)1T(z)gl(wvu_}) = (Z_(Qg)llﬁ/)z,
00% (0% (w.m) = T 06 (20w, m) = T
3 (2)0" (w, 1) = D) 53 2y (w0, ) = D)
55 (20! (w.m) = T G (@)t () = T
07 (20" (w.10) = T, 0 (ot ww) = U (139

Ther's are excited twist operators. The fermionic twists are constructed from bosonized
currents defined by

X'(2) =G, ) =)
X(z) = 32 (z) = e G, (134)

where they’s, defined asl; — ¥,, are the superpartners of the bosgns

From the above the supersymmetric twist fields which act both on fermions and bosons
are:

ZE%S)%) = o(2,2)0%(z, g)eiHl(;:)/26—1'H2(;:)/2eiﬁ1(Z)/2e—if[2(f)/2
ZEI%)_%) = o(2,2)0%(z, z)eiHl(;:)/26—1'H2(;:)/2e—iﬁ1(Z)/2eiﬁ2(f)/2
Egl—gv ) Z 512, 2)0” (2, 7)o H (/2 HH ()2l (2) /2 —iH (2) 2
Egl—gv—%) — ol(2,2)0%(, z)e—iHl(z)/26+iH2(z)/2e—iFI1(E)/2e+iﬁ2(f)/2‘ (135)
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The subscrip{12) refers to the fact that these twist operators were constructed for the
representative group element (131) which exchangek #mel2 labels of the coordinates

of T*. The superscript stands for tii¢2, 7%) quantum numbers. The full twist opera-
tors for theZ, conjugacy class are obtained by summing &¥enwist operators for all
representative elements of this class. G6r, 73) = (1/2,1/2), we have

- Q1Qs Q1Qs5 L
sEH =3 Y sine (136)
i=1 j=1,j#i

A similar construction holds for three other operators. The conformal dimensions of these

operators ig1/2,1/2). They transform ag2, 2) under theSU (2) g x SU(2) , symmetry
of the SCFT. They belong to the bottom component of the short mul(ip/&) s. The

operatorz(%’ 3) is a chiral primary. As before thetop components of this short multiplet,
which we denote by

78 TG -3)
753 758 (137)

G (2)G?(2)2 2 (w,w), G (2)GM(2)2(2 2 (w,w). (138)

The table of the quantum numbers of these operators is given below.

Operator (3,7°)r SU@2)rx SU(?2), (h,h)
T4 = T(3:3) (0,1) (1,1) (1,1)
T = TG:=3) 4 7(=3,%) (0,0) (1,1) (1,1)
Tl =TCs ) (0,-1) (1,1) (1,1)
TO=TC5-0 —T75-5  (0,0) (1,1) (1,1).

(139)

The first three operators of the above table can be organizeda8)aunderSU (2) ; x

SU(2);. We will denote thes8 operators ag *. The last operator transforms as a scalar

(1,1) underSU(2); x SU(2); and is denoted by ™.

These marginal operators are thelow up modes of th&*/Z, singularity [37], [37al].

Since these are top components of the short mult{le?) s they can be added to the free
SCFT as perturbations without violating thé = (4,4) supersymmetry of the SCFT.

In conclusion we have accounted for the 20 marginal operators of the SCFT: 16 from the
untwisted sector and 4 from the twisted sector. Those from the twisted sector have a special
significance because a non-singular SCFT corresponds to turning on non-zero values for
the corresponding moduli.
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It is also possible to show [40] using = (4, 4) supersymmetry that the moduli space
of the these 20 marginal operators is the coset space

SO(4,5)

SO(4) x SO(5) (140)

Further, the number of marginal operatorstis;; whereh,; is the Hodge number and
corresponds to the number of chiral primaries of weighth) = (1/2,1/2).

Later we shall see that turning on these moduli also corresponds to a true rather than a
marginal bound state of the brane system.

