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1 Introduction

Matrices with suitable patterned random inputs where the dimension tends to infinity, are known
as large dimensional random matrices. The sequence {xi} which is used to build these matrices
will be called the input sequence. Such patterned matrices have been objects of great interest and
many different types of results are known for them. In this article we focus on the (symmetric)
Toeplitz, (symmetric) Hankel, circulant, reverse circulant and symmetric circulant matrices.

Nonrandom Toeplitz matrices and the corresponding Toeplitz operators are of course well studied
objects in mathematics. Circulant matrices play a crucial role in the study of large dimensional
Toeplitz matrices with nonrandom input. See, for example, Grenander and Szegő (1984). The
k-circulant matrix and its block versions arise in many contexts and have been considered in many
works in mathematics, statistics and related areas. As examples, we mention the book by Davis
(1979) and the articles by Pollock (2002) and Zhou (1996). Here is a quick description of the above
matrices. Let {x0, x1, . . .} be a sequence of real random variables. Let N denote the set of natural
numbers and Z≥0 the set of all nonnegative integers.

1. Toeplitz matrix. The n × n random (symmetric) Toeplitz matrix Tn with input {xi} is the
matrix whose (i, j)-th entry is x|i−j|.

2. Hankel matrix. Similarly, the (symmetric) Hankel matrix Hn with input {xi} is the matrix
whose (i, j)-th entry is xi+j−2.

3. Reverse circulant matrix. This is also a symmetric matrix (denoted by RCn) where the
(i, j)-th element of the matrix is x(i+j−2)mod n.

4. Circulant matrix. The n×n circulant matrix Cn with input {xi} is the matrix whose (i, j)-th
entry is x(j−i+n)mod n. This is not a symmetric matrix.

5. Symmetric circulant matrix. The symmetric version of the usual circulant matrix (denoted
by SCn) may be defined with (i, j)-th element of the matrix given by xn/2−|n/2−|i−j||.

6. k-Circulant matrix. For positive integers k and n, define the n× n square matrix

Ak,n =




x0 x1 x2 . . . xn−2 xn−1

xn−k xn−k+1 x1 . . . xn−k−2 xn−k−1

xn−2k xn−2k+1 x0 . . . xn−2k−2 xn−2k−1
...




n×n

.

We emphasize that all subscripts appearing in the entries above are calculated modulo n. The
first row of Ak,n is (x0, x1, x2, ..., xn−1) and for 1 ≤ j < n − 1, its (j + 1)-th row is obtained by
giving its j-th row a right circular shift by k positions (equivalently, k mod n positions). This is a
generalization of the usual circulant matrix when k = 1. It may be noted that the reverse circulant
is a special case of the k-circulant when we let k = n− 1.

Recent focus has been to understand the behaviour of the eigenvalues when the input sequence is
random and the dimension of the matrix tends to ∞. For example, the limiting spectral distribu-
tions of such matrices has been dealt with in Bryc, Dembo and Jiang (2006), Hammond and Miller
(2005), Bose and Sen (2008) and Bose, Hazra and Saha (2009). A few results are also available
for the spectral norm. See for example Silverstein (1996), Adamczak (2008), Bose and Sen (2007),
Meckes (2007) and Bryc and Sethuraman (2009).

The spectral norm ‖A‖ of a matrix A with complex entries is the square root of the largest eigenvalue
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of the positive semidefinite matrix A∗A:

‖A‖ =
√
λmax(A∗A)

where A∗ denotes the conjugate transpose of A. Therefore if A is an n× n real symmetric matrix
or A is a normal matrix, with eigenvalues λ1, λ2, . . . , λn, then

‖A‖ = max
1≤i≤n

|λi|.

In this article we study the spectral norm and related objects for the above matrices. In particular,
we study the distributional convergence of the spectral norm and of the maximum and minimum
eigenvalues when the input sequence is independent and identically distributed (i.i.d.). We also
study an appropriately modified version of the spectral norm when the input sequence is a linear
process and establish a few interesting results.

The outline of the paper is as follows. In Section 2 we review some known results and state a few
new results on the spectral norm of random matrices with i.i.d. inputs. In Theorems 3 and 5 we
show that for RCn and SCn respectively, the limit distribution is Normal or Gumbel according
as the mean µ is nonzero or zero. In Theorem 4 we show that the maximum and minimum of
the eigenvalues of the symmetric circulant matrices jointly converge after scaling and centering.
In Section 3 we take the input sequence {xn} to be an infinite order moving average process,
xn =

∑∞
i=−∞ aiεn−i, where

∑
n |an| < ∞, are nonrandom and {εi; i ∈ Z} are i.i.d. with E(εi) = 0

and V (εi) = 1. It seems to be a nontrivial problem to derive properties of the spectral norm in
this case. We resort to scaling each eigenvalue by the spectral density at the appropriate ordinate
as described below and then consider their maximum. This scaling has the effect of equalizing the
variance of the eigenvalues. Similar scaling has been used in the study of periodograms (see Walker
(1965), Davis and Mikosch (1999), Lin and Liu (2009)). For any of the above mentioned matrix An

we define M(An, f) = max1≤k≤n
|λk|√

2πf(ωk)
where f is the spectral density corresponding to {xn}

and {λk} are eigenvalues of An. We show in Theorem 7 and Theorem 11 that M(n−1/2RCn, f)
and M(n−1/2Ak,n, f) converge to the Gumbel distribution after proper centering and scaling. For
the symmetric circulant, in Theorem 8 we show that M(n−1/2SCn, f) converges to the same limit
as above when we impose the extra condition aj = a−j for all j. Without this condition it is
difficult to conclude the distributional convergence even if εi’s are i.i.d N(0, 1). The convergence in
probability of M(n−1/2SCn, f) is discussed in Lemma 7 and Theorem 10. In Section 4 we provide
some concluding remarks and point out some interesting problems which arise from the results.

A bit of notation. By f(t) ∼ g(t), we shall mean f(t)
g(t) → 1 as t → ∞. By |x| we denote the

Euclidean norm of x ∈ Rd and also the modulus if x is a complex number. Throughout, C will
denote a generic constant and Λ will denote the standard Gumbel distribution

Λ(x) = e−e−x
.

The following normalizing constants, well known in the context of maxima of i.i.d. normal variables,
will be repeatedly used in the statements of our results.

an = (2 lnn)−1/2 and bn = (2 lnn)1/2 − ln lnn+ ln 4π
2(2 lnn)1/2

. (1.1)
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2 Results for i.i.d. input

2.1 Toeplitz matrix

First we state a result which is known for Toeplitz and Hankel matrices. Let un = n−1/2(1, 1, . . . , 1)T .

Theorem 1. (Bose and Sen (2007)) Let {xi} be i.i.d. with E(x0) = µ > 0 and V ar(x0) = 1 and
let Tn be the symmetric Toeplitz matrix ((x|i−j|)). Let T 0

n = Tn − µnunu
T
n . Then

(i)
‖Tn‖
n

→ µ almost surely and ‖ T 0
n

‖Tn‖‖ → 0 almost surely.

(ii) If E(x4
0) <∞, then for Mn = ‖Tn‖ or Mn = λn(Tn), the maximum eigenvalue of Tn,

Mn − µn√
n

→ N(0, 4/3) in distribution.

(iii) If Tn and T 0
n are replaced by the corresponding symmetric Hankel matrices Hn and H0

n, then
(i) holds. Further, (ii) holds with the limiting variance being changed from 4/3 to 2/3.

Remark 1. When {xi} are centered random variables some results are known for Toeplitz matrix.
Meckes (2007) showed that if {xi}’s are centered uniformly subgaussian then E‖Tn‖ ∼

√
n lnn and

the same holds for ‖Tn‖ with probability 1 provided {xi}’s have some concentration of measures
property. These results were further improved in Adamczak (2008), where it was shown that for
{xi} i.i.d. mean zero and finite variance,

lim
n→∞

‖Tn‖
E‖Tn‖ = 1 a.s.

Further,

lim sup
‖Tn‖√
n lnn

<∞ a.s. if and only if Ex0 = 0 and Ex2
0 <∞.

2.2 Circulant and Reverse Circulant matrix

Similar results can be established for reverse circulant, symmetric circulant and circulant matrices.
In fact we shall show that the spectral norm converges in distribution when centered and scaled
appropriately. Observe that since Cn is normal, the eigenvalues of n−1CnC

T
n are same as square of

eigenvalues of reverse circulant matrix. So ‖n−1/2Cn‖ = ‖n−1/2RCn‖. Hence the spectral norm for
these two matrices do not have to be dealt with separately. Some results about the maximum of
the singular values of circulant matrices with standard complex normal entries is known from the
form of the eigenvalues. See for example Corollary 5 of Meckes (2009).

We start with a result on the reverse circulant which follows easily from the existing literature.

Theorem 2. Suppose {xi} is i.i.d. with E(x0) = µ and V ar(x0) = 1. Suppose RCn is the reverse
circulant matrix formed by the {xi}. Let RC0

n = RCn − µnunu
T
n . If µ > 0, then

‖RCn‖
n

→ µ almost surely and ‖ RC0
n

‖RCn‖‖ → 0 almost surely.

Similar results hold for Cn also.

4



Proof. The proof follows from arguments for Toeplitz and Hankel matrices given in Theorem 3 and
Lemma 1(i) of Bose and Sen (2007). 2

Remark 2. If we assume E(x4
0) <∞, then the distributional convergence when µ > 0 can also be

proved following the proof of Bose and Sen (2007). However, below we establish the distributional
convergence under the assumption E|x0|2+δ <∞.

Theorem 3. Suppose {xi}i≥0 is i.i.d. with mean µ and E|xi|2+δ < ∞ for some δ > 0. Consider
the reverse circulant (RCn) and circulant (Cn) matrices with the input {xi}.
(i) If µ 6= 0 then,

‖RCn‖ − |µ|n√
n

D→ N(0, 1).

(ii) If µ = 0 then,
‖ 1√

n
RCn‖ − dq

cq

D→ Λ

where
q = q(n) = [

n− 1
2

], dq =
√

ln q and cq =
1

2
√

ln q
.

