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Abstract

We first discuss the convergence in probability and in distribution of the spectral norm
of scaled Toeplitz, circulant, reverse circulant, symmetric circulant and a class of k-circulant
matrices when the input sequence is independent and identically distributed with finite moments
of suitable order and the dimension of the matrix tends to co.

When the input sequence is a stationary two sided moving average process of infinite order, it
is difficult to derive the limiting distribution of the spectral norm but if the eigenvalues are scaled
by the spectral density then the limits of the maximum of modulus of these scaled eigenvalues
can be derived in most of the cases.
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1 Introduction

Matrices with suitable patterned random inputs where the dimension tends to infinity, are known
as large dimensional random matrices. The sequence {z;} which is used to build these matrices
will be called the input sequence. Such patterned matrices have been objects of great interest and
many different types of results are known for them. In this article we focus on the (symmetric)
Toeplitz, (symmetric) Hankel, circulant, reverse circulant and symmetric circulant matrices.

Nonrandom Toeplitz matrices and the corresponding Toeplitz operators are of course well studied
objects in mathematics. Circulant matrices play a crucial role in the study of large dimensional
Toeplitz matrices with nonrandom input. See, for example, Grenander and Szegé (1984). The
k-circulant matrix and its block versions arise in many contexts and have been considered in many
works in mathematics, statistics and related areas. As examples, we mention the book by Davis
(1979) and the articles by Pollock (2002) and Zhou (1996). Here is a quick description of the above
matrices. Let {xo,x1,...} be a sequence of real random variables. Let N denote the set of natural
numbers and Zx>( the set of all nonnegative integers.

1. Toeplitz matrix. The n x n random (symmetric) Toeplitz matrix 7;, with input {z;} is the
matrix whose (i, j)-th entry is z);_j.

2. Hankel matrix. Similarly, the (symmetric) Hankel matrix H,, with input {z;} is the matrix
whose (7, j)-th entry is z;4j_o.

3. Reverse circulant matrix. This is also a symmetric matrix (denoted by RC,,) where the
(4,7)-th element of the matrix is (i1 _2)mod n-

4. Circulant matrix. The n x n circulant matrix C,, with input {x;} is the matrix whose (4, j)-th
entry is T(j_iynymod n- This is not a symmetric matrix.

5. Symmetric circulant matrix. The symmetric version of the usual circulant matrix (denoted
by SCy) may be defined with (i, j)-th element of the matrix given by @, /2|5 2—|i—j||-

6. k-Circulant matrix. For positive integers k£ and n, define the n x n square matrix

i) 1 o ... Tn—2 Tp—1
A Tn—k Tp—k+1 L1 .- Tp—k-2 Tn—k—1
kn = | Tp-ok Tp-2k+1 TO ... Tp-2k—2 Tn—2k—1

nxn

We emphasize that all subscripts appearing in the entries above are calculated modulo n. The
first row of Ay is (xo,21,22,...,2p—1) and for 1 < j < n —1, its (j + 1)-th row is obtained by
giving its j-th row a right circular shift by k& positions (equivalently, k¥ mod n positions). This is a
generalization of the usual circulant matrix when k£ = 1. It may be noted that the reverse circulant
is a special case of the k-circulant when we let k =n — 1.

Recent focus has been to understand the behaviour of the eigenvalues when the input sequence is
random and the dimension of the matrix tends to oo. For example, the limiting spectral distribu-
tions of such matrices has been dealt with in Bryc, Dembo and Jiang (2006), Hammond and Miller
(2005), Bose and Sen (2008) and Bose, Hazra and Saha (2009). A few results are also available
for the spectral norm. See for example Silverstein (1996), Adamczak (2008), Bose and Sen (2007),
Meckes (2007) and Bryc and Sethuraman (2009).

The spectral norm || A|| of a matrix A with complex entries is the square root of the largest eigenvalue



of the positive semidefinite matrix A*A:

HAH =V )\max(A*A)

where A* denotes the conjugate transpose of A. Therefore if A is an n x n real symmetric matrix
or A is a normal matrix, with eigenvalues A1, A2, ..., Ay, then

|Al| = max ||

1<i<n

In this article we study the spectral norm and related objects for the above matrices. In particular,
we study the distributional convergence of the spectral norm and of the maximum and minimum
eigenvalues when the input sequence is independent and identically distributed (i.i.d.). We also
study an appropriately modified version of the spectral norm when the input sequence is a linear
process and establish a few interesting results.

The outline of the paper is as follows. In Section 2 we review some known results and state a few
new results on the spectral norm of random matrices with i.i.d. inputs. In Theorems 3 and 5 we
show that for RC, and SC,, respectively, the limit distribution is Normal or Gumbel according
as the mean p is nonzero or zero. In Theorem 4 we show that the maximum and minimum of
the eigenvalues of the symmetric circulant matrices jointly converge after scaling and centering.
In Section 3 we take the input sequence {z,} to be an infinite order moving average process,
Tp = Y 0 Gi€n—i, where Y |a,| < 0o, are nonrandom and {e;;i € Z} are i.i.d. with E(e;) =0
and V(e;) = 1. It seems to be a nontrivial problem to derive properties of the spectral norm in
this case. We resort to scaling each eigenvalue by the spectral density at the appropriate ordinate
as described below and then consider their maximum. This scaling has the effect of equalizing the
variance of the eigenvalues. Similar scaling has been used in the study of periodograms (see Walker
(1965), Davis and Mikosch (1999), Lin and Liu (2009)). For any of the above mentioned matrix A,
we define M(A4,, f) = maxj<g<n \/% where f is the spectral density corresponding to {z,}
and {)\} are eigenvalues of A,. We show in Theorem 7 and Theorem 11 that M(n~Y2RC,, f)
and M(n~Y/ 2 Ak, f) converge to the Gumbel distribution after proper centering and scaling. For
the symmetric circulant, in Theorem 8 we show that M(nfl/ 280, f) converges to the same limit
as above when we impose the extra condition a; = a_; for all j. Without this condition it is
difficult to conclude the distributional convergence even if ¢;’s are i.i.d N(0,1). The convergence in
probability of M(n~'/2SC,,, f) is discussed in Lemma 7 and Theorem 10. In Section 4 we provide
some concluding remarks and point out some interesting problems which arise from the results.

A bit of notation. By f(t) ~ g(t), we shall mean % — 1l as t — oo. By |z| we denote the

Euclidean norm of € R? and also the modulus if z is a complex number. Throughout, C' will
denote a generic constant and A will denote the standard Gumbel distribution

Alz)=e€"°

The following normalizing constants, well known in the context of maxima of i.i.d. normal variables,
will be repeatedly used in the statements of our results.

12 Inlnn+Indm

_ -1/2 _
ap, = (2lnn) and b, = (2Ilnn) 52 Inn)1/2

(1.1)



2 Results for i.i.d. input

2.1 Toeplitz matrix

First we state a result which is known for Toeplitz and Hankel matrices. Let u,, = n~%/2(1,1,...,1)7.

Theorem 1. (Bose and Sen (2007)) Let {x;} be i.i.d. with E(xo) = pu > 0 and Var(xg) =1 and

let T,, be the symmetric Toeplitz matriz ((z);,_j|)). Let T)) = T, — pnunu; . Then

g 0
T, T

171 — p almost surely and || —=
n 1T

(i3) If E(xd) < oo, then for My, = |T,|| or My = \y(T5,), the mazimum eigenvalue of T,

| = 0 almost surely.

M, — un
Vn

(iii) If T, and TO are replaced by the corresponding symmetric Hankel matrices H, and H?, then
(7) holds. Further, (ii) holds with the limiting variance being changed from 4/3 to 2/3.

— N(0,4/3) in distribution.

Remark 1. When {x;} are centered random variables some results are known for Toeplitz matriz.
Meckes (2007) showed that if {z;}’s are centered uniformly subgaussian then E||T,| ~ vnlnn and
the same holds for ||T,| with probability 1 provided {x;}’s have some concentration of measures
property. These results were further improved in Adamczak (2008), where it was shown that for
{z;} i.i.d. mean zero and finite variance,

AR
n BT,

1 a.s

Further,
| Tl

vnlnn

lim sup < 00 a.8. if and only if Exg =0 and Ea:g < 0.

2.2 Circulant and Reverse Circulant matrix

Similar results can be established for reverse circulant, symmetric circulant and circulant matrices.
In fact we shall show that the spectral norm converges in distribution when centered and scaled
appropriately. Observe that since C,, is normal, the eigenvalues of n~'C,,C" are same as square of
eigenvalues of reverse circulant matrix. So [|[n~%2C,|| = |n~'/2RC,||. Hence the spectral norm for
these two matrices do not have to be dealt with separately. Some results about the maximum of
the singular values of circulant matrices with standard complex normal entries is known from the
form of the eigenvalues. See for example Corollary 5 of Meckes (2009).