12.3Chiral primaries of higher twisted sectors

Cyclic groups of lengtlt lead to twisted sectors characterized by the discrete giqup
In the vicinity of the fixed points the orbifold has the structure

R*x R*Jw x R*/w? x ... x R*Jwh=!. (141)

The coordinate,, is twisted by the phase™ ('m runs froml...k). The dimension of
the supersymmetric twist operator which twists the coordinates by a pA&&é" in 2
complex dimensions i8(n, N) = n/N [36]. Hence the dimension of the twist operator
corresponding to the cyclic group of lendtlis given by

k—1

h=" h(i,k) = (k—1)/2. (142)

i=1

A similar formula holds in the anti-holomorphic sector. There is a twist operator cor-
responding to every element in the conjugacy class and by summing over all the ele-
ments we can construct a chiral primary operatdf—1/2. It has conformal dimension
(h,h) = ((k = 1)/2,(k = 1)/2) and (j3, j3) = ((k — 1)/2, (k — 1)/2). It belongs to
the bottom component of the short multip(gt k) s. The other components of the short-
multiplet (k,k)s corresponding to thé-cycle twists can be generated by the action of
supersymmetry currents and tResymmetry currents of th&” = (4,4) theory.

As the largest cycle is of length, @5, the maximal dimension and angular momentum
of the k-cycle twist operator i§Q1 Qs — 1) /2, (Q1Q5 —1)/2). This implies the important
conclusion that the maximal value of the angular momentum of the corresponding state is
(Q1Qs — 1)/2. This statement is called tistringy exclusion principlg41].

The chiral primaries with conformal weight, ) of aA” = (4,4) superconformal field
theory on a manifold< correspond to the elements of the cohomoldgy, -5, (K) [42].
The chiral primaries are formed by the product of the chiral primaries corresponding to
the cohomology of the diagondl* denoted byB* (the sum of all copies of'*) and the
variousk-cycle chiral primaries.

The cohomology oB* is constructed in terms of the complex fermions defined in (115).
The elements ok, (B*) were already given in (128} ,»(B*) consists of the top form
of B*

Tl () (2) T ()87 (2), (143)
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where summation over all indices dfis implied.
The chiral primaries ofB* which correspond to the elements of the cohomology
H10(B*) are given by

Q1Qs Q1Qs
> Uh(z) and > ¥ (2) (144)
A=1 A=1

and those that correspond to the elements of the conom@legiB*) are
Wl (2) 0% (2) B4 (2) and U (2) W% (2)F% (2). (145)
H20(B*) has only one element which is given by
Ul (2) ¥ (2) (146)

where summation ovet is implied.

Once we know cohomology @ * the cohomology of\ can be easily constructed by
combining the chiral the chiral primariés*/?(z, z) of the various twisted sectors. For
details see [10]. Below we present the answer for the set of chiral primaries with.

5(2, 2)5 + 6 ®m23 (m,m)s
+5((@1Q5+)1, (Q:1Q1 +1))s
+ ((Q1Q5 +2), (Q1Q1 + 2))s. (147)

In the above the maximaum valuewf = Q 1 Qs.

12.4Matching chiral primaries with states in supergravity

We have already discussed the Maldacena duality conjecture in sgég¢tnThe global
symmetries of the SCFT exactly match the symmetries &f Ad S3. Further the radius

of $% is Va'(g2Q1Qs)"/*. Since this is a very large number in the supergravity limit
gsQ1 >> 1,9:Qs >> 1, the masses of the Kaluza-Klien modes®hare very small and

we expect these to match the states of the short multiplets of the SCFT in the limi€when
and@s are very large. This indeed happens (except for short multiplets that correspond
to non-propagating degrees of freedom). We refer the reader to the literature for details
[43,45,46].

13. The supergravity moduli and correspondence with SCFT

In this section we will match the SUGRA moduli in the near horizon geometry and
marginal operators of the SCFT.

Let us first discuss the moduli of supergravity. It is known that the moduli space of
type 1IB sugra compactified on a 4-torus consists of 25 scalars which parametrize the
cosetSO(5,5)/(SO(5) x SO(5)). These correspond t scalarsh;; which arise from
compactification of the metrici, j, k... stands for the directions df*, 6 scalarsb;;
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which arise from the Neveu-SchwaBzfield, 6 scalarsb;. from the Ramond—Ramond
B'-field, 3 scalars are the ten-dimensional dilatbry, the Ramond—Ramond scalgr
and the Ramond—Ramoddform Cgrg9. In the near horizon geometry 5 of the above
scalars become massive. These correspong;tavhich is proportional to the volume of
the 4-torusp,;, the anti-self dual part of the Neveu—-SchwakZield and a certain linear
combination of theRR 4-form and scalar. This moduli space corresponds to the coset
SO(5,4)/(SO(5) x SO(4)).