The above conclusions continue to hold for Cn also.

Proof. As pointed out earlier, it is enough to deal with only RCn. Let λ0, λ1, . . . , λn−1 be the
eigenvalues of n−1/2RCn. These eigenvalues are given by (see Bose and Mitra (2002)):





λ0 = n−1/2
∑n−1

t=0 xt

λn/2 = n−1/2
∑n−1

t=0 (−1)txt, if n is even
λk = −λn−k =

√
In,x(ωk), 1 ≤ k ≤ [n−1

2 ].
(2.1)

where

In,x(ωk) =
1
n
|
n−1∑

t=0

xte
−itωk |2 and ωk =

2πk
n
.

Note that {|λk|2; 1 ≤ k < n/2} is the periodogram of {xi} at the frequencies {2πk
n ; 1 ≤ k < n/2}.

If µ = 0 then under the given conditions Davis and Mikosch (1999) have shown that

max
1≤k< n

2

In,x(ωk)− ln q D→ Λ.

Therefore
max

1≤k<n/2
|λk|2 − ln q D→ Λ. (2.2)

Define g(x) =
√
x. Then by mean value theorem,

g( max
1≤k<n/2

|λk|2)− g(ln q) = g′(ξn)( max
1≤k<n/2

|λk|2 − ln q)

where ξn lies between max1≤k<n/2 |λk|2 and ln q. From (2.2) we have

max1≤k<n/2 |λk|2
ln q

P→ 1.
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Therefore ξn

ln q
P→ 1. Now

g′(ξn)
g′(ln q)

=
(

ln q
ξn

)1/2 P→ 1

and therefore

g(max1≤k<n/2 |λk|2)− g(ln q)
g′(ln q)

=
g′(ξn)
g′(ln q)

( max
1≤k<n/2

|λk|2 − ln q) D→ Λ.

So if {xi} are i.i.d. with mean zero, variance 1 and E|xi|2+δ <∞, then

max1≤k< n
2
|λk| −

√
ln q

1
2
√

ln q

D→ Λ. (2.3)

Observe that we have left out λ0 and λn/2 (if n is even) where

λ0 =
1√
n

n−1∑

t=0

xt and λn/2 =
1√
n

n−1∑

t=0

(−1)txt.

Now suppose that mean of {xi} is µ > 0. For 1 ≤ k < n/2,

|λk| =
1√
n

∣∣
n−1∑

t=0

xte
itωk

∣∣ =
1√
n

∣∣
n−1∑

t=0

(xt − µ)eitωk
∣∣,

and (xt−µ) has mean zero and variance 1. Therefore even when E(xi) > 0, (2.3) holds. Note that
by CLT √

nλ0 − µn√
n

D→ N(0, 1). (2.4)

(2.4) implies λ0
P→∞ and hence

|λ0| − µ
√
n
D→ N(0, 1).

Let An = max1≤k<q |λk|. From (2.3) and (2.4)

An√
ln q

P→ 1 and
λ0

µ
√
n

P→ 1

and so it follows that

P
[

max(An, |λ0|)− µ
√
n > x

] → P
[
N(0, 1) > x

]
,

proving (i) for odd n.

Since for even n,

λn/2 = n−1/2
n−1∑

t=0

(−1)txt
D→ N(0, 1),

this can also be neglected as before, and hence (i) holds also for even n. Similar proof works when
µ < 0. This proves (i) completely.
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(ii) Now assume µ = 0. In contrast to the previous case, here An dominates |λ0|, since |λ0| is tight
and

|λ0| −
√

ln q
(ln q)−1/2

P→ −∞.

Hence in this case
‖ 1√

n
RCn‖ −

√
ln q

1
2
√

ln q

D→ Λ.

2

2.3 Symmetric circulant matrix

The spectral norm of the symmetric circulant matrices behaves quite similar to reverse circulant
matrices but the normalizing constants change. We need the following Lemmata which are well
known and hence we omit their proofs.

Lemma 1. The eigenvalues of 1√
n
SCn are given by:

(i) for n odd:

λ0 =
1√
n

[
x0 + 2

[n/2]∑

j=1

xj

]

λk =
1√
n

[
x0 + 2

[n/2]∑

j=1

xj cos
2πkj
n

]
, 1 ≤ k ≤ [n/2]

(ii) for n even:

λ0 =
1√
n

[
x0 + 2

n
2
−1∑

j=1

xj + xn/2

]

λk =
1√
n

[
x0 + 2

n
2
−1∑

j=1

xj cos
2πkj
n

+ (−1)kxn/2

]
, 1 ≤ k ≤ n

2

with λn−k = λk in both the cases.

The next Lemma is on the joint behaviour of maxima and minima of i.i.d normal random variables.

Lemma 2. Let {Ni} be i.i.d. N(0, 1). If mn = min1≤i≤nNi and Mn = max1≤i≤nNi, then with an

and bn as in (1.1), (−mn − bn
an

,
Mn − bn

an

) D−→ Λ⊗ Λ,

where Λ⊗ Λ denotes joint distribution of two independent standard Gumbel random variables.

The statement of Lemma 3 is taken from Einmahl (1989) Corollary 1(b), page 31, in combination
with Remark on page 32.
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Lemma 3. Let {ψi} be independent random vectors with mean zero and values in Rd. Assume that
the moment generating functions of ψi, 1 ≤ i ≤ n, exist in a neighborhood of the origin and that

Cov(ψ1 + ψ2 + ...+ ψn) = BnId,

where Bn > 0 and Id denotes the d-dimensional identity matrix. Let ηk be independent N(0, σ2Cov(ψk))
random vectors, k = 1, 2, ...n, independent of {ψk} and σ2 ∈ (0, 1]. Let ψ∗k = ψk + ηk, k = 1, 2, ...n
and write p∗n for the density of B−1/2

n
∑n

k=1 ψ
∗
k. Choose α ∈ (0, 1

2) such that

α
n∑

k=1

E|ψk|3 exp(α|ψk|) ≤ Bn,

where |x| denotes the Euclidean norm in Rd. Let

βn = βn(α) = B−3/2
n

n∑

k=1

E|ψk|3 exp(α|ψk|).

If |x| ≤ c1αB
1/2
n , σ2 ≥ −c2β2

n lnβn and Bn ≥ c3α
−2, where c1, c2, c3 are constants depending only

on d, then
p∗n = φ(1+σ2)Id

(x) exp(T̄n(x)) with |T̄n(x)| ≤ c4βn(|x|3 + 1),

where φc is the density of a d-dimensional centered Gaussian vector with covariance matrix c and
c4 is a constant depending on d.

We shall use the above Lemma now to derive a normal approximation result which shall be used
in the proof of Theorem 4. Define

x̄t = xtI(|xt| ≤ (1 + 2j)1/s)−E[xtI(|xt| ≤ (1 + 2j)1/s)]. (2.5)

For 1 ≤ i1 < i2 < ... < id < j let

vd(0) =
√

2(1, 1, ..., 1), vd(t) = 2
(

cos
2πi1t
2j + 1

, cos
2πi2t
2j + 1

, ..., cos
2πidt
2j + 1

)
for 1 ≤ t ≤ j.

Lemma 4. Let n = 1 + 2j and σ2
j = (1 + 2j)−c for some c > 0 and let {xt} be i.i.d mean zero with

Ex2
0 = 1 and Exs

0 <∞ for some s > 2. If we denote p̃j(x) to be the density of

1√
1 + 2j

j∑

t=0

(x̄t + σjNt)vd(t),

where Nt’s are i.i.d. N(0, 1) random variables independent of {xt} then for any measurable subset
E of Rd,

∣∣
∫

E
p̃j(x)dx−

∫

E
φ(1+σ2

j )Id
(x)dx

∣∣ ≤ εj

∫

E
φ(1+σ2

j )Id
(x)dx+O(exp(−(1 + 2j)η))

where εj → 0, η > 0 and the above holds uniformly over d-tuples 1 ≤ i1 < i2 < ... < id < j.
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Proof. Let Sj,x̄ =
∑j

t=0 x̄tvd(t) and let s = 2 + δ. Then observe Cov(Sj,x̄) = BjId where, Bj =
(2j+1)V ar(x̄t) and Id is the d×d identity matrix. Since {x̄tvd(t)}0≤t≤j is an independent collection

of mean zero random vectors in Rd, we shall use Lemma 3. By choosing α = c5(1+2j)−
1
s

2
√

d
, it can be

easily shown that,

α

j∑

t=0

E|x̄tvd(t)|3 exp(α|xtvd(t)|) < Bj .

If we define β̃j = B
−3/2
j

∑j
t=0E|x̄tvd(t)|3 exp(α|x̄tvd(t)|), then it follows that

β̃j ≤ C(1 + 2j)−( 1
2
− 1−δ

s
).

Let c = 1
2 − 1−δ

s > 0. Now choose |x| ≤ c1αB
1/2
j ∼ c2(1 + 2j)

1
2
− 1

s and σ2
j satisfying,

1 ≥ σ2
j ≥ c3(ln(2j + 1))(2j + 1)−2c.

Clearly Bj ≥ c4α
−2 and Bj ∼ (1 + 2j). We mention here that c1, c2, c3, c4 are constants depending

only on d. Then Lemma 3 implies that,

p̃j(x) = φ(1+σ2
j )Id

(x) exp(|Tj(x)|)

with |Tj(x)| ≤ c5β̃j(|x|3 + 1). Note that, |Tj(x)| → 0 uniformly for |x|3 = o{min((1 + 2j)−c, (1 +
2j)

1
2
− 1

s )}. For the choice of σ2
j = (1 + 2j)−c the above condition can be seen to be satisfied. Now

it follows from Corollary 1 of Bose, Mitra and Sen (2008) that for any measurable subset E of Rd,

∣∣
∫

E
p̃j(x)dx−

∫

E
φ(1+σ2

j )Id
(x)dx

∣∣ ≤ εj

∫

E
φ(1+σ2

j )Id
(x)dx+O(exp(−(1 + 2j)η))

where εj → 0. 2

For the reverse circulant, leaving out the eigenvalues λ0 and λn/2, the maximum and minimum
eigenvalues are equal in magnitude. This is not the case for symmetric circulant. Hence we now
look at the joint behaviour of the maximum and minimum of the eigenvalues. While preparing
the manuscript we came to know that the limiting distribution of the maximum of eigenvalues of
symmetric circulant matrices has been worked out in Bryc and Sethuraman (2009). It is easy to
see that Theorem 1 of their paper can be derived from the following result.