We start with a result on the reverse circulant which follows easily from the existing literature.

Theorem 2. Suppose {x;} is i.i.d. with E(xo) = p and Var(zg) = 1. Suppose RC,, is the reverse
circulant matriz formed by the {x;}. Let RC? = RC,, — pnu,ul. If u > 0, then

0
[ RCn|| — p almost surely and || R

[ RC |

|| = 0 almost surely.

Similar results hold for Cy, also.



Proof. The proof follows from arguments for Toeplitz and Hankel matrices given in Theorem 3 and
Lemma 1(7) of Bose and Sen (2007). O

Remark 2. If we assume E(x}) < oo, then the distributional convergence when p > 0 can also be
proved following the proof of Bose and Sen (2007). However, below we establish the distributional
convergence under the assumption E|xo|*t® < oco.

Theorem 3. Suppose {x;}i>o is i.i.d. with mean p and E|x;|>T0 < oo for some § > 0. Consider
the reverse circulant (RCy) and circulant (Cy,) matrices with the input {x;}.

(i) If u # 0 then,
[RCull — |uln D

(ii) If p =0 then,
RC,|| —

Cq

Fe

where

n—1 1
g=q(n) =] 5 ], dg=+/Inqg and cqum.

The above conclusions continue to hold for C, also.

Proof. As pointed out earlier, it is enough to deal with only RC,. Let Ag, A1,...,An—1 be the
eigenvalues of n~'/2RC,,. These eigenvalues are given by (see Bose and Mitra (2002)):

Ao =n~1/2 ?:01 T
Ao —n W2y N1tz if n s even (2.1)
>\k = _)\n—k = Imr(wk)v 1<k< [anl]
where 1
1 = 21k
Inx(wk *’er ztwk|2 andwk—i
n
t=0

Note that {|\x|?; 1 < k < n/2} is the periodogram of {x;} at the frequencies {%, 1 <k<n/2}.
If 1+ = 0 then under the given conditions Davis and Mikosch (1999) have shown that

D
lr<r}€aX7 Ino(wg) —Ing = A.

Therefore
max | Ap|? — Ing 2 A. (2.2)
1<k<n/2

Define g(x) = y/z. Then by mean value theorem,

o mas M)~ g(ng) = ¢/ (€)( max [f* ~ng)

where &, lies between max; <y, /2 |Ax|? and Ing. From (2.2) we have

max <pen/2 | Ael* p
Ingq




Therefore ﬁ A 1. Now

g'(&) _ (M)W P4
g'(ng)  \ &

and therefore

g(max1§k<n/2 |)\k‘2) - g(h’lq) _ g,(gn) ( max |>\k‘2 — lnq) 2) A

g (Inq) ~ ¢(Inq) ‘1<k<n/2

So if {z;} are i.i.d. with mean zero, variance 1 and F|z;|**® < oo, then

maxi<p<n |Ag| —v/Ing
- ‘1 P A (2.3)
2+/In q

Observe that we have left out Ao and A, /5 (if n is even) where

n—1 n—1
1 1

Now suppose that mean of {x;} is p > 0. For 1 < k < n/2,

1 n—1 1 n—1
Ml = —=| ) me™| = —=| > (wr — p)e’™*|,
vl 2=l

and (x; — ) has mean zero and variance 1. Therefore even when E(x;) > 0, (2.3) holds. Note that
by CLT

\/ﬁA\o/ﬁ— T N0, 1). (2.4)

(2.4) implies Ao % 50 and hence
Aol — v/ 2 N(0,1).
Let A, = maxi<p<q [Ax|. From (2.3) and (2.4)

An 1 and izl

Ving py/n

and so it follows that
P[max(4,, |Ao|) — pv/n > z] — P[N(0,1) > z],

proving (i) for odd n.

Since for even n,

n—1
Mgz =123 (=1t B N(0,1),
t=0

this can also be neglected as before, and hence (i) holds also for even n. Similar proof works when
w < 0. This proves (i) completely.



(ii) Now assume g = 0. In contrast to the previous case, here A,, dominates |\g|, since |Ag| is tight
and
[Ao| = VIng P
7
(Ing) =1/

Hence in this case

IO~ Vi 5

1 —

2+/Inq

2.3 Symmetric circulant matrix

The spectral norm of the symmetric circulant matrices behaves quite similar to reverse circulant
matrices but the normalizing constants change. We need the following Lemmata which are well
known and hence we omit their proofs.

Lemma 1. The eigenvalues of ﬁSC’n are given by:
(i) for n odd:

[n/2]
1
Ao T xo + 2 Z x]
[n/2] ,
1 27k
A = —:co—i—QZx]cos |, 1<k<[n/2]
vn = n

(ii) for n even:

o

Ao = T.%‘o—i—?ij—i-l'n/Q]
7j=1
2

1
A = £L‘0 + 2 T COS
\f Z J

7=1

2rkj

n
—1)k 1<k<—
+ (—1)* 0], <k<s

with Ap,—r = A\ in both the cases.

The next Lemma is on the joint behaviour of maxima and minima of i.i.d normal random variables.

Lemma 2. Let {N;} be i.i.d. N(0,1). If my, = mini<;<, N; and M, = maxi<;<n, N;, then with a,
and by, as in (1.1),

—me — b M. —
( mp bn’ n bn)iA@A,
Qn

an

where A @ A denotes joint distribution of two independent standard Gumbel random variables.

The statement of Lemma 3 is taken from Einmahl (1989) Corollary 1(b), page 31, in combination
with Remark on page 32.



Lemma 3. Let {1} be independent random vectors with mean zero and values in R, Assume that
the moment generating functions of ¥;, 1 < i < n, exist in a neighborhood of the origin and that

Cov(Yr + o + ... + ) = Bply,

where B,, > 0 and I denotes the d-dimensional identity matriz. Letny, be independent N (0, 0?Cov(y))
random vectors, k = 1,2,...n, independent of {1y} and o € (0,1]. Let ¥} = Y +ng, k= 1,2, ..n

and write p}, for the density of By '/? > h_1 Ui Choose o € (0, %) such that
@y Elgy|* exp(alyl) < By,
k=1
where |x| denotes the Euclidean norm in R, Let
B = Bu(@) = B,*2 > " Eluy[* exp(alty).
k=1

If |z] < claBi/2, o? > —02@% InfB, and B, > csa™2, where ci,ca,c3 are constants depending only
on d, then

P = P(1402)1, (%) exp(T (2)) with | T (2)] < eafu(l2f + 1),

where ¢, is the density of a d-dimensional centered Gaussian vector with covariance matriz ¢ and
c4 18 a constant depending on d.

We shall use the above Lemma now to derive a normal approximation result which shall be used
in the proof of Theorem 4. Define

z = (2| < (14 2))Y%) = Bl d(|ze| < (1+25))). (2.5)
For 1 <ip <ig<...<ig<jlet

2wt 2miot 2migt
COS ..., COS
2j+17 7 25+1777 2541

va(0) = V2(1,1, ..., 1), va(t) =2 <cos ) for 1 <t<j.

Lemma 4. Letn =142j and sz = (1425)~¢ for some ¢ > 0 and let {z;} be i.i.d mean zero with
Ex3 =1 and Ex§ < 0o for some s > 2. If we denote pj(z) to be the density of

1
Jiro > (@ + 0 Ne)va(t),
=0

where Ny’s are i.i.d. N(0,1) random variables independent of {x;} then for any measurable subset
E of R%,

| [ @z = [ mnl@el < 6 [ oo, @de + Olexp(—(1+2))

where €; — 0, n > 0 and the above holds uniformly over d-tuples 1 < iy < i < ... <ig < j.