Now since the above fields are massless we can use the isometrieS-pfcAchlculate
the conformal dimensior(®, h). The mass formula is given by [47,41]

h+h=1+V1+m2 (148)

Using this we note that the massless fields Havé)= (1, 1) and hence they belong to the
top component of the short multiplgf2, 2) s.
The quantum numbers of these massless states are summarized in the table below:

Field SU2); x SU(2); SU(2)p x SU(2), Mass
hij — 28;ihek (3,3) (1,1) 0
bi; (3,1)+(1,3) (1,1) 0
o6 (1,1) (1,1) 0
arx + a2Cs7s9 (1,1) (1,1) 0
b (1,3) (1,1) 0

(149)

In sections 2.1 and 2.2 we have presented a table of the quantum numbers of the SCFT
marginal operators. We would now like to match those marginal operators with the sugra
fields we have obtained above.

We give the answer below and then justify it:

Operator Field SU(2)r x SU(2),
0zY (2)027} (2) — 1/46992% Ok, hi; — 1/405;hp (3,3)

ozl (2)d27}(2) b.; (3,1) + (1,3)
9’y (2)07%4 (2) ¢ (1,1)

T b (1,3)

T ar1x + a2Cers9 (1,1)

(150)

The representationd, 3) and (1,1) occur twice in the above table and hence there
may be an ambiguity in the identification of these sugra fields with the SCFT operators.
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We resolve the ambiguity with the help of the following argument. We have noted that
the operatorg! and7° correspond to blowing up modes of the orbifold CFT. Turning
these off would lead us to a singular SCFT. This singularity has been related to the fact
that in a marginal bound state of the brane system one can have fragmentation into sub-
systems. In the supergravity as we have explicitly seen turning on the seli;*(f*lmﬂveau—
Schwarz field leads to a stable bound state of ihe-D; system. This is also true of

the modulus corresponding ta x + a>Cg7s9. Solutions with these moduli turned off
correspond to marginal bound states. Hence we expect that the blowing up modes of the
SCFT correspond to the stabilizing moduli.

13.1The maximally twisted sector and black hole states

The black hole is represented by a density matrix
1 -
r=y5 %j|z><z|- (151)

The stategi) belongs to the various twisted sectors of the orbifold theory. The total value
of Ly and L, satisfy the constraint

Lo=N. Lo = Nrg. (152)

This corresponds to the fact that the general non-extremal black hole will have Kaluza-
Klein excitations along both the directions on the

As we have seen before this information is sufficient to give the entropy of the degenerate
state which satify the above constraint. We will see that infact this contribution for large
values of the charges comes from the maximally twisted sector of the SCFT. The maxi-
mally twisted sector of the orbifold CFT coresponds to the longest cycle of the symmetric

group S(Q1Qs). It has a corresponding chiral primaby(?*9*~"/? and its associated
short multiplet. The presence of the twist field is equivalent to the following boundary
condition on the bosonic fields

Xa(e®™z,e72™2) = X 411(2, 2). (153)

This implies that the momentumy,ng in the twisted sector is quantized in units of
1/(Q1Q5), and hence the momentum quantum number can go up to an integer multiple of
(Q1Qs5). Hence the contribution to the entropy from the twisted sector is

S(maximally twisted = 27\/nr, + 27\/nR- (154)

This equals the total entropy with the choicg = Q1 Q5N andng = Q1Q5Ng.
Hence we can identify the black hole micro-states with the states in the maximally
twisted sector.

14. Hawking radiation

In this section we discuss the derivation of the Hawking process from the viewpoint of
string theory. First let us collect all the ingredients we have to formulate the process.
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1. We have a complete description of the low lying excitations oflhe-D5; system
representated as a SCFT.

2. We have a description of the black hole microstates in terms of fractionally moded
oscillators that correspond to the chiral prim3ryf @95 =172,

3. Both the above statements about the microscopic theory are valid at large values of
the effective coupling /@1 Qs where the supergravity description is also valid.

If we model the black hole by a density matrix

p=5 Il (155)

where|i) represents the microstates then this sector of the full Hilbert space accounts
for the black hole entropy

4. We have a correspondence between the massless supergravity modes and the
marginal operators of the SCFT.

The Hawking process corresponds to a transition from one black hole|$tabean-
other|f) with the emission of a particle. The emitted particle in principle corresponds to
any state allowed by the symmetries. However we shall restrict ourselves to the massless
emissions which are a predominant decay mode.