Theorem 4. Let q = [n/2] and Mq,x = max1≤k≤q λk and mq,x = min1≤k≤q λk. If {xi} are i.i.d.
with Ex0 = 0 , Ex2

0 = 1 and E|x0|s <∞ for some s > 2 then we have,
(−mq,x − bq

aq
,
Mq,x − bq

aq

) D−→ Λ⊗ Λ,

where aq and bq are given by (1.1). The same limit continues to hold if the eigenvalue λ0 is included
in the definition of max and min above.

Proof. First assume n = 2j + 1, odd and let s = 2 + δ. The proof may be broken down into two
major steps–truncation and application of Bonferroni’s inequality.

Step 1: Truncation. Let x̄t be as in (2.5) and

x̃t = xtI(|xt| ≤ (1 + 2j)1/s).
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If λ̄k and λ̃k denote the eigenvalues of symmetric circulant matrices with entries x̄t and x̃t respec-
tively, then λ̄k = λ̃k. By Borel-Cantelli lemma,

∑∞
t=1 |xt|I(|xt| > (1 + 2j)1/s) is bounded with

probability 1 and consists of only a finite number of nonzero terms. Thus there exists a positive
integer N(ω) such that

j∑

t=0

|xt − x̃t| =
j∑

t=0

|xt|I(|xt| > (1 + 2j)1/s)

≤
∞∑

t=0

|xt|I(|xt| > (1 + 2j)1/s)

=
N(ω)∑

t=0

|xt|I(|xt| > (1 + 2j)1/s).

It follows that for 2j + 1 ≥ {N(ω), |x1|s, . . . , |xN(ω)|s} the left side is zero. Consequently, for all j
sufficiently large, λ̃k = λk a.s. for all k. Therefore

(−mj,x − bj
aj

,
Mj,x − bj

aj

) D=
(−mj,x̄ − bj

aj
,
Mj,x̄ − bj

aj

)
(2.6)

where mj,x̄ = min1≤k≤j λ̄k and Mj,x̄ = max1≤k≤j λ̄k.

Step 2: Bonferroni Inequalities. Define for 1 ≤ k ≤ j,

λ̄
′
k =

1√
2j + 1

(√
2x̄0 + 2

j∑

t=1

x̄t cos
2πkt

2j + 1

)
,

¯̄λ′k = λ̄′k +
σj√

1 + 2j
(√

2N0 + 2
j∑

t=1

Nt cos
2πkt
n

)

= λ̄′k + σjN
′
j,k.

Observe N ′
j,k are i.i.d. N(0, 1) for k = 1, 2, · · · j. Define

Mj,x̄+σN = max
1≤k≤j

¯̄λ
′
k and mj,x̄+σN = min

1≤k≤j

¯̄λ
′
k.

P
(−mj,x̄+σN − bj

aj
> x,

Mj,x̄+σN − bj
aj

> y
)

= P
(
mj,x̄+σN < −ajx− bj ,Mj,x̄+σN > ajy + bj

)

= P
( ∪j

k=1 {¯̄λ
′
k < −ajx− bj} ∩ ∪j

k=1{¯̄λ
′
k > ajy + bj}

)

= P
( ∪j

k=1 {¯̄λ
′
k ∈ Ij

x,y}
)

= P
( ∪j

k=1 Ak,j

)

where, Ij
x,y = (ajy + bj ,−ajx− bj) and Ak,j = {¯̄λ

′
k ∈ Ij

x,y}.
Now by Bonferroni’s inequality,

2k∑

t=1

(−1)t−1Ãt,j ≤ P(A) ≤
2k−1∑

t=1

(−1)t−1Ãt,j (2.7)

where

A =
(−mj,x̄+σN − bj

aj
> x,

Mj,x̄+σN − bj
aj

> y
)

and Ãt,j =
∑

1≤i1<i2<···<it≤j

P
(
Ai1,j ∩ .. ∩Ait,j

)
.

10



P(B) = P
(−min1≤k≤j(1 + σ2

j )Nk − bj

aj
> x,

max1≤k≤j(1 + σ2
j )Nk − bj

aj
> y

)

= P
( ∪j

k=1 {(1 + σ2
j )1/2Nk ∈ Ij

x,y}
)

= P
( ∪j

k=1 Bk,j

)

where Bk,j = {(1 + σ2
j )1/2Nk ∈ Ij

x,y}. By Bonferroni’s inequality,

2k∑

t=1

(−1)t−1B̃t,j ≤ P(B) ≤
2k−1∑

t=1

(−1)t−1B̃t,j (2.8)

where,
B̃t,j =

∑

1≤i1<i2<···<it≤j

P
(
Bi1,j ∩Bi2,j ∩ .. ∩Bit,j

)
.

From (2.7) and (2.8) we get

2k∑

t=1

(−1)t−1(Ãt,j − B̃t,j)− B̃2k+1,j ≤ P(A)− P(B) ≤
2k−1∑

t=1

(−1)t−1(Ãt,j − B̃t,j) + B̃2k,j . (2.9)

Now note that,

B̃t,j =
∑

1≤i1<i2···<it≤j

P
(
Bi1,j ∩Bi2,j ∩ . . . ∩Bit,j

)

=
∑

1≤i1<i2···<it≤j

P
(
(1 + σ2

j )1/2Nil ∈ Ij
x,y; l = 1, 2, .., t

)

=
∑

1≤i1<i2···<it≤j

Pt
(
(1 + σ2

j )1/2Nil ∈ Ij
x,y

)
.

Note here that

P
(
(1 + σ2

j )1/2N1 ∈ (ajy + bj ,−ajx− bj)
) ≤ P

(
(1 + σ2

j )1/2N1 > ajy + bj
)

= P
(
N1 > (ajy + bj)(1 + σ2

j )−1/2
)

≤ P
(
N1 > (ajy + bj)(1− 1

2
σ2

j )
)
.

Now (ajy + bj)(1− σ2
j

2 ) ∼ bj + o(1) and P(N1 > bj) ∼ 1
j . Therefore

P
(
N1 > (1− 1

2
σ2

j )(ajy + bj)
) ≤ K

j

and hence

B̃t,j ≤
(
j

t

)
Kt

jt
≤ Kt

t!
.

Thus
lim
t→∞ lim

j→∞
B̃t,j = 0.

On the other hand, fixing t ≥ 1 we get,

P(Ai1,j ∩Ai2,j ∩ ... ∩Ait,j) = P(
1√

1 + 2j

j∑

t=0

(x̄t + σjNt)vd(t) ∈ Et),

11



where Et = {(x1, x2, ..., xt) : xi ∈ Ij
x,y}. So by Lemma 4 we have that uniformly over all d-tuples

1 ≤ i1 < i2 < ... < id ≤ j,

∣∣∣P(
1√

1 + 2j

j∑

t=0

(x̄t + σjNt)vd(t) ∈ Et)− P((1 + σ2
j )1/2Nil ∈ Ij

x,y, 1 ≤ l ≤ t)
∣∣∣

≤ εjP((1 + σ2
j )1/2Nil > ajy + bj , 1 ≤ l ≤ t) +O(exp(−(1 + 2j)η)).

So as j →∞ we get,

|Ãt,j − B̃t,j | ≤ εjB̃t,j +
(
j

t

)
O(exp(−(1 + 2j)η)) → 0.

Therefore,
lim

j→∞
|P(A)− P(B)| ≤ lim

j→∞
B̃2k+1,j + lim

j→∞
B̃2k,j

and letting k →∞ we get,
lim

j→∞
[P(A)− P(B)] = 0.

As max1≤k≤j Nk = Op((ln j)1/2), it follows that,

∣∣∣
(1 + σ2

j )1/2 max1≤k≤j Nk − bj

aj
− max1≤k≤j Nk − bj

aj

∣∣∣ ≤ σj max1≤k≤j |Nk|
aj

P→ 0.

Therefore
(1 + σ2

j )1/2 max1≤k≤j Nk − bj

aj

D−→ Λ.

Since −min1≤k≤j(1+σ2
j )1/2Nk = max1≤k≤j

(− (1+σ2
j )1/2Nk

)
and −(1+σ2

j )1/2Nk
D= (1+σ2

j )1/2Nk

we get
min1≤k≤j −(1 + σ2

j )1/2Nk − bj

aj

D−→ Λ.

Since (1 + σ2
j )1/2Ni are i.i.d. symmetric distributions, by Resnick (1987) Exercise 5.5.2

(min1≤k≤j −(1 + σ2
j )1/2Nk − bj

aj
,

max1≤k≤j(1 + σ2
j )1/2Nk − bj

aj

) D−→ Λ⊗ Λ.

Therefore combining the previous steps we get,
(−mj,x̄+σN − bj

aj
,
Mj,x̄+σN − bj

aj

) D−→ Λ⊗ Λ.

Now, to complete the proof it remains to show the result for truncated eigenvalues by (2.6). Now

∣∣max(¯̄λ′k)
aj

− max(λ̄′k)
aj

∣∣ ≤ σj

aj
max |N ′

j,k| P−→ 0.

Similarly −¯̄λ′k = −λ̄′k − σN ′
j,k and

∣∣max(−¯̄λ′k)
aj

− max(−λ̄′k)
aj

∣∣ ≤ σj

aj
max |N ′

j,k| P−→ 0.