Proof. Let Sz = Z{:O Tv4(t) and let s = 2 + 6. Then observe Cov(S;z) = Bjlq where, B; =
(2j+1)Var(z:) and I, is the d x d identity matrix. Since {Z;vq(t)}o<¢<; is an independent collection

1
cs(1425)" s

of mean zero random vectors in R?, we shall use Lemma 3. By choosing o = Wi

, it can be
easily shown that,

J
a Z E|zw4(t)]? exp(a|zivg(t)]) < Bj.
t=0

If we define 3; = B */* S°1_ E|zva(t)| exp(a|Z;va(t)]), then it follows that

By <Cc+2j) G5
1

Let ¢ = 3 — 129 5 0. Now choose |z| < clozB;/2 ~ o1+ 2j)%_

s and ajz- satisfying,

1> 07 > es(In(2j +1))(25 + 1)~

Clearly B; > cqa? and Bj ~ (14 27). We mention here that ¢y, ¢z, c3, ¢4 are constants depending
only on d. Then Lemma 3 implies that,

Pj(x) = b1402)1,(2) exp(|Ts()])

with |Tj(z)| < es0;(|x|* + 1). Note that, |Tj(z)| — 0 uniformly for |z|> = o{min((1 + 2j)~¢, (1 +
2j)%7%)}. For the choice of a?» = (14 27)7¢ the above condition can be seen to be satisfied. Now
it follows from Corollary 1 of Bose, Mitra and Sen (2008) that for any measurable subset E of R?,

‘éﬁj(iﬂ)dﬂf—/Eqﬁ(uag)fd(x)dfﬂ\ < €j/E¢(1+a§)1d($)d3«"+O(6Xp(—(1+2j)”))

where €¢; — 0. O

For the reverse circulant, leaving out the eigenvalues Ao and A, /o, the maximum and minimum
eigenvalues are equal in magnitude. This is not the case for symmetric circulant. Hence we now
look at the joint behaviour of the maximum and minimum of the eigenvalues. While preparing
the manuscript we came to know that the limiting distribution of the maximum of eigenvalues of
symmetric circulant matrices has been worked out in Bryc and Sethuraman (2009). It is easy to
see that Theorem 1 of their paper can be derived from the following result.

Theorem 4. Let ¢ = [n/2] and My, = maxi<p<qAp and mg, = minj<p<q A\p. If {2;} are i.i.d.
with Exg =0, Ex3 =1 and E|xo|® < 0o for some s > 2 then we have,

(—mq,x - bq7 My, — bq) 2, A®A,

Qq Qq

where aq and by are given by (1.1). The same limit continues to hold if the eigenvalue Ao is included
in the definition of max and min above.

Proof. First assume n = 25 + 1, odd and let s = 2 4+ §. The proof may be broken down into two
major steps—truncation and application of Bonferroni’s inequality.

Step 1: Truncation. Let Z; be as in (2.5) and

Ty = I (|| < (14 25)Y%).



If A\, and )\ denote the eigenvalues of symmetric circulant matrices with entries z; and Z; respec-
tively, then Ay = A. By Borel-Cantelli lemma, >0° [z[I(|z¢| > (1 + 24)'/*) is bounded with
probability 1 and consists of only a finite number of nonzero terms. Thus there exists a positive
integer N (w) such that

j j
Yol =@l = Y lalL(a] > (1+2))")
t=0 t=0

D lweX(lze] > (1+25)1)

N(w)

= > lwfI(lze] > (1+2))'°).
t=0

IN

It follows that for 2j + 1 > {N(w), |z1]%, ..., |TN(w)|*} the left side is zero. Consequently, for all j
sufficiently large, A, = \i, a.s. for all k. Therefore

(—mj@ — bj ij — b]) 2 (—mj@ — bj Mj@ — b])

a; a;

2.6
. 0 (2.6)

where m;z = minj<i<; Ay and M; z = maxj<g<; Ag.

Step 2: Bonferroni Inequalities. Define for 1 < k < j,

-7 27Tkt

AL W(\fx()%-Qthcos +1>,

= 2kt
e = )\k—l—\/i \fNo—i-QZNtcos i )

Observe N7, are i.i.d. N(0,1) for k= 1,2, --j. Define

=/
M; — max \, and m, = min ;.
JatoN = (k< JatoN = 2 T

. M - — b

J Z+oN J

o > x, —2 ;' > y) = P(mj,j+a-]\[ < —ajx —bj, MjzioN > a;y + bj)
J J

= P(Ul_ {\ < —ajo — b} nUL_ {N > ajy +b;})
= P(Ul_ {vell,}) =P(U_, Aj)

where, Ing‘,y = (ajy + bj, —ajx — bj) and Ay ; = {j\;C € Lﬂ,y}.
Now by Bonferroni’s inequality,

2k 2k—1 ~
DEDTI A <P(A) < Y (-1 A, (2.7)
t=1 t=1
where
—Mjzt+oN — bj M;z1oN — b; 1
A= ( J o L > x, J a; L > y) and At,j = Z ]P(Ail,j N..N Aiz,j)'

1<41 <ig <<t <J

10



— minlﬁkﬁj(l + O’?)Nk — bj - maXlngj(l + O'?)Nk — bj S y)

P(B) = IP(
(B) - .
= P(U_ {0+) /2Ny eIl }) =P(U]_, Byj)

where By, ; = {(1 + 0]2-)1/2]\7;C € IJ.,}. By Bonferroni’s inequality,

2k 2k—1
> (=D)"B <P(B) < Y (—1)'7'By,
t=1 t=1
where,
Bt,j = Z P(Bil,j N Biz,j n..N Bit,j)'

1<y <ig < <8 <j
From (2.7) and (2.8) we get

2k 2k—1

D ()" NAr; — Bij) = Barpry <P(A) —P(B) < > (1) '(Ay; — Bt;) + Bokj-

t=1 t=1
Now note that,

Bt,j = Z P(Bil,j ﬂBz-M- n... mBit,j)

1< <t <14 <g

= > P((1+02)2N;, € I ;1 =1,2,..,t)

1<i1 <<t <j

- Z PH((1+ a?)l/QNil erl,).

1<y i<t <j
Note here that
< P((1+0)Y2N1 > ajy +b;)
= P(Ny > (ajy+b;)(1+ ajz)fl/Z)

P((1+05)"*N1 € (ajy +bj, —ajz — b))

< P(N1 > (ajy+bj)(1— %%2'))-

2
9j

Now (ajy +b;)(1 — &) ~ bj +o(1) and P(Ny > bj) ~ % Therefore

1 K
P(Ny > (1— 5a;‘?)(ajy +b))) < n

and hence . .
- i\ K K
Bt 7 < J — < —.
’ t) gt t!
Thus

lim lim B;; = 0.
t—o0 j—oo

On the other hand, fixing ¢ > 1 we get,

1 J
P(Aij N Aigj NN Aiyj) = P(\/ﬁ Z(it + 0 Nt)va(t) € Et),
=0

11

(2.9)



where Ey = {(x1,29,...,2¢) : x; € L{;,y}. So by Lemma 4 we have that uniformly over all d-tuples
1< <o < .. <ig < g,

1 J A
P(——— (z Nva(t) € B)) —P(L+02)Y?N; eI 1<1<t
\<1+%g;m+%twa> )= B(1+0})?N, € 1< 1<)

< P((1+02)2N;, > ajy +b;,1 <1< t) + Oexp(—(1 +24)")).

So as j — oo we get,
sy = Bugl = By + () Otexp(-(1-+ 24)) 0.

Therefore, o L L
lim |[P(A) — P(B)| < lim Bogi1,5 + lim Boy ;
Jj—00 J—00 J—0

and letting k — oo we get,
lim [P(A) — P(B)] = 0.

j—00

As max;<k<; Ny = O,((Inj)/2), it follows that,

2\1/2
(1 + Uj) / maxi<g<j Ny — bj maxj<k<j Np — bj < 0j MaxX]<k<; |Nk’ 2} 0

a;j a; a;

Therefore
(1 + 0']2-)1/2 maxj<g<j Nk — bj D
— A.

a;j

Since —minlSij(l—Fajz)l/QNk = maxi<i<j (—(1+U?)1/2Nk) and —(14—0?)1/2]\71c 2 (1+0']2~)1/2Nk
we get
minlgkgj —(1 + 0']2-)1/2Nk - b] D
—

a;j

Since (1 + 0]2-)1/2N,~ are 1.i.d. symmetric distributions, by Resnick (1987) Exercise 5.5.2

<min1<k<j —(1 + 032)1/2Nk - bj maxlgkgj(l + U?)1/2Nk - b]) i) A 2 A
7 ’ 7 ’

Therefore combining the previous steps we get,

(FMaztoy = bj Mjaion = bj) 2L A®A.

a; a;j

Now, to complete the proof it remains to show the result for truncated eigenvalues by (2.6). Now

‘max(j\ﬁc) B max(;\%)} - ﬂmax|N’- P
a; a; Toaj gk )

Similarly —X, = —\, —oN. 1 and

_=/ __I .
’max( AL)  max( )\k)’ < ﬁmax|NJ’»k] P
a. 7

aj CLJ'
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. ’ . \/ - Y/
Now if we denote m]; ; = minj<i<; A, and M; ; = maxi<i<; Ay then,