The description of the above transition requires an interaction hamiltonian. In the ab-
sence of a Born—Infeld action we appeal to the symmetries of the problem. From the
discussion of the classification and matching of the marginal operators of the SCFT and
the massless fields of supergravity in the near horizon limit, we can formulate a simple
interaction hamiltonian to first order which is consistent with the symmetries.

Sint = /dzzgon|BOn(Z;2)- (156)

In the abovep,,|p stands for the boundary value of the closed string (supergravity) mode,
andO,(z, z) stands for the corresponding operator. We will assume that the normalization
of the supergravity mode is such that in the bulk theory it leads to a standard kinetic energy
term. Using the above interaction one can calculateStimeatrix element relevant to the
transition from one micro-state to another with the emission of a particle that couples to
the micro-state.

Sit = (f|Hint). (157)
Note that thisS-matrix describes a transition from one pure state to another. If we use the

density matrix description then we have to average over all the initial states to obtain the
probability of absorption,

1
Probans = & DD 1Sl (158)
i f
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where(2 is the number of initial microstates.

Let us now use the above principles to calculate the absorption cross-section and the
Hawking rate corresponding to one of the 20 minimal scalars namglywhose corre-
sponding operator was found to 8e’,dz’,. Both transform(3,3) underSO(4)r. The
invariant interaction is given by

Su =5 [ @2 [hio.aiour)]. (159)

The undetermined constgmtcan be absorbed in the normalization of the SCFT operator
which in turn cannot be fixed within the frame of the conformal field theory. We fix this
normalization by matching the 2-point function@tgémi‘ in the SCFT and the 2-point
function of the internal gravitoh;;, in accordance with the Ads/CFT conjecture. This
matching implies (in our conventiong)= 1 [45].

The presence of the twisted boundary conditions on the bosonic field makes it neccessary
to redefine variables so that a convenient mode expansion is possible.

(o +2m(A—1),t) =2 (0,t),0 € [0,27), (160)

#' has perio@nQ Qs R. Itis easy to write the normal mode expansion

. ai
(o) = (4m) 12 Y [<_nem<t+a>/c91@5
n>0 \/ﬁ

+ %em(_t_”)/@%) +h.c.} (161)

The effect of the twisting on these oscillators is given by
g:a’ — a;e2””/Q1Q5
g:al — ale2min/@iQs (162)

The black hole state can now be explicitly constructed using the above oscillators,

i) = ﬁ [ ¢, i)(@ih)Nen @ih)Nen o), (163)

n=1 i

whereC'(n, i) are normalization constants ensuring unit norm of the s{@jeepresents
the NS ground state.

The present discussion is also valid in the Ramond sector, in which case the ground state
will have an additional spinor index but that will not affect thienatrix. This comment is
important because the black hole states are in the Ramond sector of the SCFT. This can be
inferred from the boundary conditions on the Killing spinors in the black hole background.
For AdS; the dual boundary states are in the Neveu—Schwarz sector of the SCFT [49].

The creation operators create KK (Kaluza—Klein) momentum afbh@parameterized
by z°). The total left (right) moving KK momentum of (163) (in units of R, R =
Q1QsRs, Rs being the radius of the!) is Ny, (Ng), where

Np=> nNi, Ng=)Y nNp,. (164)

n,i n,i
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The total KK momentum carried by the stétgis an integer given by
ps = (N — Ngp)/R (165)

whereR = Q;Q5Rs. This fact also implies thdt) is invariant under the twisting action.
Now we can calculate thg§-matrix element for the process:

hgo(w,0) = 2% (w/2, —w/2) + 2% (w/2,w/2), (166)

(the numbers in parenthesis den@ig, k5))

V265w wy RS 270 (w — w1 — wo)
Sif = AL ,/Nsn\/Ngn (167)
V wlngRwV4 fom R

V, = volume of the noncompact spacé€; , andN, , denotes number of oscillators with

left- and right-moving momentumrespectively (see (163)). The factoydV appear from
the normalization of the states

IN) = (aT)N/\/m|O>7 [a, a'T] =1 (168)
and the fact that
(N —1]a|N) = V/N. (169)

From the abové&-matrix element we can evaluate the absorption probability for a quan-
tum of frequencyw

Probabs = Q Z |SZf|2
i f
- %nzm Nir(w/2)) (Nin(w/2)). (170)

HereT is the total time of the process.
The decay probability is obtained by the formula

Probdecay Q Z |Slf |2
i, f
RT

= TNy (0/2)) (Nya(w/2). 171)

We are interested in the process
Nirir(n1) = Nyr,pr(n1) + 1, (172)

wheren; /RQ1Q5 = w/2. To compare the string calculation with the semi-classical ab-
sorption calculation, where the black hole does not emit, we have to subtract thgBrob
from Prohys.