12



Now if we denote m′
j,x̄ = min1≤k≤j λ̄

′
k and M ′

j,x̄ = max1≤k≤j λ̄
′
k then,

∣∣(−mj,x̄+σN − bj
aj

,
Mj,x̄+σN − bj

aj

)− (−m′
j,x̄ − bj

aj
,
M ′

j,x̄ − bj

aj

)∣∣

≤ C
[∣∣−mj,x̄+σN − (−m′

j,x̄)
aj

∣∣ +
∣∣Mj,x̄+σN −M ′

j,x̄

aj

∣∣
]

≤ C
[∣∣max(−¯̄λ′k)−max(−λ̄′k)

aj

∣∣ +
∣∣max(¯̄λ′k)−max(λ̄′k)

aj

∣∣
] P−→ 0.

Therefore
(−m′

j,x̄ − bj

aj
,
M ′

j,x̄ − bj

aj

) D−→ Λ⊗ Λ.

Again λ̄k = λ̄′k + (1−√2)√
2j+1

x̄0, therefore

∣∣M
′
j,x̄ − bj

aj
− Mj,x̄ − bj

aj

∣∣ P−→ 0,

and
∣∣−mj,x̄ − bj

aj
− −m′

j,x̄ − bj

aj

∣∣ P−→ 0.

Hence (−mj,x̄ − bj
aj

,
Mj,x̄ − bj

aj

) D−→ Λ⊗ Λ

Now for large j we know that λ̄k = λk a.s. So, it follows that

(−mj,x − bj
aj

,
Mj,x − bj

aj

) D−→ Λ⊗ Λ.

This proves the theorem when n is odd. For the even case say n = 2j it should be noted that if we
work with λ′k =

√
2x0 +

√
2(−1)kxj +2

∑j−1
t=1 xt cos 2πkt

2j then similar normal approximations can be
done and the subsequent calculations follow after that. We omit the obvious details. This proves
the theorem completely. 2

The next theorem follows by calculations similar to those used in the proof of Theorem 3.

Theorem 5. Suppose {xi}i≥0 is an i.i.d. sequence with mean µ and E|xi|2+δ <∞ for some δ > 0.
Consider the symmetric circulant matrix (SCn) with these {xi}.
(i) If µ = 0 then,

‖ 1√
n
SCn‖ − bq − aq ln 2

aq

D→ Λ

where q = q(n) ∼ n
2 and aq and bq are as in equation (1.1).

(ii) If µ 6= 0 then,
‖SCn‖ − |µ|n√

n

D→ N(0, 2).

13



Proof. To prove (i), since mean µ = 0, λ0
D−→ N(0, 2). So we can neglect this as shown in Theorem

3. Therefore, for large n,

‖ 1√
n
SCn‖ = max{− min

1≤i≤[n/2]
λi, max

1≤i≤[n/2]
λi}.

Hence

P
(‖ 1√

n
SCn‖ ≤ aqx+ bq

)
= P

(−minλi − bq
aq

≤ x,
maxλi − bq

aq
≤ x

)

D−→ Λ(x)Λ(x) = Λ(x+ ln
1
2

).

Now by convergence of types

P
(‖ 1√

n
SCn‖ − b̃q

ãq
≤ x

) D−→ Λ(x)

where, ãq = aq and b̃q = bq + aq ln 2.
In part (ii), λ0 dominates and the proof proceeds as in Theorem 3. We omit the details. 2

2.4 k-Circulant matrix

For the k- circulant matrices the special case n = k2 +1 was considered Bose, Mitra and Sen (2008)
who proved the following Theorem. We are investigating the general case.

Theorem 6. Suppose {xi}i≥0 is an i.i.d. sequence with mean zero and variance 1 and E|xi|2+δ <∞
for some δ > 2. If n = k2 + 1 then

‖n−1/2Ak,n‖ − dq

cq

D→ Λ

as n→∞ where q = q(n) = bn
4 c and

cn = (8 lnn)−1/2 and dn =
(lnn)1/2

√
2

(
1 +

1
4

ln lnn
lnn

)
+

1
2(8 lnn)1/2

ln
π

2
. (2.10)

3 Results for dependent input

Now let {xn;n ≥ 0} be a two sided moving average process,

xn =
∞∑

i=−∞
aiεn−i (3.1)

where {an;n ∈ Z} ∈ l1, that is
∑

n |an| < ∞, are nonrandom and {εi; i ∈ Z} are i.i.d. with
E(εi) = 0 and V (εi) = 1. Let f(ω), ω ∈ [0, 2π] be the spectral density of {xn}. Note that if
{xn} is i.i.d. with mean 0 and variance σ2, then f ≡ σ2

2π . It appears to be a very difficult problem
to establish limit results for the spectral norm when the spectral density is non-constant. One
intuitive reason for this is that the variance of each eigenvalue is of the order of the spectral density
at the corresponding ordinate. Thus it is meaningful to rescale by the spectral density. This is,
for example, the approach taken by Walker (1965), Davis and Mikosch (1999), Lin and Liu (2009)
while studying the periodogram. This rescaling by the spectral density makes them approximately
same variance and that makes it relatively easy to handle their maxima.
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3.1 Reverse Circulant and Circulant Matrix

Define M(·, f) for the reverse circulant matrix as follows:

M(n−1/2RCn, f) = max
1≤k< n

2

|λk|√
2πf(ωk)

where λk are the eigenvalues of n−1/2RCn as defined in proof of Theorem 3. Note that M(n−1/2Cn, f)
for the circulant matrix defined similarly satisfies M(n−1/2RCn, f) = M(n−1/2Cn, f).

Theorem 7. Let {xn} be the two sided moving average process (3.1) where {εi} are i.i.d. with
E(εi) = 0, E(ε2i ) = 1, E|εi|2+δ <∞ for some δ > 0 and

∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > 0 for all ω ∈ [0, 2π]. (3.2)

Then
M(n−1/2RCn, f)− dq

cq

D→ Λ,

where q = q(n) = [n−1
2 ], dq =

√
ln q and cq = 1

2
√

ln q
. Same result continues to hold for

M(n−1/2Cn, f).

Proof. Under (3.2) it is known that (see Walker (1965), Theorem 3) for some δ′ > 0,

max
1≤k< n

2

∣∣∣ Ix,n(ωk)
2πf(ωk)

− Iε,n(ωk)
∣∣∣ = op(n−δ′) (3.3)

where

Ix,n(ωk) =
1
n
|
n−1∑

t=0

xte
−itωk |2 and Iε,n(ωk) =

1
n
|
n−1∑

t=0

εte
−itωk |2.

Combining this with Theorem 2.1 of Davis and Mikosch (1999) we have

max
1≤k< n

2

Ix,n(ωk)
2πf(ωk)

− ln q D→ Λ.

Now proceeding as in the proof of Theorem 3, we can conclude that

M(n−1/2RCn, f)− dq

cq

D→ Λ.

2

Remark 3. If we define M(n−1/2RCn, f) = max0≤k<n/2
|λk|√

2πf(ωk)
then different limits may appear

depending on mean µ′ of the process {xn}. If mean µ of ε0 is 0 then by Theorem 7.1.2 of Brockwell
and Davis (2002) it follows that λ0√

2πf(0)

D→ N(0, 1). So by arguments similar to Theorem 3 we have

M(n−1/2RCn, f)− dq

cq

D→ Λ.

When µ 6= 0 then,
M(n−1/2RCn, f)− |µ|√n D→ N(0, 1).
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Remark 4. It appear that by the results of Lin and Liu (2009), if {xn} is the two sided moving
average process (3.1) where E(ε0) = 0, E(ε20) = 1, E[ε20I{|ε| ≥ n}] = o(1/ lnn) and

∑

|j|≥n

|aj | = o(1/ lnn) and min
ω∈[0,2π]

f(ω) > 0, (3.4)

then also
M(n−1/2RCn, f)− dq

cq

D→ Λ,

where cq, dq are as in Theorem 7.

3.2 Symmetric Circulant matrix

We now come to the symmetric circulant case. The result of Walker (1965) is not directly applicable
but we use his results appropriately.

Lemma 5. Let {xn} be the two sided moving average process (3.1) where E(εi) = 0, E(ε2i ) = 1,
E|εi|2+δ <∞ for some δ > 0 and

∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > 0 for all ω ∈ [0, 2π]. (3.5)

Then we have,

max
1≤k≤[n/2]

∣∣ λk√
2πf(ωk)

− 2
Ak√
n

[n/2]∑

t=1

εt cos(
2πkt
n

) + 2
Bk√
n

[n/2]∑

t=1

εt sin(
2πkt
n

)
∣∣ = op(n−1/4) (3.6)

where
√

2πf(ωk)Ak =
∞∑

j=−∞
aj cos(

2πkj
n

) and
√

2πf(ωk)Bk =
∞∑

j=−∞
aj sin(

2πkj
n

).

Proof. First observe that minω∈[0,2π] f(ω) > α > 0. Consider n = 2m + 1 for simplicity and for
n = 2m calculations are similar.

λk√
2πf(ωk)

− 2
Ak√
n

m∑

t=1

εt cos(
2πkt
n

) + 2
Bk√
n

m∑

t=1

εt sin(
2πkt
n

) = Yn,k

where

Yn,k =
1√

n
√

2πf(ωk)

∞∑

j=−∞
aj

[
cos

2πkj
n

Uk,j − sin
2πkj
n

Vk,j

]
,

Uk,j =
m∑

t=1

[
εt−j cos

2πk(t− j)
n

− εt cos
2πkt
n

]
, Vk,j =

m∑

t=1

[
εt−j sin

2πk(t− j)
n

− εt sin
2πkt
n

]
.

Note that

|Uk,j | ≤





|∑0
t=1−j εt cos 2πkt

n |+ |∑m
t=m−j+1 εt cos 2πkt

n | if |j| < m, j ≥ 0
|∑|j|

t=1 εt cos 2πkt
n |+ |∑m+|j|

t=m+1 εt cos 2πkt
n | if |j| < m, j < 0

|∑m−j
t=1−j εt cos 2πkt

n |+ |∑m
t=1 εt cos 2πkt

n | if |j| ≥ m, j ≥ 0
|∑|j|+m

t=|j|+1 εt cos 2πkt
n |+ |∑m

t=1 εt cos 2πkt
n | if |j| ≥ m, j < 0.
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Now for any r > 1,

|
r∑

t=1

εt cos
2πkt
n

|2 ≤ |
r∑

t=1

εte
i2πkt

n |2 ≤
r∑

s=−r

|
r−|s|∑

t=1

εtεt+|s||.