‘(_mj,f—‘,-aN - bj Mj,f—l—aN - bj) . (_m;',f - bJ M_]/,:E - bj)|

9

aj a; a; a;
—Mjz+oN — (—m/-@) Mjz1on — M'-@
< cf e i s~ i
max(—X,) — max(—,) max(X,) — max(\,) 1 P
< of A m e ex() Zmes())
j J
Therefore , .
(T =t Mya Zbiy oy
j a;j
1-v2)

Again A\p = N} + NoEsRad therefore

}M]I',:E_bj _ Mj,f_bj‘ P

— 0,
a; a;
and
m b, —ml.—b
‘ 3, j 3, J ‘ P 0
a; a;
Hence

(Fraa =l M Zbiy D, g g p
a; ’ a;

Now for large j we know that Ay = A a.s. So, it follows that

<—mj,a: —bj Mja—b;

)LA@A.
a; a;

This proves the theorem when n is odd. For the even case say n = 2j it should be noted that if we
work with A}, = /220 + v2(—1)Fz; +2 Zg;ll Tt COS 2;—;“ then similar normal approximations can be
done and the subsequent calculations follow after that. We omit the obvious details. This proves

the theorem completely. O

The next theorem follows by calculations similar to those used in the proof of Theorem 3.

Theorem 5. Suppose {x;}i>0 is an i.i.d. sequence with mean p and E|z;|**° < oo for some § > 0.
Consider the symmetric circulant matriz (SCy,) with these {z;}.

(i) If p = 0 then,

||ﬁscn|| — by —agIn?2 5,
Gq
where ¢ = q(n) ~ 5 and aq and by are as in equation (1.1).
(i) If i # O then,
ISCul bl 0 o)

NG

13



Proof. To prove (i), since mean p = 0, Ag 2N (0,2). So we can neglect this as shown in Theorem
3. Therefore, for large n,

SC,|| = max{— Ai Al
H\/» | = max{ 1<i <[n/2] 1;‘%%:1(/2] J
Hence
—min\; — b max \; — b
. _ —_— gy, i <
P(| \fSC nll < agz +bg) B( g = “a =

o, MmMm:A@+m%y

Now by convergence of types

| 7=SCull —
( vn S a:) 2, A(x)
ag
where, a, = a4 and Z)q =by+agIn2.
In part (ii), Ao dominates and the proof proceeds as in Theorem 3. We omit the details. O

2.4 k-Circulant matrix
For the k- circulant matrices the special case n = k?+ 1 was considered Bose, Mitra and Sen (2008)
who proved the following Theorem. We are investigating the general case.

Theorem 6. Suppose {x;}i>o is an i.i.d. sequence with mean zero and variance 1 and E|xz;|**0 < oo
for some § > 2. If n = k?+1 then

In =" Al —dg D

= A
q
as n — oo where ¢ = q(n) = | 4] and
Inn)/? l1lnlnn 1 T
n = (8lnn) /2 LDy - In . 2.1
cn, = (8Inn) and d 7 —|—4 o +2(81nn)1/2 ng (2.10)

3 Results for dependent input

Now let {z,;n > 0} be a two sided moving average process,

oo
Ty = Z Ai€n—; (3.1)
i=—00

where {an;n € Z} € li, that is ), |an| < oo, are nonrandom and {e;i € Z} are i.i.d. with
E(e;) = 0 and V(e;) = 1. Let f(w), w € [0,27] be the spectral density of {z,}. Note that if
{x,,} is i.i.d. with mean 0 and variance o2, then f = o It appears to be a very difficult problem
to establish limit results for the spectral norm When the spectral density is non-constant. One
intuitive reason for this is that the variance of each eigenvalue is of the order of the spectral density
at the corresponding ordinate. Thus it is meaningful to rescale by the spectral density. This is,
for example, the approach taken by Walker (1965), Davis and Mikosch (1999), Lin and Liu (2009)
while studying the periodogram. This rescaling by the spectral density makes them approximately
same variance and that makes it relatively easy to handle their maxima.

14



3.1 Reverse Circulant and Circulant Matrix

Define M(-, f) for the reverse circulant matrix as follows:

| Ak |

-1/ S e N
M(n 12RC )= 1<k<f 27 f (wy)

where )\, are the eigenvalues of n~'/2RC,, as defined in proof of Theorem 3. Note that M(n~/2C,,, f)
for the circulant matrix defined similarly satisfies M(n~'/2RC,,, f) = M(n~Y2C,,, f).

Theorem 7. Let {z,} be the two sided moving average process (3.1) where {¢;} are i.i.d. with
E(e;) =0, E(e?) = 1, E|e;|**° < 0o for some § >0 and

Z laj||5]*? < 0o and f(w) > 0 for all w € [0, 2x]. (3.2)
j=—o00

Then

M(n='2RC,,, f) —d, D A
- )

Cq
where ¢ = q(n) = [”7_1], dy = VIng and ¢4 = 27\/11171. Same result continues to hold for
M(n='2C,, f).
Proof. Under (3.2) it is known that (see Walker (1965), Theorem 3) for some §’ > 0,
Ia: n(wk)

.y ’ — —o 3.3
o |2 L) = 007 (33)
where
1 n—1
Iy (wg) = —|Z:L" e~k |2 and I, (wy,) —|Ze e~ ttwr |2
t=0
Combining this with Theorem 2.1 of Davis and Mikosch (1999) we have
Ix,n(wk) D

-1 A.
1<k<? 27 f(wp) na—

Now proceeding as in the proof of Theorem 3, we can conclude that

M(n~Y2RC,,, f) — d, D

Cq
O
Remark 3. If we define M(n='/2RC,, f) = Ml e different limits may appear

maxXo<k<n/2 V2 f(wi)

depending on mean ' of the process {xy}. If mean p of €y is 0 then by Theorem 7.1.2 of Brockwell

and Davis (2002) it follows that LA N(0,1). So by arguments similar to Theorem 3 we have

Ao
27 £(0)

M(n=Y?RC,,, f) —d,; A
— .

Cq
When 1 # 0 then,
M(n"Y2RCy, f) — |ulv/n 2 N(0, 1).

15



Remark 4. It appear that by the results of Lin and Liu (2009), if {x,} is the two sided moving
average process (3.1) where E(ey) = 0, E(e3) =1, E[e31{|e| > n}] = o(1/Inn) and

Z laj| = o(1/Inn) and min f(w) > (3.4)
li|=n el

then also

M(n='2RC,, f) —d, » A

Cq

where cg,dq are as in Theorem 7.

3.2 Symmetric Circulant matrix
We now come to the symmetric circulant case. The result of Walker (1965) is not directly applicable
but we use his results appropriately.

Lemma 5. Let {x,} be the two sided moving average process (3.1) where E(e;) = 0, E(e?) = 1,
Ele;|*+® < oo for some § > 0 and

Z laj||]*? < 0o and f(w) > 0 for all w € [0, 2x]. (3.5)
j=—00
Then we have,
[n/2 [n/2]
Ak 27Tk:t Bk . 27rkt 71/4
max |————— €¢ cos( € sin( = 3.6
1<k<[n/2] ‘ ) /Qﬂf(wk) \f Z t Z t ‘ (3.6)
where
> 2 > . 2rkj
V27 f(wi) A = Z a; cos( and /2w f(wg)Br = Z a; sin( ).
j=—00 j=—00 n

Proof. First observe that min,cp 2. f(w) > a > 0. Consider n = 2m + 1 for simplicity and for
n = 2m calculations are similar.

m

A 2kt o 2nkt
W ZGtCOS - )+2—Zetsm " —) =Y,
k t=1 t=1
where
27rk:
5 s ! — Vi),

Yn,k CL] COS
vy 27Tf W) ]_z_:oo
m

Uk,j = Z [€1—j cos mk(t =j) _ €4 COS 2%“], Vij = Z (e sin 2mk(t —j) _ ¢, sin 27Tkt]‘

=1 n — n n
Note that
\Z?ljetcos%Tm|+|Z7tn j+16tc0s2ﬂ—kt it |jl<m,7>0
U< | 1 eveos 0T, tcos;’;’j\ it [j| <m.j <0
’ | 3ol evcos |+ [ 2000 € cos =T if |jlzm,j=0
\Z't]ij‘;ﬁletcosm]—i—lzt 1@0082““] it |j| >m,j<0.
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Now for any r > 1,

r—|s]