A straightforward calculation then leads to
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Ty) -1

Oabs = o222 Y exp(w/Th 173
b 1579 (exp(w/2Tg) — 1)(exp(w/2Ty) — 1) (73)

which exactly agrees with the semi-classical calculation (73).

Finally the decay rate is given by,
Vy d'k
F = P ecay =~ 7o 4 174
robg YRT (27T)4 ( )
and hence,
4

Dot = apse/ T — 1)1 L (175)

(2m)*

which also exactly reproduces the semiclassical result (76).
We now make a few comments about these results:

e We have done a lot of work to be able to calculate the absorption crossection and
the Hawking rates which agree with the semi-classical supergravity calculations.
The string theory calculations were originally done in [20,21] and were based on
a model that was physically motivated by string dualities [50,51]. In particular the
calculation in [21] based on the DBI action reproduced even the exact coefficient
that matched with the semi-classical answer for the absorption cross section of the
minimal scalars. However this method did not work when applied to the fixed scalars
[52-54]. This fact was very discouraging because it meant the absence of a consis-
tent starting point for string theory calculations. The discovery of Maldacena [17]
finally enabled the string theory calculations [45,44] because it was able to make a
precise connection of the near horizon geometry with the infra-red fixed point theory
of brane dynamics.

e The Hawking radiation calculation that we have presented is physically motivated.
However this method or twisted oscillators cannot be used to calculate the rates
corresponding to the particles whose vertex operators come from the twisted sector.
However these can also be done using a formulation that relates the Hawking rates to
the thermal 2-point function of the corresponding operators. Such a formulation fol-
lows directly from the basic equations (10), (11). This approach has been discussed
in [10] and it is originally due to Callan and Gubser [48].

o We recall that the semi-classical calculation was done in an asymptotically flat geom-
etry and yet the absorption cross section matched with the SCFT calculation which is
dual to the near horizon geometry. This emphasizes the fact that in the semi-classical
calculation the absorption occurred entirely from near the horizon of the black hole.

e Itisimportantto point out thatin the Maldacena limit the closed string modes like the
graviton decouple from the brane system. This means that as 0 the interaction
hamiltonian of the graviton and the SCFT would be vanishingly small. Hence one
should not work in the strict’ = 0 limit. However one can still obtain a sizable
absorption cross section. To see this it is sufficient to note (74),

Tabs(w = 0) = Ap, = 4G5/ Q1Q5N. (176)
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From here we see that
2
Ap ~ %‘;a”\/QlQ5N. (177)

The quantity under the square root sign grows tends to infinity in the supergravity
limit and hence compensates the fact thats 0.

¢ As we have discussed before§id non-renormalization theorems guarantee the va-
lidity of the SCFT in the strong coupling region. This also means that the 2-point
functions of operators belonging to the short multiplets, which determine the Hawk-
ing rates, do not get renormalized. This is in particular true for all the 20 mini-
mal scalars. Hence the Hawking rates of these particles are indeed calculated and
matched in the supergravity regime. Also note that the rates of all the 20 particles
can be matched by fixing the normalization of any one of them, using the AdS/SCFT
correspondence.

e We have explained earlier the importance of studyingiheD5 system in the pres-
ence of the vevs oBns. This corresponds to stable rather than marginal bound
states and non-singular SCFT. This raises the question, whether the Hawking rates
depend upon these vevs. They do not. This was shown in [44].

15. Concluding remarks

Let us conclude by stating some of the outstanding problems.

1. How does one formulate the effective long wave length theory of the non-
supersymmetric black holes?

2. How does one derive space-time from brane theory? In particular is there a way of
deducing Ad; x S? (the infinitely stretched horizon) as a consequence of brane
dynamics? The method of coadjoint orbits is a promising approach to this question.
And what about the black hole horizon itself. These questions are intimately tied to
explaining the geometric Bekenstein—Hawking formula or in other words understand
the holographic principle [55].

3. TheD,—-D5 system has relevant perturbations. It would be interesting to study the
holographic renormalization group in this situation. What is the end point of the RG
flow?
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