Hence by equation (29) of Walker (1965),

E{max
k
|

r∑

t=1

εt cos
2πkt
n

|2} ≤ Kr
3
2 .

Therefore

E{max
k

U2
k,j} ≤

{
4K|j|3/2 if |j| < m,

4Km3/2 if |j| ≥ m.

Similarly

E{max
k

V 2
k,j} ≤

{
4K|j|3/2 if |j| < m,

4Km3/2 if |j| ≥ m.

Now

E{max
k
|Yn,k|} ≤ 1√

2πα
1√
n

∞∑

j=−∞
|aj |

[
E{max

k
|Uk,j |}+ E{max

k
|Vk,j |}

]

≤ 2K1/2

√
2πα

1√
n

[ ∑

|j|<m

|aj ||j|3/4 +
∑

|j|≥m

|aj |m3/4
]

≤ 2K1/2

√
2πα

1
n1/4

[ ∑

|j|<m

|j|1/2|aj |(j/n)1/4 +
∑

|j|≥m

j1/2|aj |
]

= o(n−1/4)

since the second sum goes to zero as n→∞ and the first sum is not greater than
∑

k(n)<|j|<m

|j|1/2|aj |+ {k(n)/n)}1/4
∑

0≤|j|≤k(n)

|j|1/2|aj |,

where k(n) is such that limn→∞{k(n)/n} = 0 and limn→∞ k(n) = ∞. 2

Define M(·, f) for the symmetric circulant matrix as was done for the reverse circulant matrix:

M(n−1/2SCn, f) = max
1≤k< n

2

|λk|√
2πf(ωk)

where λk are the eigenvalues of n−1/2SCn as defined in Lemma 1. Under the additional restriction
of aj = a−j , for all j, the following result is easy to prove.

Theorem 8. Let {xn} be the two sided moving average process (3.1) where E(εi) = 0, E(ε2i ) = 1,
E|εi|2+δ <∞ for some δ > 0 and

aj = a−j for all j and
∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > 0 for all ω ∈ [0, 2π]. (3.7)

Then
M(n−1/2SCn, f)− bq − aq ln 2

aq

D→ Λ

where q = q(n) = [n/2] ∼ n
2 and aq and bq are as in equation (1.1).
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Proof. Note that if aj = a−j then in Lemma 5, Bk = 0 and hence from the same lemma, it is easy
to see that,

max
1≤k≤[n/2]

∣∣∣ λk√
2πf(ωk)

− λk,ε

∣∣∣ = op(n−1/4) (3.8)

where λk,ε denote eigenvalue of symmetric circulant matrix with {xi} replaced by {εi}. Combining
this with part (ii) of Theorem 5 we have

M(n−1/2SCn, f)− bq − aq ln 2
aq

D→ Λ.

2

Now we focus on the case where aj is not necessarily equal to a−j . We first define some notation
which will be used in the proofs of Lemma 7 and Theorem 9. For 0 < δ1 < 1/2 define pn =
(1 − 1

n1/2+δ1
) and denote Ln = {k : 1 ≤ k ≤ [npn/2]} and L1

n = {k ∈ Ln : k is even} and
L2

n = {k ∈ Ln : k is odd}.
Let

σ2
k = 1 +

AkBk

n
tan(

πk

n
) and νk,k′ =

Dk,k′

n
tan

π(k + k′)
2n

+
Ek,k′

n
tan

π(k′ − k)
2n

(3.9)

where, Dk,k′ = AkBk′ +Ak′Bk and Ek,k′ = Ak′Bk −AkBk′ .

The following lemma from Dai and Mukherjea (2001) (Theorem 2.1) is an analogue of Mill’s ratio
in higher dimension.

Lemma 6. Let (X1, X2, ...Xn) be multivariate normal with zero means and a positive definite
covariance matrix Σ. Let σ̃1 ≥ σ̃2 ≥ ... ≥ σ̃n denote the variances and let I(t) = P(Xi ≥ t, 1 ≤ i ≤
n). If α = (α1, α2, ..., αn) = ~1Σ−1 where ~1 = (1, 1, ..., 1) with αi > 0 then

I(t) ∼ 1
(
√

2π)n
√
|Σ|(∏n

i=1 αi)tn
exp(−1

2
t2~1Σ−1~1T ).

Now we find the rate of convergence of the maximum of the eigenvalues when {εi} are standard
normal random variables.

Lemma 7. Let {Ni} be i.i.d. N(0, 1) and let

λk,Φ =
√

2AkN0√
n

+
1√
n

[n/2]∑

t=1

Nt

(
2Ak cos(

2πkt
n

)− 2Bk sin(
2πkt
n

)
)
.

Then
maxk∈L1

n
λk,Φ − bq

aq

D−→ Λ (3.10)

and
maxk∈L2

n
λk,Φ − bq

aq

D−→ Λ (3.11)

where q = qn = [n/4] and an and bn are as in (1.1).

In particular,
max1≤k≤[n/2] λk,Φ√

lnn
P−→ 1. (3.12)
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Proof. Consider the case n = 2m + 1. First observe that V arλk,Φ = σ2
k and for k′ > k we have

Cov(λk,Φ, λk′,Φ) = νk,k′ where σk and νk,k′ is defined in (3.9). Let xq = aqx + bq ∼
√

2 ln q. By
Bonferroni inequalities we have for j > 1

2j∑

d=1

(−1)d−1B̃d ≤ P(max
k∈L1

n

λk,Φ > xq) ≤
2j−1∑

d=1

(−1)d−1B̃d,

where
B̃d =

∑

i1,i2,...,id∈L1
n, all distinct

P(λi1,Φ > xq, ...λid,Φ > xq)

Observe by the choice of pn we have,

1
n

tan(
πpn

2
) ∼ 2n1/2+δ1

πn
→ 0.

Hence for some ε > 0, for large n we have 1 − ε < σ2
k < 1 + ε and for any k, k′ ∈ L1

n (or L2
n) we

have |νk,k′ | → 0 as n→∞. Next we make the following claim:

∑

ii,i2,...,id∈L1
n, all distinct

P(λi1,Φ > xq, ...λid,Φ > xq) ∼ qd exp(−x2
qd

2 )

d!xd
q(
√

2π)d
, for d ≥ 1. (3.13)

To avoid notational complications we show the above claim for d = 1 and d = 2 and indicate what
changes are necessary for higher dimension.

d=1: Using the fact that σ2
k

x2
q
→ 0 and

(
1− 1

x2

)
exp(−x2/2)√

2πx
≤ P(N(0, 1) > x) ≤ exp(−x2/2)√

2πx

it easily follows that,

∑

k∈L1
n

P(N(0, 1) > xq/σk) ∼
∑

k∈L1
n

σk√
2πxq

exp(− x2
q

2σ2
k

).

Observe that
∑

k∈L1
n

σk√
2πxq

exp(− x2
q

2σ2
k
)

qpn√
2πxq

exp(−x2
q

2 )
=

1
qpn

∑

k∈L1
n

σk exp(−x
2
q

2
(

1
σ2

k

− 1))

=
1
qpn

∑

k∈L1
n

σk exp(− x2
q

2σ2
k

AkBk

n
tan(

πk

n
)).

Now using the facts that AkBkx2
q

nσ2
k

tan(πpn

n ) → 0, supk∈L1
n
σ2

k → 1 and |{k : k ∈ L1
n}| ∼ qpn, it is easy

to see that the last term above goes to 1. Since pn ∼ 1 the claim is proved for d = 1.

d=2: We shall use Lemma 6 for this case. Without loss of generality assume that σ2
k > σ2

k′ .
Let α = (α1, α2) where α = ~1V −1 and

V =
[

σ2
k νk,k′

νk,k′ σ2
k′

]
.
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Hence (α1, α2) =
(

σ2
k′−νk,k′
|V | ,

σ2
k−νk,k′
|V |

)
. For any 0 < ε < 1 it easily follows that αi >

1−ε
|V | for large

n and for i = 1, 2. Hence from Lemma 6 it follows that as n→∞,

∑

k,k′∈L1
n

P(λk,Φ > xq, λk′,Φ > xq) ∼
∑

k,k′∈L1
n

1
2π

√
|V |

exp(−1
2x

2
q
~1V −1~1T )

α1α2x2
q

.

Now denote

ψk,k′ =
1
|V |

[
− AkBk

n
tan(

πk

n
)− Ak′Bk′

n
tan(

πk′

n
)+

AkBk

n
tan(

πk

n
)
Ak′Bk′

n
tan(

πk′

n
)−2νk,k′ +2ν2

k,k′
]

and observe

|x2
qψk,k′ | ≤ C

x2
q

n
tan(

πpn

2
) → 0 as n→∞.

∑
k,k′∈L1

n

1

2π
√
|V |α1α2x2

q

exp(−1
2x

2
q
~1V −1~1T )

q2 exp(−x2
q)

2!x2
q2π

=
2
q2

∑

k,k′∈L1
n

1√
|V |α1α2

exp
(
−1

2
x2

q(α1 + α2) + x2
q

)

=
2
q2

∑

k,k′∈L1
n

|V |3/2

(σ2
k′ − νk,k′)(σ2

k − νk,k′)
exp

(
−x

2
q

2
(α1 + α2 − 2)

)

≤ 2
q2

∑

k,k′∈L1
n

|V |3/2

(1− ε)2
exp(−x

2
q

2
ψk,k′)

→ 1 as n→∞ and as ε→ 0.