T T T
2wkt 2kt
e I < e < 31 el
t=1 t=1 s=—r t=1
Hence by equation (29) of Walker (1965),
T
2kt 3
E 2} < Kre.
{ml?x\tzletcos - 1“} < Kr2
Therefore 3/
AK|j] it [jl <m
E 2 < )
{m]?XUk,j} = { 4Km3/2 if ‘j‘ > m.
Similarly
AK[jI32 if il <m
E 2 1< )
{mkaka;,]} = { 4Km3/2 if |]| > m.
Now

o0

1 1
E Y, < — |[E DN+ E :
(mpeVouly < Zm T 3 lesl Bt} + Bl i ]

—00

IN

2K'/2 1 13/4 3/4
ﬁﬁ[ Z |az[|5]** + Z |aj|m?/*]

l7]<m l7l>m

2K1/2 1 1/2 . 1/4 1/2
< ol 20 el G S ]

_ O(n—1/4)

lil<m l71=m

since the second sum goes to zero as n — oo and the first sum is not greater than
ST sl + ky/myt Y i ayl,
k(n)<|7|l<m 0<j]<k(n)

where k(n) is such that lim, . {k(n)/n} = 0 and lim, . k(n) = oo. O

Define M(-, f) for the symmetric circulant matrix as was done for the reverse circulant matrix:

A
M(n~'28C,, f) = max M
1<k<§ /27 f (wg)
where )\ are the eigenvalues of n~1/28C,, as defined in Lemma 1. Under the additional restriction
of a; = a_j, for all j, the following result is easy to prove.

Theorem 8. Let {x,} be the two sided moving average process (3.1) where E(e;) = 0, E(e?) = 1,
Ele;|**® < oo for some § > 0 and

aj =a_j for all j and Z laj||j]*? < oo and f(w) > 0 for all w € [0, 2x]. (3.7)
j=—o00

Then

M(n=Y28Cy,, f) — by — agIn2 D

Qq

where q = q(n) = [n/2] ~ 5 and aq and by are as in equation (1.1).
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Proof. Note that if a; = a_; then in Lemma 5, By, = 0 and hence from the same lemma, it is easy
to see that,
Ak

_ ~1/4
1<k<n/2) | 27 f (n) op(n ") (3:8)

- )‘k,e

where Ay . denote eigenvalue of symmetric circulant matrix with {x;} replaced by {¢;}. Combining
this with part (i) of Theorem 5 we have

M(n~128C,,, f) — by — azIn2 D

Qq

A.

a

Now we focus on the case where a; is not necessarily equal to a—;. We first define some notation
which will be used in the proofs of Lemma 7 and Theorem 9. For 0 < §; < 1/2 define p,, =
(1- ﬁ) and denote L, = {k : 1 < k < [np,/2]} and L. = {k € L, : kis even} and
L2 ={k € L, :kis odd}.

Let

A B D / / E / / —
R tan(ﬂ—k) and vy = PF tan m(k + k) + 5 tan m(k’ — k)
n n

2
=1
Tk + 2n n 2n

(3.9)

Where, Dk,k’ = AkBk’ + Ak’Bk and Ek;k:’ = Ak’Bk — AkBk:"

The following lemma from Dai and Mukherjea (2001) (Theorem 2.1) is an analogue of Mill’s ratio
in higher dimension.

Lemma 6. Let (X, Xo,...X,,) be multivariate normal with zero means and a positive definite
covariance matriz 3. Let 61 > 69 > ... > &y, denote the variances and let 1(t) =P(X; > ¢,1 <1 <
n). If a = (a1,0a2,...,a,) = 1571 where T = (1,1, ...,1) with a; > 0 then

1 1,-
—¢2 e 7).

I(t) ~ exp(—
O~ a2

Now we find the rate of convergence of the maximum of the eigenvalues when {¢;} are standard
normal random variables.

Lemma 7. Let {N;} be i.i.d. N(0,1) and let

n/2]
VAN, 1 ket ot
Ao = —F—— +—F— Z Ny <2A;C cos( ) — 2By sin()) :
Vn Vn = n
Then \ ,
max —
hely @ T %0 D, ) (3.10)
Qq
and

max Mep— b
heli ke 74 D,y (3.11)

q
where ¢ = g, = [n/4] and a,, and by, are as in (1.1).

In particular,
maxi<g<n/2] \k,® P

N £ (3.12)

18



Proof. Consider the case n = 2m + 1. First observe that VarA, e = O'l% and for k¥’ > k we have
Cov(Apo, A\er,.@) = Vg wWhere oy and vy is defined in (3.9). Let x4 = aqz + by ~ /2Ing. By

Bonferroni inequalities we have for 7 > 1

2j 2j—1
> (-1 By < P(max Mg > 29) < Y (1) By,
keLl
d=1 d=1
where ~
By = > PNy ¢ > gy - Nigd > T)

11,12,...,5g€ L}, all distinct

Observe by the choice of p,, we have,

1 an) N 2n1/2+51

— tan( — 0.
n

2 ™

Hence for some € > 0, for large n we have 1 — ¢ < 07 < 1+ € and for any k,k’ € L. (or L2) we
have |y 1| — 0 as n — co. Next we make the following claim:

2d
g’ exp(—§")

P()\; > Xy, > Ty) ~ R

14,02,...,ig€LL, all distinct

for d > 1. (3.13)

To avoid notational complications we show the above claim for d = 1 and d = 2 and indicate what
changes are necessary for higher dimension.

2
d=1: Using the fact that Z—’; — 0 and
q

(1- %) 22 <o) > o) < SRCELD

it easily follows that,

SR, > ag/on) ~ Y exp(— L),

keLl rer V2T 20},
Observe that
xi
ZkGL 271—:5 eXp(_i 3 1
; — Z o exp(—7H(= — 1))
—Dn_ oxp(—a) / 2 o—
21z, 2 keL
-T AkBk mk
— Z o exp(— t (7))
" keLl

Now using the facts that 2574 ¢ n(™r) — 0, supyepr of — 1and [{k: k € Ly }| ~ qpy, it is easy

k
to see that the last term above goes to 1. Since p, ~ 1 the claim is proved for d = 1.

d=2: We shall use Lemma 6 for this case. Without loss of generality assume that O']% > 0,%,.

Let o = (ay, o) where o = IV~ and

O'z Vi k!
V = 5o
Vg Opr
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2 ’ 2_ ’ . . —
Hence (o, ) = <UI<’|VV|""’c T I;]\M ) . For any 0 < € < 1 it easily follows that a; > ﬁ for large

n and for ¢ = 1,2. Hence from Lemma 6 it follows that as n — oo,
1 exp(—%ngv_lfT)

21 /V] ayaga?

Z ]P)()\k’q) > Zg, )\k/’@ > .qu) ~ Z

k.k'€Ly, kk'eL}

Now denote

1 AkBk wk Ak’Bk’ k' AkBk wk Ak’Bk’ k! 2
’l/}ch/ = m[—T an(?)—Ttaﬂ(T)‘i‘ n tan(?)T tan(Y)—QVk7k1+2l/k7k/:|
and observe
2 4 g on(™Pn
[z Prk| < C— tan( 5 )—0 as n— oo

1 1. 277,-17T

Zk’kIEL}l 27n/|V|a1a2xg exp( qulv 1 ) 2 Z 1 ( 1 2( + )+ 2)
= — —exXp | —=I,(01 (%) x
g2 exp(—z2) 2 q q
20227 * T wivers Vieas 2

2 V|3/2 x?
:? Z | | )exp (—;(a1+042—2)>

k,k/EL}L (O-/?:’ - Vk:k/)(o—lz - Vkvk,

2 Ve al
<= § LA E— — by g
kk'€LL

— 1 asn — oo and as € — 0.

Similarly the lower bound can be obtained to show that the claim is true for d = 2.

d > 2: Now the probability inside the sum in claim (3.13) is P(N(0,V,) € E,) where E, =
{(y1,v2, -, ya) © ¥i > xq,% = 1,2...,d}, and V}, denote covariance matrix {Vn(s,t)}‘;’t:1 with
Va(s,s) = o} and for s # t we have V,,(s,t) = v4,4,. Without loss of generality assume that
oy > 0iy > ... > 05,, since we can always permute the original vector to achieve this and the

covariance matrix changes accordingly. Note that as n — oo we get
1V = Lallos — 0,

where [|A|oo = max|a;;|. As V1 = > ioda— Vi)? we have o = 1+ P I(I;— ;). Now since
I11d — Villoo — 050 [|(Ig — Vi)’ |lo — 0 and hence elements of (I; — V;,)? goes to zero for all 5. So
we get that a; € (1 —¢,14¢€) fori=1,2,...,d and 0 < € < 1 and hence we can again apply Lemma
6. For further calculations it is enough to observe that for |x| # 0,

d . d
VT 1 1 Uy 1
" =14+-—7 E l‘kQAikBik* tan(—k) +— E TETE'Viy, i,y
j/? j? notn s faf? '
k=1 1<k#k'<d

Since the last two term goes to zero in their modulus so given any € > 0, we get for large n
1-—€e< Amm(vn) < )\max(vn) <1+ €,

where A\pin (Vi) and Apaz(Vy) denote the minimum and maximum eigenvalue of V,,. Rest of the
calculation is similar to d = 2 case.
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Now using the fact that a, and b, are normalizing constants for maxima of standard normal it
follows that,

d x?ld
gD ") eXp(_T) 1 exp(—dx)
d!:r:g d! '

So from the Bonferroni inequalities and observing exp(—exp(—z)) = > o 0 exp( dx) it follows
that
P(max Ak,o > Tq) — exp(—exp(—x)),
keLl,
proving (3.10). For (3.11) calculations are similar and we omit the details.

To prove (3.12) we first observe that,

n/2
knzp;m (N(0,1) > z4/0%) < (1= pa)B(N(0,1) > %),

since ak < 2 for k < n/2. Expanding the expressions for a,, and b, we get,

1 1
= Z(aqx +by)? = o(1) + % — —In(4nlnq) +

~ ‘Q&l\'}

Now

n(1 — py) exp(—22)

=P po(g,2) > 1g) < O=— -

2

_ 1 —pn)
~C 1727
" 2+/Inq
1

~ CW — 0 as n — oo.
Breaking up the set Ly = {k:1 < k < [n/2] and k is even } into L} and L} = {k : [np,/2] < k <
[n/2] and k is even} we get,

P(max \go > 24) = P(max(max Ak,@, MAX A\ ) > Tq)
keL; keL} kelLl

n

< P(max Ao > 24) + P(max Aed > Zq)
keL}, keL},

[n/2]
< P(max Ako > Zq) + Z P(N(0,0}) > z,)
keLl P —
P(max /\k o > .TUq) + 0(1)
keLl
Hence the upper bound is obtained. The lower bound easily follows from (3.10). Similar calculations

for set Ly = {k: 1 < k < [n/2] and k is odd} can be done. To complete the proof it is enough to
observe that,

maXger, Ak,® maxXger, Ak,®

ma; n/2] A
P X1<k<[n/2] \k,®

>1—-¢) <P >1—¢)+P >1—c¢
Vinn ) ( vinn ) ( Vvinn )
and the last two probabilities go to zero. This completes the proof of the Lemma. O
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Remark 5. By calculations similar to above, it can be shown that for o = n~¢ where ¢ > 0,

d

> P((1+ 022N, 0 > 2g, 00, (1 +0D)Y2N, 0 > 24) < (3.14)

d!
14,024 ,3g €LY, all distinct

for some constant K > 0. This will be used in the proof of Theorem 9.

We now consider the symmetric circulant matrix with the general moving average process {z;}.
Theorem 9. Let SC,, be the symmetric circulant matriz with entries from {xy}, the two sided
moving average process (3.1). Let E(e;) = 0, E(¢?) = 1, Ele|* < oo for some s > 2 and
o
> aglli]'? < oo and f(w) > 0 for all w € [0, 2], (3.15)
j=—o00

If X\ denote the eigenvalues of ﬁSCn with input {x;} then

max Mgz — b
kely The 700 D g (3.16)

Qq

and \ b
max z—
hely ke 770 D g (3.17)

Qq

where ¢ = g, = [n/4] and a,, and by, are as in (1.1).

Proof. Again for simplicity we assume that n = 2m + 1.

Truncation: Define

o0
€ = e (|et] Snl/s), € = ¢ — Eéy, Z a;€j, Ty= Z a;j€—j,
Jj=—00 j=—00
\ 1 n +2§:~ 27rl<:t] \ +22 27rl<:t]
ki = ——[70 It COS y AT = T = xo It COS .
TV = ' \f =
Note that
2kt
Vs = xo+22xtcos il
t=1
m o m o
- . 2kt . . 2kt
= xo—i-Qthcos L Z ajE(E_j)+2Z[ Z a; E(&-—;)] cos T
t=1 n j=—00 t=1 j=—o00 "
> i 2kt
- \/ﬁ)\k,i—i—['z a; B(&)][1+2)  cos —]
Jj=—00 t=1
= Vs
Choose § such that (3 — 1 — §) > 0 and observe
B max Mz —Mol] = n°E[ max Az — Ml

1<k<[n/2] 1<k<[n/2]
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= nl/2— 52 Z la;|B(lec—; I (Jec—s] > n'/®))

t= 0]——00

< e X Il0 Rl > [ el > v
t=0 j=—o0 nt

= I + Iz, say,

and

L = n1/2622 |a|n/IP’|et |>n1/5)

t= 0]——00
< S S i B
t=0 j=—o0
Ellol) 5|,
= pl/2—1/s—6 ah
j=—00

and right side goes to zero as n — oo since > = __|a;| < oo. Similarly

jf o
= DI N e
t= 0]*—00
E( ’615 ]|
<l [
t= O]*—oo
2E(|eol®)
S G 5P PR N
t=0 j=—o0
E(leol*) .-
< .
> (8 _ 1)n1/2—1/5—5 j:zoo ‘CLJ‘

and goes to zero as n — oo for above choice of §. Hence max;<j<jn o] [ Az — Mk e| = 0p(n70).
By Lemma 5 we get that

Aoz 241 — omkt 2B, ~— 2kt 1
max| ke — b ZEt COS(L) + b th Sin(L)‘ = 019(\/?)
keLl " agy/2m f(wy) \/ﬁaq — n \/ﬁaq t=1 n e

Similar conclusions can drawn for maximum over L2. So to show the result it is enough to show
that,

max Mee — b
]CEL.}L ke q 2} A, (318)

aq
where /3
2AL€0 21411€ _ 27rk:t _ 2By . 27Tk:t
)\k,e = €t €¢ SlIl
Y 2 o) - 2 S

Normal Approximation: This step is similar to the proof of Lemma 4. Now we use Lemma 3 to
approximate A\ . with Gaussian random variables. Let d > 1 and i1, 49, ...iq be d distinct numbers
from L.

T)d(()) = \/i(Ail, ...,Aid) and
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2wt 2miqt 2migt

vd(t) =2 <Ai1 cos( ) — Bj, sin( )s ey Ai, cos( ) — Bi, sin(zmdt)>

n n n n
Let S, =Y /% €&wvq(t), and observe that cov(S,) = V;, where V,, is the covariance matrix with diag-
onal entries V), (k, k) = Bnafk and off-diagonal entries V,,(k, k) = Bnvi, i, and B, = Var(é)n ~ n.
We have infact already seen that,

I Talloe = 0.
To apply Lemma 3 we define
€'y = B, 2V V26 04(t) for 0 <t < [n/2] and S!, = de
t=0

It is easy to see that Cov(S])) = B,1;. Also note the since H(g—z)*l — I4|loo < ¢ for some constant
¢ > 0 and hence for large n we get that |¢}| < 2dCn'/* for some constant C' . Hence ¢, are
sequence of independent, mean zero random vectors with moment generating function finite in a
neighborhood of zero. For verification of the other conditions choose & = where ¢ is a
constant to be chosen later. Hence,

C1
nl/s2dC"’

m
ZE|6t|3exp alel]) < aB3?|V,| 732 (2d) ZE!et\?’exp(cl)
t=0 = 0

< 4ey exp(c)C3d®n (1= E‘ﬁt‘g
§4C1 exp(cl)02d2n(1—%)E’€t‘2"1‘(52’

where do € (0,1) such that F|e;|>T%2 < co. Now choose ¢; such that the the required condition is
satisfied. Similar calculations show that

m
B =B, **Y " Elej|? exp(ale}]) < Cn~*
t=0
where c3 = %— % > 0. The rest of calculations are similar to the proof of Lemma 4. Let 62 = n

and if N} are i.i.d. N(0,52Cov(¢;)) independent of €, and p,, be density of S = \/% Soio(e+Ny),
then,

—c3

Pn(®) = d(1452)1,(2) (1 + 0(1)),

uniformly for all  such that |z|3 = o(n(%_%)). Here ¢¢ denotes the d-dimensional normal density
with covariance matrix C'.