Similarly the lower bound can be obtained to show that the claim is true for d = 2.

d ≥ 2 : Now the probability inside the sum in claim (3.13) is P(N(0, Vn) ∈ En) where En =
{(y1, y2, ..., yd) : yi > xq, i = 1, 2..., d}, and Vn denote covariance matrix {Vn(s, t)}d

s,t=1 with
Vn(s, s) = σ2

is
and for s 6= t we have Vn(s, t) = νisit . Without loss of generality assume that

σi1 ≥ σi2 ≥ ... ≥ σid , since we can always permute the original vector to achieve this and the
covariance matrix changes accordingly. Note that as n→∞ we get

‖Vn − Id‖∞ → 0,

where ‖A‖∞ = max |ai,j |. As V −1
n =

∑∞
j=0(Id− Vn)j we have α = ~1 +

∑∞
j=1

~1(Id− Vn)j . Now since
‖Id − Vn‖∞ → 0 so ‖(Id − Vn)j‖∞ → 0 and hence elements of (Id − Vn)j goes to zero for all j. So
we get that αi ∈ (1− ε, 1 + ε) for i = 1, 2, ..., d and 0 < ε < 1 and hence we can again apply Lemma
6. For further calculations it is enough to observe that for |x| 6= 0,

xVnx
T

|x|2 = 1 +
1
|x|2

d∑

k=1

xk
2AikBik

1
n

tan(
πik
n

) +
1
|x|2

d∑

1≤k 6=k′≤d

xkxk′νik,ik′

Since the last two term goes to zero in their modulus so given any ε > 0, we get for large n

1− ε ≤ λmin(Vn) ≤ λmax(Vn) ≤ 1 + ε,

where λmin(Vn) and λmax(Vn) denote the minimum and maximum eigenvalue of Vn. Rest of the
calculation is similar to d = 2 case.
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Now using the fact that an and bn are normalizing constants for maxima of standard normal it
follows that,

qd exp(−x2
qd

2 )
d!xd

q

∼ 1
d!

exp(−dx).

So from the Bonferroni inequalities and observing exp(− exp(−x)) =
∑∞

d=0
(−1)d

d! exp(−dx) it follows
that

P(max
k∈L1

n

λk,Φ > xq) → exp(− exp(−x)),

proving (3.10). For (3.11) calculations are similar and we omit the details.
To prove (3.12) we first observe that,

n/2∑

k=npn/2

P(N(0, 1) > xq/σk) ≤ n

2
(1− pn)P(N(0, 1) >

xq√
2

),

since σ2
k ≤ 2 for k ≤ n/2. Expanding the expressions for an and bn we get,

x2
q

4
=

1
4

(aqx+ bq)2 = o(1) +
ln q
2
− 1

4
ln(4π ln q) +

x

2
.

Now

n(1− pn)
2

P(N(0, 2) > xq) ≤ C
n(1− pn)

2
exp(−x2

q

4 )
xq

∼ Cn−1/2n(1− pn)
2
√

ln q

∼ C
1

nδ1
√

ln q
→ 0 as n→∞.

Breaking up the set L1 = {k : 1 ≤ k ≤ [n/2] and k is even } into L1
n and L̃1

n = {k : [npn/2] < k <
[n/2] and k is even} we get,

P(max
k∈L1

λk,Φ > xq) = P(max(max
k∈L1

n

λk,Φ,max
k∈L̃1

n

λk,Φ) > xq)

≤ P(max
k∈L1

n

λk,Φ > xq) + P(max
k∈L̃1

n

λk,Φ > xq)

≤ P(max
k∈L1

n

λk,Φ > xq) +
[n/2]∑

t=[npn/2]

P(N(0, σ2
k) > xq)

= P(max
k∈L1

n

λk,Φ > xq) + o(1).

Hence the upper bound is obtained. The lower bound easily follows from (3.10). Similar calculations
for set L2 = {k : 1 ≤ k < [n/2] and k is odd} can be done. To complete the proof it is enough to
observe that,

P(
max1≤k<[n/2] λk,Φ√

lnn
> 1− ε) ≤ P(

maxk∈L1 λk,Φ√
lnn

> 1− ε) + P(
maxk∈L2 λk,Φ√

lnn
> 1− ε)

and the last two probabilities go to zero. This completes the proof of the Lemma. 2
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Remark 5. By calculations similar to above, it can be shown that for σ2 = n−c where c > 0,

∑

ii,i2,...,id∈L1
n, all distinct

P((1 + σ2)1/2λi1,Φ > xq, ..., (1 + σ2)1/2λid,Φ > xq) ≤ Kd

d!
(3.14)

for some constant K > 0. This will be used in the proof of Theorem 9.

We now consider the symmetric circulant matrix with the general moving average process {xi}.
Theorem 9. Let SCn be the symmetric circulant matrix with entries from {xn}, the two sided
moving average process (3.1). Let E(εi) = 0, E(ε2i ) = 1, E|εi|s <∞ for some s > 2 and

∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > 0 for all ω ∈ [0, 2π]. (3.15)

If λk,x denote the eigenvalues of 1√
n
SCn with input {xi} then

maxk∈L1
n
λk,x − bq

aq

D−→ Λ (3.16)

and
maxk∈L2

n
λk,x − bq

aq

D−→ Λ (3.17)

where q = qn = [n/4] and an and bn are as in (1.1).

Proof. Again for simplicity we assume that n = 2m+ 1.

Truncation: Define

ε̃t = εtI(|εt| ≤ n1/s), εt = ε̃t −Eε̃t, x̃t =
∞∑

j=−∞
aj ε̃t−j , xt =

∞∑

j=−∞
ajεt−j ,

λk,x̃ =
1√
n

[x̃0 + 2
m∑

t=1

x̃t cos
2πkt
n

], λk,x̄ =
1√
n

[x0 + 2
m∑

t=1

xt cos
2πkt
n

].

Note that

√
nλk,x̄ = x0 + 2

m∑

t=1

xt cos
2πkt
n

= x̃0 + 2
m∑

t=1

x̃t cos
2πkt
n

+
∞∑

j=−∞
ajE(ε̃−j) + 2

m∑

t=1

[
∞∑

j=−∞
ajE(ε̃t−j)] cos

2πkt
n

=
√
nλk,x̃ + [

∞∑

j=−∞
ajE(ε̃j)][1 + 2

m∑

t=1

cos
2πkt
n

]

=
√
nλk,x̃.

Choose δ such that (1
2 − 1

s − δ) > 0 and observe

nδE[ max
1≤k≤[n/2]

|λk,x̄ − λk,x|] = nδE[ max
1≤k≤[n/2]

|λk,x̃ − λk,x|]
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≤ 2
n1/2−δ

m∑

t=0

∞∑

j=−∞
|aj |E(|εt−j |I(|εt−j | > n1/s))

≤ 2
n1/2−δ

m∑

t=0

∞∑

j=−∞
|aj |

[
n1/sP(|εt−j | > n1/s) +

∫ ∞

n1/s

P(|εt−j | > u)du
]

= I1 + I2, say,

and

I1 =
2

n1/2−δ

m∑

t=0

∞∑

j=−∞
|aj |n1/sP(|εt−j | > n1/s)

≤ 2
n1/2−δ

m∑

t=0

∞∑

j=−∞
|aj |n1/s 1

n
E(|εt−j |s)

≤ E(|ε0|s)
n1/2−1/s−δ

∞∑

j=−∞
|aj |.

and right side goes to zero as n→∞ since
∑∞

j=−∞ |aj | <∞. Similarly

I2 =
2

n1/2−δ

m∑

t=0

∞∑

j=−∞
|aj |

∫ ∞

n1/s

P(|εt−j | > u)du

≤ 2
n1/2−δ

m∑

t=0

∞∑

j=−∞
|aj |

∫ ∞

n1/s

E(|εt−j |s)
us

du

≤ 2E(|ε0|s)
(s− 1)n1/2−δ

m∑

t=0

∞∑

j=−∞
|aj | 1

n1−1/s

≤ E(|ε0|s)
(s− 1)n1/2−1/s−δ

∞∑

j=−∞
|aj |

and goes to zero as n→∞ for above choice of δ. Hence max1≤k≤[n/2] |λk,x̄ − λk,x| = op(n−δ).
By Lemma 5 we get that

max
k∈L1

n

∣∣ λk,x̄

aq

√
2πf(ωk)

− 2Ak√
naq

m∑

t=1

εt cos(
2πkt
n

) +
2Bk√
naq

m∑

t=1

εt sin(
2πkt
n

)
∣∣ = op(

√
lnn
nδ1

).

Similar conclusions can drawn for maximum over L2
n. So to show the result it is enough to show

that,
maxk∈L1

n
λk,ε − bq

aq

D→ Λ, (3.18)

where

λk,ε =
√

2Akε0√
n

+
2Ak√
n

m∑

t=1

εt cos(
2πkt
n

)− 2Bk√
n

m∑

t=1

εt sin(
2πkt
n

).

Normal Approximation: This step is similar to the proof of Lemma 4. Now we use Lemma 3 to
approximate λk,ε with Gaussian random variables. Let d ≥ 1 and i1, i2, ...id be d distinct numbers
from L1

n.
vd(0) =

√
2(Ai1 , ..., Aid) and
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vd(t) = 2
(
Ai1 cos(

2πi1t
n

)−Bi1 sin(
2πi1t
n

), ..., Aid cos(
2πidt
n

)−Bid sin(
2πidt
n

)
)

Let Sn =
∑m

t=0 εtvd(t), and observe that cov(Sn) = Vn where Vn is the covariance matrix with diag-
onal entries Vn(k, k) = Bnσ

2
ik

and off-diagonal entries Vn(k, k′) = Bnνik,ik′ and Bn = V ar(εt)n ∼ n.
We have infact already seen that,

‖ Vn

Bn
− Id‖∞ → 0.

To apply Lemma 3 we define

ε′t = Bn
1/2V −1/2

n εtvd(t) for 0 ≤ t ≤ [n/2] and S′n =
m∑

t=0

ε′t.