Let 02 = Var(e )02 ~ n~% and observe that N/ = L Bl/Qanl/QaNtvd(t), where V; are i.i.d. N(0,1)
fort=0,1,....m
Now define the following for z € R?, ||z||o = minj<;<4 ;. Recall | - | denotes the Euclidean norm

and observe that ||z + yllo < [lz[lo + |y|. Let Sy \th o(€& + Ni)vg(t). Then note that S =
BY v, %5,

Let r, = o(n(%*%)) and denote K,, = {y e R? : || B,
two sets K1, = {y € R?: ||B;1/2 1/2y||0 > xg, |yl > rn} and Ko, = {y € R4 : || B,
Zgq, ’y‘ < Tn}'

1/2 1/ 2y”0 > x,} and break it into the following

1/2+,1/2
PviiPyllo >
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Then

P(ISullo > 2q) < P(IB;"2V,/25 lo > )

= / pn(y)dy

Ky

= [ puW)dy+ | Pu(y)dy

J o]

= (o) [ b s+ [ o)y
K 1,n

— (1+0(1) / betsoryr, (¥)dy — (1 -+ o(1)) / betroryr, (u)dy + / Ba(y)dy

K’n Kl,n Kl,n

= (L+o()P(|(1+0%)"/?—= ZNt'Ud llo > z4)

—(1+0(1)) / biiroryr, (w)dy + / Ba(y)dy

1,n Kl,n

The third integral is less than
1 m
P(|—=> BY*V, (e, + oNpva(t)] > 7 | -
(2

Now we using the fact that ||(g—z)_1/ 2|00 < C5 for some constant Cs > 0 and calculations sim-
ilar to Corollary 1 of Bose, Mitra and Sen (2008) we get that the third integral is bounded by
K1 exp(—Kyn%) for some constant K1, Ko > 0 and depending only on d and &3 > 0. Similarly the
integral in the second term is bounded by,

Tn
/ ¢(1+a2)1d(y)dy < Qdexp(—ﬁ)_
ly[>rn

From all the above observations it is easy to conclude that, for ¢, — 0 we get uniformly over d
distinct tuples iy, g, ...ig € L. that

[P(|Snllo > =) — P(I(1 + 0’2)\/15 Y Newa(t)llo>zg)] < enP(I(1+ 02)\}5 tz:; Neva(t)llo > )

=0
+ K3 exp(—K4n%), (3.19)

where K3, K4 are constants depending on d. Now define,

A V24
k,e+oN —
: n

By arguments similar to Step 2 of Theorem 4 and using (3.14) and (3.19) it follows that,

2kt 2B 2kt
(€0 + o No) + \F Z € + o Ny) cos( 7; ) — 2Tk Z € + o Ny) sin( 7; ).

}P(max AieroN > Tq) — P(max(l + o )1/2)\k<p > 4 ! — 0,
keL keL}
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where Ay, ¢ is defined in Lemma 7. Now since maxjcr1 Ap.o = Op(VInn) and 02 =n~% we get as
n — oo,

P <max(1 + )Y 2o > > — A(z).
keLl
It follows that (3.18) is true. Similar calculations hold for the second part of the Theorem. O
Theorem 10. If {\; .} are the eigenvalues of ﬁSC’n then under the assumptions of Theorem 9,

Ak

2Trf(wk) P 27k
— 1 where wp = —.
n

max; <g<fn/2

Inn

Proof. As before we assume n = 2m+ 1. It is now easy to see from the truncation part of Theorem
9 and Lemma 5 that it is enough to show that,

maxi<k<n/2] Ake P

- 1,
Vinn

where,

\[Ake() 2Ak 2’/Tkt QBk 2kt
ke = € cos( € sin(——),
i 2 NG 2:3 .

and & = eI(|e;] < n'/*) — EeiI(|es] < n'/*). The steps are same as the steps required to prove
(3.12) in Lemma 7 and observe from there that to complete the proof it is enough to show,

[n/2]
Z P(Ak,e > x4) — 0 as n — oo. (3.20)
k=[npn/2]+1

Denote

27Tk:t) — 9By sin( 271::7&)

= [n/2], v1(0) = V24, and vy (t) = 24} cos(

Since {€wvi(t)} is a sequence of bounded independent mean zero random variable, by applying
Bernstein’s inequality we get

m m
Z t) >xzg) < Zavl )| > Vmag)

t=0

E\H

— QZQO Var(etvl(t)) —|— %Cnl/squﬁ)

Denote by C = A By and observe

D =

22
Lyq

2 Et =0 V‘“"(ﬁt?/l(t)) + %Cnl/sm%
T

>
T ALY Var(eui(t) + 3Cnl/s712g,
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4<1 + % tan %k) + %nlgaiql/s
2 2
> s>t
41+ 2)+0(1) ~ 8
Therefore - 2
x
P(| > &wi(t)] > vmag) < 2exp(—-2),
t=0 8
and hence
[n/2] m )
1 7 22 o

a

Remark 6. Note that the above calculation can be imitated with ease to conclude that when p =0,

Ak
2nf(wr) P
K
Inn

Max) <k<[n/2]
1.

The proof is same, with only the normalizing constants changed suitably.

Remark 7. If we include \g in the definition M(n='/2SC,, f) that is, if M(n='/2SC,, f) =
maxo<k<[n/2] \/2‘)‘%% then it is easy to see that if we assume the mean u of {€;} to be non-zero
== 7 f(wk

then
M(n~Y25Cy, f) — lulv/n 2 N(0,2).

Remark 8. In Theorem 9 we were unable to consider the convergence over LLUL2. It is not clear
if the mazimum over the two subsets are asymptotically independent and hence it is not clear if we
would continue to obtain the same limit. Observe that for example, if k is odd and k' is even then

— Dy / E , I
Bk cot m(k + ¥) _ Zhkk cot m(k k>

Cov(Akas Ay z) = on n on

So for this covariance terms going to zero we have to truncate the index set from below appro-
priately. For instance, in the Gaussian case we may consider the set L' = {(k,k') : 1 < k <
[npn /2], k+ [ng./2] < k' < [npn/2]} with ¢, — 0, we can approzimate it by the i.i.d. counter-
parts since supy pers |Cov(Ag g, A e)| — 0 as n — oo. The complicacy comes when dealing with
the complement of L' since it has no longer small cardinality. We are looking into this problem
actively.

3.3 £k Circulant matrix

We assume n = k? + 1 and at first give a brief description of its eigenvalues.

n—1
v = vy, = cos(21/n) +isin(2n/n), i = —1 and A\, = leukl, 0<j<n. (3.21)
=0
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For any positive integers k and n, let p; < p2 < ... < p. be their common prime factors so that,
C C
n:n'Hpqq and k:k’pr;q.
q=1 q=1

Here oy, B, > 1 and n/, ¥/, p, are pairwise relatively prime. For any positive integer s, let
Zs=1{0,1,2,...,s — 1}. Define the following sets

S(x) = {zk® mod n’' : b >0}, 0<z <n'
Let g, = |S(z)|. Define

Vkn! 1= ’{l’ S Zn/ 10 < gl}].
We observe the following about the sets S(x).

1. S(x) = {zk® mod n' : 0 < b < |S(z)[}.

2. For x # u, either S(z ) = S(u) or, S(x) N S(u) = ¢. As a consequence, the distinct sets from
the collection {S(z) : 0 <z < n'} forms a partition of Z,

We shall call {S(x)} the eigenvalue partitionof {0,1,2,...,n—1} and we will denote the partitioning
sets and their sizes by

{Po,P1,....,Pi_1}, and n; = |P], 0<i <L,

Define
Y = H Ay, 7=0,1,...,0—1 where y=n/n"
teP;

Then the characteristic polynomial of Ay, is given by

-1

X (Agn) =X T O = y)) (3.22)
j=0

and this provides a formula solution for the eigenvalues. By Lemma 7 of Bose, Mitra and Sen
(2008), the eigenvalue partition of {0,1,2,...,n — 1} contains exactly |%| sets of size 4, say
{P1,Pa,... ’PL%J}‘ Since each P; is self-conjugate, we can find a set A; C P; of size 2 such
that

Pi={r:x € Ajorn—uxec A}

Since we shall be using the bounds given in Walker (1965) we define a few relevant notation for
convenience. Define,

i

Iy (wj) —’ E wle""ﬂ

) en Wj *’ § Elelw]

Jonlw) = 7= 3 me ! Je(w) = <=3 et
=1 =1

ﬁxn HIznw] ﬂen Hlenw]

JEA: JEA:
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S e Ty = L) — ) Pl

t=—o0
3 o Ban(t) -1/ _ 1/4
el = ey MO e ) = g (a0

Theorem 11. Let {x,} be the two sided moving average process (3.1) where E(e;) =0, E(€;

Ee;|>T0 < 0o for some § > 0 and
Z |aj|[5]Y? < 00 and f(w) > a > 0 for all w € [0, 2x].
j=—o00

Then

M(n_l/zAk,m f) - dq 2) A

Cq

as n — oo where ¢ = q(n) = | 4] and ¢4, dy are same as defined in Theorem 6.