It is easy to see that Cov(S′n) = BnId. Also note the since ‖( Vn
Bn

)−1 − Id‖∞ < c′ for some constant
c′ > 0 and hence for large n we get that |ε′t| < 2dCn1/s for some constant C . Hence ε′t are
sequence of independent, mean zero random vectors with moment generating function finite in a
neighborhood of zero. For verification of the other conditions choose α̃ = c1

n1/s2dC
, where c1 is a

constant to be chosen later. Hence,

α̃
m∑

t=0

E|ε′t|3 exp(α̃|ε′t|) ≤ α̃B3/2
n |Vn|−3/2(2d)3

m∑

t=0

E|εt|3 exp(c1)

≤ 4c1 exp(c1)C2d2n(1− 1
s
)E|εt|3

≤ 4c1 exp(c1)C2d2n(1− δ2
s

)E|εt|2+δ2 ,

where δ2 ∈ (0, 1) such that E|εt|2+δ2 < ∞. Now choose c1 such that the the required condition is
satisfied. Similar calculations show that

βn = B−3/2
n

m∑

t=0

E|ε′t|3 exp(α̃|ε′t|) ≤ Cn−c3 ,

where c3 = 1
2− 1−δ2

s > 0. The rest of calculations are similar to the proof of Lemma 4. Let σ̄2 = n−c3

and if N ′
t are i.i.d. N(0, σ̄2Cov(ε′t)) independent of ε′t and p̃n be density of S∗n = 1√

Bn

∑m
t=0(ε′t +N ′

t),
then,

p̃n(x) = φ(1+σ̄2)Id
(x)(1 + o(1)),

uniformly for all x such that |x|3 = o(n( 1
2
− 1

s
)). Here φC denotes the d-dimensional normal density

with covariance matrix C.

Let σ2 = V ar(ε̄)σ̄2 ∼ n−c3 and observe that N ′
t
D= B

1/2
n V

−1/2
n σNtvd(t), where Nt are i.i.d. N(0, 1)

for t = 0, 1, ...,m.

Now define the following for x ∈ Rd, ‖x‖0 = min1≤i≤d xi. Recall | · | denotes the Euclidean norm
and observe that ‖x + y‖0 ≤ ‖x‖0 + |y|. Let Sn = 1√

n

∑m
t=0(εt + Nt)vd(t). Then note that S∗n =

B
1/2
n V

−1/2
n Sn.

Let rn = o(n( 1
2
− 1

s
)) and denote Kn = {y ∈ Rd : ‖B−1/2

n V
1/2
n y‖0 > xq} and break it into the following

two sets K1,n = {y ∈ Rd : ‖B−1/2
n V

1/2
n y‖0 > xq, |y| > rn} and K2,n = {y ∈ Rd : ‖B−1/2

n V
1/2
n y‖0 >

xq, |y| ≤ rn}.
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Then

P(‖Sn‖0 > xq) ≤ P(‖B−1/2
n V 1/2

n S∗n‖0 > xq)

=
∫

Kn

p̃n(y)dy

=
∫

K2,n

p̃n(y)dy +
∫

K1,n

p̃n(y)dy

= (1 + o(1))
∫

K2,n

φ(1+σ2)Id
(y)dy +

∫

K1,n

p̃n(y)dy

= (1 + o(1))
∫

Kn

φ(1+σ2)Id
(y)dy − (1 + o(1))

∫

K1,n

φ(1+σ2)Id
(y)dy +

∫

K1,n

p̃n(y)dy

= (1 + o(1))P(‖(1 + σ2)1/2 1√
n

m∑

t=0

Ntvd(t)‖0 > xq)

− (1 + o(1))
∫

K1,n

φ(1+σ2)Id
(y)dy +

∫

K1,n

p̃n(y)dy

The third integral is less than

P

(
| 1√
n

m∑

t=0

B1/2
n V −1/2

n (εt + σNt)vd(t)| > rn

)
.

Now we using the fact that ‖( Vn
Bn

)−1/2‖∞ ≤ C5 for some constant C5 > 0 and calculations sim-
ilar to Corollary 1 of Bose, Mitra and Sen (2008) we get that the third integral is bounded by
K1 exp(−K2n

δ3) for some constant K1,K2 > 0 and depending only on d and δ3 > 0. Similarly the
integral in the second term is bounded by,

∫

|y|>rn

φ(1+σ2)Id
(y)dy ≤ 2d exp(− rn

2d
).

From all the above observations it is easy to conclude that, for εn → 0 we get uniformly over d
distinct tuples i1, i2, ...id ∈ L1

n that

∣∣P(‖Sn‖0 > xq)− P (‖(1 + σ2)
1√
n

m∑

t=0

Ntvd(t)‖0 > xq)
∣∣ ≤ εnP (‖(1 + σ2)

1√
n

m∑

t=0

Ntvd(t)‖0 > xq)

+K3 exp(−K4n
δ3), (3.19)

where K3,K4 are constants depending on d. Now define,

λk,ε+σN =
√

2Ak√
n

(ε0 + σN0) +
2Ak√
n

m∑

t=1

(εt + σNt) cos(
2πkt
n

)− 2Bk√
n

m∑

t=1

(εt + σNt) sin(
2πkt
n

).

By arguments similar to Step 2 of Theorem 4 and using (3.14) and (3.19) it follows that,
∣∣P(max

k∈L1
n

λk,ε+σN > xq)− P(max
k∈L1

n

(1 + σ2)1/2λk,Φ > xq)
∣∣ → 0,
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where λk,Φ is defined in Lemma 7. Now since maxk∈L1
n
λk,Φ = OP (

√
lnn) and σ2 = n−c3 we get as

n→∞,

P
(

max
k∈L1

n

(1 + σ2)1/2λk,Φ > xq

)
→ Λ(x).

It follows that (3.18) is true. Similar calculations hold for the second part of the Theorem. 2

Theorem 10. If {λk,x} are the eigenvalues of 1√
n
SCn then under the assumptions of Theorem 9,

max1≤k≤[n/2]
λk,x√

2πf(wk)√
lnn

P→ 1 where ωk =
2πk
n
.

Proof. As before we assume n = 2m+ 1. It is now easy to see from the truncation part of Theorem
9 and Lemma 5 that it is enough to show that,

max1≤k≤[n/2] λk,ε√
lnn

P→ 1,

where,

λk,ε =
√

2Akε0√
n

+
2Ak√
n

m∑

t=1

εt cos(
2πkt
n

)− 2Bk√
n

m∑

t=1

εt sin(
2πkt
n

),

and εt = εtI(|εt| ≤ n1/s) − EεtI(|εt| ≤ n1/s). The steps are same as the steps required to prove
(3.12) in Lemma 7 and observe from there that to complete the proof it is enough to show,

[n/2]∑

k=[npn/2]+1

P(λk,ε > xq) → 0 as n→∞. (3.20)

Denote
m = [n/2], v1(0) =

√
2Ak and v1(t) = 2Ak cos(

2πkt
n

)− 2Bk sin(
2πkt
n

).

Since {εtv1(t)} is a sequence of bounded independent mean zero random variable, by applying
Bernstein’s inequality we get

P(
1√
m

m∑

t=0

εtv1(t) > xq) ≤ P(|
m∑

t=0

εtv1(t)| > √
mxq)

= P(|
m∑

t=0

εtv1(t)| > m
xq√
m

)

≤ 2 exp
(− mx2

q

2
∑m

t=0 V ar(εtv1(t)) + 2
3Cn

1/sm
xq√
m

)
.

Denote by Ck = AkBk and observe

D :=
mx2

q

2
∑m

t=0 V ar(εtv1(t)) + 2
3Cn

1/sm
xq√
m

≥ x2
q

4 1
n

∑m
t=0 V ar(εtv1(t)) + 4

3Cn
1/s−1/2xq
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=
x2

q

4(1 + Ck
n tan πk

n ) + 4
3

Cxq

n1/2−1/s

≥ x2
q

4(1 + 2
π ) + o(1)

≥ x2
q

8
.

Therefore

P(|
m∑

t=0

εtv1(t)| > √
mxq) ≤ 2 exp(−x

2
q

8
),

and hence

[n/2]∑

t=[npn/2]

P(
1√
n
|

m∑

t=0

εtv1(t)| > xq) ≤ n(1− pn) exp(−x
2
q

4
) ≤ C

nδ1(lnn)1/4
−→ 0.

2

Remark 6. Note that the above calculation can be imitated with ease to conclude that when µ = 0,

max1≤k≤[n/2]
|λk|√

2πf(ωk)√
lnn

P→ 1.

The proof is same, with only the normalizing constants changed suitably.

Remark 7. If we include λ0 in the definition M(n−1/2SCn, f) that is, if M(n−1/2SCn, f) =
max0≤k≤[n/2]

|λk|√
2πf(ωk)

then it is easy to see that if we assume the mean µ of {εi} to be non-zero

then
M(n−1/2SCn, f)− |µ|√n D→ N(0, 2).

Remark 8. In Theorem 9 we were unable to consider the convergence over L1
n∪L2

n. It is not clear
if the maximum over the two subsets are asymptotically independent and hence it is not clear if we
would continue to obtain the same limit. Observe that for example, if k is odd and k′ is even then

Cov(λk,x, λk′,x) =
−Dk,k′

n
cot

π(k + k′)
2n

− Ek,kk′

n
cot

π(k′ − k)
2n

.

So for this covariance terms going to zero we have to truncate the index set from below appro-
priately. For instance, in the Gaussian case we may consider the set L′ = {(k, k′) : 1 < k <
[npn/2], k + [nqn/2] < k′ < [npn/2]} with qn → 0, we can approximate it by the i.i.d. counter-
parts since supk,k′∈L′ |Cov(λk,x, λk′,x)| → 0 as n → ∞. The complicacy comes when dealing with
the complement of L′ since it has no longer small cardinality. We are looking into this problem
actively.

3.3 k Circulant matrix

We assume n = k2 + 1 and at first give a brief description of its eigenvalues.

ν = νn := cos(2π/n) + i sin(2π/n), i2 = −1 and λk =
n−1∑

l=0

xlν
kl, 0 ≤ j < n. (3.21)
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For any positive integers k and n, let p1 < p2 < . . . < pc be their common prime factors so that,

n = n′
c∏

q=1

p
βq
q and k = k′

c∏

q=1

p
αq
q .