Proof. Observe that,

S Bealt)
where
_ w M W Tn(wtl) Tn (Wt1) Tn (wtz)
Fnl0) = L) ey 1m0 o ) T 2 ) 2 Fan,)

Let ¢ = |%]. Recall that,

1/4 1/4
™2 Al = mas (Be.0(5)"" and M(n™2 A0, 1) = max (Bra(t) ",

We shall show maxi<;<g |Bzn(t) — Ben(t)| — 0 in probability.

Now
~ T (wi, T (we, To(wy ) Tnlwe,
() = Ben0)] < i) g 22 ety 52k o | L), Tulte)
Note that
Tn (th)

1
< g e ()] e [T (1)

1
max Henlwn) 5,3

From Walker (1965) (page 112) we get

-5 1/2
ma [T, (@) = Opln ™" (lnm)!2),

Also it is known from Davis and Mikosch (1999) that

B

max | Ien(wi)| = Op(Inn).
Therefore
Tn(wiy) | 5 3/2 Tn(we) Tolwes) | 25
11£1ax |I€"(wt1)27rf(wt2)‘ = Op(n™°(Inn)**) and 1121?<q o Fwn) 27Tf(wt2)| = Op(n”*Inn).
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Combining all this we have

i [ (8)] = max 5 (8) — ()] = Op(n~(1mm) %)

1<t<q
Note that
1/4 ~ 1/4 1/4
(Ben )" = 1Ba O] < (B () < (Ben(0)* + [ Ba(0)]*
and hence ) )
= /4 _ /4 _ —5/4 (15, 17\3/8
‘ fg?gq (ﬁx,n (t)) fg?g} (ﬁe,n (t)) ‘ = Op(n (Inn)*®).
From Theorem 6 we know A
1
maxi<i<q (Ben () — dy D

= A

Cq

Hence
IVI(n_1/2llk,n7 J ) dq D
—
Cq

A.

4 CONCLUDING REMARKS

In Theorems 3 and 5 we saw that the nature of the limiting distribution depends on whether the
input sequence has mean zero or not. Results from Adamczak (2008) and Bose and Sen (2007)
suggest that the same should happen for the Toeplitz matrix. It would be interesting to find out
the limiting distribution of the spectral norm of the Toeplitz matrix in general.

Theorem 4 shows that the joint distribution of the maximum and minimum of the eigenvalues of
SC,, behave like the maximum and minimum of i.i.d. standard normal entries. It follows that the
distribution of the range of the spectrum is the convolution of two Gumbel distributions. We are
investigating what happens in general to the spectral gaps.

It will be interesting to see if results can be established for the spectral norm in the dependent case.
The spectral density is expected to appear in some form in the limit. This seems to be a difficult
problem.

For SC,, with inputs from linear process we have shown that the maximum over certain subsets
converges in distribution to the Gumbel distribution. It is not clear what happens when maximum
is taken over all the eigenvalues and this is an interesting problem.

Finally, for k circulant matrices, results are known only when n = k% 4+ 1. It would be interesting
to derive results for other cases where the structure of the eigenvalues are known.

We are currently working on the above issues.

Acknowledgement. We thank the Referee and the Associate Editor for their constructive com-
ments and valuable suggestions.

REFERENCES

Adamczak, Radostaw. A few remarks on the operator norm of random Toeplitz matrices. Available
at http://arziv.org/abs//0803.3111. To appear in J. Theoret. Probab.

30



Bai, Z. D. Methodologies in spectral analysis of large-dimensional random matrices, a review.
Statist. Sinica, 9(3):611-677, 1999. With comments by G. J. Rodgers and Jack W. Silverstein;
and a rejoinder by the author.

Bhattacharya, R. N. and Rao, R. Ranga. Normal approximation and asymptotic expansions. John
Wiley & Sons, New York-London-Sydney, 1976.

Bose, Arup, Hazra, Rajat Subhra, and Saha, Koushik. Limiting spectral distribution of circulant
type matrices with dependent inputs. Technical Report No.R6/2009, April 09, 2009, Stat-Math
Unit, Indian Statistical Institute, Kolkata. Submitted for publication.

Bose, Arup and Mitra, Joydip. Limiting spectral distribution of a special circulant. Statist. Probab.
Lett., 60(1):111-120, 2002.

Bose, Arup and Sen, Arnab. Another look at the moment method for large dimensional random
matrices. FElectron. J. Probab., 13:no. 21, 588-628, 2008.

Bose, Arup and Sen, Arnab. Spectral norm of random large dimensional noncentral Toeplitz and
Hankel matrices Electronic Communications in Probability, 12: 29-35(electronic), 2007.

Bose, Arup, Mitra, Joydip and Sen, Arnab. Large dimensional random k-circulants. Technical
Report No.R10/2008, December 29, 2008, Stat-Math Unit, Indian Statistical Institute, Kolkata.
Submitted for publication.

Brockwell, Peter J. and Davis, Richard A. Introduction to time series and forecasting. Springer
Texts in Statistics. Springer-Verlag, New York, second edition, 2002.

Bryc, Wlodzimierz and Dembo, Amir and Jiang, Tiefeng. Spectral measure of large random Hankel,
Markov and Toeplitz matrices. Ann. Probab.34:no. 1, 1-38, 2006.

Bryc, Wlodek and Sethuraman, Sunder. A remark on maximum eigenvalue for circulant matrices,
2009. To appear in IMS volume High Dimensional Probability Luminy conference proceedings.

Davis, P. J. Circulant matrices. A Wiley-Interscience Publication, Pure and Applied Mathematics,
John Wiley & Sons, New York-Chichester-Brisbane, 1979.

Davis, Richard A. and Mikosch, Thomas. The maximum of the periodogram of a non-Gaussian
sequence Ann. Probab., 27:no. 1, 522-536, 1999.

Dai, Ming and Mukherjea, Arunava. Identification of the parameters of a multivariate normal
vector by the distribution of the maximum J. Theoret. Probab., 14:no. 1, 267-298, 2001.

Einmahl, Uwe Extensions of results of Komlés, Major, and Tusnddy to the multivariate case J.
Multivariate Anal., 28,20—68, 1989.

Fan, Jianging and Yao, Qiwei. Nonlinear time series. Springer Series in Statistics. Springer-Verlag,
New York, 2003.

Grenander, Ulf and Szeg6, Gabor. Toeplitz forms and their applications. Chelsea Publishing Co.,
New York, 1984.

Hammond, Christopher and Miller, Steven J. Distribution of eigenvalues for the ensemble of real
symmetric Toeplitz matrices. J. Theoret. Probab.,18:no. 3, 537-566, 2005.

31



Lin, Zhengyan and Liu, Weidong. On maxima of periodograms of stationary processes. Ann.
Statist., 37, no. 5B, 2676-2695., 2009.

Meckes, Mark W. Some results on random circulant matrices, 2009. Awvailable at
www. arziv.org/arXiv:0902.2472v1.

Meckes, Mark W. On the spectral norm of a random Toeplitz matrix FElectron. Comm. Probab.
12, 315-325, 2007.

Pollock, D. S. G. Circulant matrices and time-series analysis Internat. J. Math. Ed. Sci. Tech., 33,
No. 2, 213-230, 2002.

Resnick, Sidney 1. Extreme values, reqular variation, and point processes. Applied Probability. A
Series of the Applied Probability Trust. Springer-Verlag, New York, 1987.

Resnick, Sidney I. Tail equivalence and its applications J. Appl. Probability, 8,136-156, 1971.

Silverstein, Jack W. The spectral radii and norms of large-dimensional non-central random matrices.
Comm. Statist. Stochastic Models, 10, No. 3, 525-532, 1994.

Walker, A. M. Some asymtotic results for the periodogram of a stationary time series J. Austral.
Math. Soc., 5, 107-128, 1965.

Zhou, Jin Tu. A formal solution for the eigenvalues of g circulant matrices. Math. Appl. (Wuhan),
9, No. 1, 53-57, 1996.

Address for correspondence:

Statistics and Mathematics Unit
Indian Statistical Institute
202 B. T. Road, Kolkata 700108

INDIA
ARUP BOSE RAJAT SUBHRA HAZRA KOUSHIK SAHA
bosearu@gmail.com rajat_r@isical.ac.in koushik_r@isical.ac.in

32