Here αq, βq ≥ 1 and n′, k′, pq are pairwise relatively prime. For any positive integer s, let
Zs = {0, 1, 2, . . . , s− 1}. Define the following sets

S(x) = {xkb mod n′ : b ≥ 0}, 0 ≤ x < n′.

Let gx = |S(x)|. Define
υk,n′ := |{x ∈ Zn′ : gx < g1}| .

We observe the following about the sets S(x).

1. S(x) = {xkb mod n′ : 0 ≤ b < |S(x)|}.
2. For x 6= u, either S(x) = S(u) or, S(x) ∩ S(u) = φ. As a consequence, the distinct sets from

the collection {S(x) : 0 ≤ x < n′} forms a partition of Zn′ .

We shall call {S(x)} the eigenvalue partition of {0, 1, 2, . . . , n−1} and we will denote the partitioning
sets and their sizes by

{P0,P1, . . . ,Pl−1}, and ni = |Pi|, 0 ≤ i < l.

Define
yj :=

∏

t∈Pj

λty, j = 0, 1, . . . , l − 1 where y = n/n′.

Then the characteristic polynomial of Ak,n is given by

χ (Ak,n) = λn−n′
`−1∏

j=0

(λnj − yj) , (3.22)

and this provides a formula solution for the eigenvalues. By Lemma 7 of Bose, Mitra and Sen
(2008), the eigenvalue partition of {0, 1, 2, . . . , n − 1} contains exactly bn

4 c sets of size 4, say
{P1,P2, . . . ,Pbn

4
c}. Since each Pi is self-conjugate, we can find a set Ai ⊂ Pi of size 2 such

that
Pj = {x : x ∈ Aj or n− x ∈ Aj}.

Since we shall be using the bounds given in Walker (1965) we define a few relevant notation for
convenience. Define,

Ix,n(ωj) =
1
n

∣∣∣
n∑

l=1

xle
iωj l

∣∣∣
2
, Iε,n(ωj) =

1
n

∣∣∣
n∑

l=1

εle
iωj l

∣∣∣
2
,

Jx,n(ω) =
1√
n

n∑

l=1

xle
iωj l, Jε,n(ω) =

1√
n

n∑

l=1

εle
iωj l,

βx,n(t) =
∏

j∈At

Ix,n(ωj), βε,n(t) =
∏

j∈At

Iε,n(ωj),
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A(ωj) =
∞∑

t=−∞
ate

iωjt, Tn(ωj) = Ix,n(ωj)− |A(ωj)|2Iε,n(ωj),

β̃x,n(t) :=
βx,n(t)∏

j∈At
2πf(ωj)

and M(n−1/2Ak,n, f) = max
1≤t≤q

(
β̃x,n(t)

)1/4
.

Theorem 11. Let {xq} be the two sided moving average process (3.1) where E(εi) = 0, E(ε2i ) = 1,
E|εi|2+δ <∞ for some δ > 0 and

∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > α > 0 for all ω ∈ [0, 2π]. (3.23)

Then
M(n−1/2Ak,n, f)− dq

cq

D→ Λ.

as n→∞ where q = q(n) = bn
4 c and cq, dq are same as defined in Theorem 6.

Proof. Observe that,

β̃x,n(t) :=
βx,n(t)∏

j∈At
2πf(ωj)

= βε,n(t) +Rn(t),

where
Rn(t) = Iε,n(ωt1)

Tn(ωt2)
2πf(ωt2)

+ Iε,n(ωt2)
Tn(ωt1)

2πf(ωt1)
+

Tn(ωt1)
2πf(ωt1)

Tn(ωt2)
2πf(ωt2)

.

Let q = bn
4 c. Recall that,

‖n−1/2Ak,n‖ = max
1≤t≤q

(
βx,n(t)

)1/4 and M(n−1/2Ak,n, f) = max
1≤t≤q

(
β̃x,n(t)

)1/4
.

We shall show max1≤t≤q |β̃x,n(t)− βε,n(t)| → 0 in probability.
Now

|β̃x,n(t)− βε,n(t)| ≤ |Iε,n(ωt1)
Tn(ωt2)

2πf(ωt2)
|+ |Iε,n(ωt2)

Tn(ωt1)
2πf(ωt1)

|+ | Tn(ωt1)
2πf(ωt1)

Tn(ωt2)
2πf(ωt2)

|,

Note that
max
1≤t≤q

|Iε,n(ωt1)
Tn(ωt2)

2πf(ωt2)
| ≤ 1

2πα
max
1≤t≤n

|Iε,n(ωt)| max
1≤t≤n

|Tn(ωt)|.

From Walker (1965) (page 112) we get

max
1≤t≤n

|Tn(ωt)| = Op(n−δ(lnn)1/2).

Also it is known from Davis and Mikosch (1999) that

max
1≤t≤n

|Iε,n(ωt)| = Op(lnn).

Therefore

max
1≤t≤q

|Iε,n(ωt1)
Tn(ωt2)

2πf(ωt2)
| = Op(n−δ(lnn)3/2) and max

1≤t≤q
| Tn(ωt1)
2πf(ωt1)

Tn(ωt2)
2πf(ωt2)

| = Op(n−2δ lnn).
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Combining all this we have

max
1≤t≤q

|Rn(t)| = max
1≤t≤q

|β̃x,n(t)− βε,n(t)| = Op(n−δ(lnn)3/2).

Note that (
βε,n(t)

)1/4 − |Rn(t)|1/4 ≤ (
β̃x,n(t)

)1/4 ≤ (
βε,n(t)

)1/4 + |Rn(t)|1/4

and hence ∣∣ max
1≤t≤q

(
β̃x,n(t)

)1/4 − max
1≤t≤q

(
βε,n(t)

)1/4∣∣ = Op(n−δ/4(lnn)3/8).

From Theorem 6 we know
max1≤t≤q

(
βε,n(t)

)1/4 − dq

cq

D→ Λ.

Hence
M(n−1/2Ak,n, f)− dq

cq

D→ Λ.

2

4 Concluding Remarks

In Theorems 3 and 5 we saw that the nature of the limiting distribution depends on whether the
input sequence has mean zero or not. Results from Adamczak (2008) and Bose and Sen (2007)
suggest that the same should happen for the Toeplitz matrix. It would be interesting to find out
the limiting distribution of the spectral norm of the Toeplitz matrix in general.

Theorem 4 shows that the joint distribution of the maximum and minimum of the eigenvalues of
SCn behave like the maximum and minimum of i.i.d. standard normal entries. It follows that the
distribution of the range of the spectrum is the convolution of two Gumbel distributions. We are
investigating what happens in general to the spectral gaps.

It will be interesting to see if results can be established for the spectral norm in the dependent case.
The spectral density is expected to appear in some form in the limit. This seems to be a difficult
problem.

For SCn with inputs from linear process we have shown that the maximum over certain subsets
converges in distribution to the Gumbel distribution. It is not clear what happens when maximum
is taken over all the eigenvalues and this is an interesting problem.

Finally, for k circulant matrices, results are known only when n = k2 + 1. It would be interesting
to derive results for other cases where the structure of the eigenvalues are known.

We are currently working on the above issues.

Acknowledgement. We thank the Referee and the Associate Editor for their constructive com-
ments and valuable suggestions.

References

Adamczak, RadosÃlaw. A few remarks on the operator norm of random Toeplitz matrices. Available
at http://arxiv.org/abs//0803.3111. To appear in J. Theoret. Probab.

30



Bai, Z. D. Methodologies in spectral analysis of large-dimensional random matrices, a review.
Statist. Sinica, 9(3):611–677, 1999. With comments by G. J. Rodgers and Jack W. Silverstein;
and a rejoinder by the author.

Bhattacharya, R. N. and Rao, R. Ranga. Normal approximation and asymptotic expansions. John
Wiley & Sons, New York-London-Sydney, 1976.

Bose, Arup, Hazra, Rajat Subhra, and Saha, Koushik. Limiting spectral distribution of circulant
type matrices with dependent inputs. Technical Report No.R6/2009, April 09, 2009, Stat-Math
Unit, Indian Statistical Institute, Kolkata. Submitted for publication.

Bose, Arup and Mitra, Joydip. Limiting spectral distribution of a special circulant. Statist. Probab.
Lett., 60(1):111–120, 2002.

Bose, Arup and Sen, Arnab. Another look at the moment method for large dimensional random
matrices. Electron. J. Probab., 13:no. 21, 588–628, 2008.

Bose, Arup and Sen, Arnab. Spectral norm of random large dimensional noncentral Toeplitz and
Hankel matrices Electronic Communications in Probability, 12: 29–35(electronic), 2007.

Bose, Arup, Mitra, Joydip and Sen, Arnab. Large dimensional random k-circulants. Technical
Report No.R10/2008, December 29, 2008, Stat-Math Unit, Indian Statistical Institute, Kolkata.
Submitted for publication.

Brockwell, Peter J. and Davis, Richard A. Introduction to time series and forecasting. Springer
Texts in Statistics. Springer-Verlag, New York, second edition, 2002.

Bryc, WÃlodzimierz and Dembo, Amir and Jiang, Tiefeng. Spectral measure of large random Hankel,
Markov and Toeplitz matrices. Ann. Probab.34:no. 1, 1–38, 2006.

Bryc, Wlodek and Sethuraman, Sunder. A remark on maximum eigenvalue for circulant matrices,
2009. To appear in IMS volume High Dimensional Probability Luminy conference proceedings.

Davis, P. J. Circulant matrices. A Wiley-Interscience Publication, Pure and Applied Mathematics,
John Wiley & Sons, New York-Chichester-Brisbane, 1979.

Davis, Richard A. and Mikosch, Thomas. The maximum of the periodogram of a non-Gaussian
sequence Ann. Probab., 27:no. 1, 522–536, 1999.

Dai, Ming and Mukherjea, Arunava. Identification of the parameters of a multivariate normal
vector by the distribution of the maximum J. Theoret. Probab., 14:no. 1, 267–298, 2001.

Einmahl, Uwe Extensions of results of Komlós, Major, and Tusnády to the multivariate case J.
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