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Abstract

Degenerate pump-probe reflectivity experiments have been performed on a single crystal of

bismuth telluride (Bi2Te3) as a function of sample temperature (3K to 296K) and pump intensity

using ∼ 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time resolved

reflectivity data show two coherently generated totally symmetric A1g modes at 1.85 THz and 3.6

THz at 296K which blue shift to 1.9 THz and 4.02 THz, respectively at 3K. At high photoexcited

carrier density of ∼ 1.7 × 1021cm−3, the phonon mode at 4.02 THz is two orders of magnitude

higher positively chirped (i.e the phonon time period decreases with increasing delay time between

the pump and the probe pulses) than the lower frequency mode at 1.9 THz. The chirp parameter,

β is shown to be inversely varying with temperature. The time evolution of these modes is studied

using continuous wavelet transform of the time-resolved reflectivity data.
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INTRODUCTION

When a narrow band gap semiconductor is excited with intense femtosecond laser pulses,

a dense electron-hole plasma is produced due to the promotion of electrons from bonding

states to anti-bonding states, which can cause large changes in bond lengths leading to

possible structural transitions [1, 2]. The photo-excitation of carriers changes the equilibrium

positions of the atoms; the atoms then oscillate around their new equilibrium positions, a

mechanism called as displacive excitation of coherent phonons (DECP) [3–5]. Thus, DECP

is the dominant mechanism in opaque samples [3] compared to impulsive stimulated Raman

scattering (ISRS) [6] in transparent materials. Later, it was shown that DECP is a special

case of ISRS when excited resonantly [7]. The investigations of coherent phonons performed

under high photo-excited carrier density (PCD) > 1020 cm−3 have been very few till now

[8–14].

In tellurium, time resolved reflectivity experiments [8] performed using 100 fs pulses at

a PCD of ∼ 5 × 1021 cm−3 showed an instantaneous large red shift (13%) of A1 coherent

phonon frequency, attributed to the electronic softening or bond weakening [15]. In addi-

tion, the phonon time period decreasing with the delay time between the pump and probe

pulses corresponds to an asymmetric line shape in frequency domain. This linear sweep

in the frequency with the pump-probe time delay, termed as phonon chirping, originates

from the rapid change of photoexcited carrier density across the sample thickness due to

carrier diffusion resulting in different amounts of phonon renormalization [10]. In case of a

semimetal, bismuth [12, 13] at carrier density of ∼ 3 × 1021cm−3 in a degenerate pump-probe

reflectivity experiment done at room temperature, A1g coherent phonons were also found to

be positively chirped with large oscillation amplitudes of ∼ 0.13 Å [12]. Further, collapse

and revival of chirped coherent phonon oscillations were observed in the reflectivity data

when the carrier density was increased further beyond a critical carrier density levels (3.5 ×

1021cm−3 at 10K and 5 × 1021cm−3 at 296K) [13]. This behavior was explained in terms of

dynamics of a phonon wave packet in an anharmonic potential, where the packet periodically

breaks up and revives to its original form, implying a nonclassical dynamics. A detailed first

principle density functional calculations and optical double pump pulse experiments show

that the anharmonic contribution to the phonon period is negligible under such high pump

fluence regime in bismuth [14] and tellurium [8, 10] and time dependence of carrier plasma
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density alone is able to explain the observed softening of the phonons.

Now, we turn to Bi2Te3-subject matter of the present study. Bi2Te3 is an important

material both from the point of view of thermoelectric [16] as well as exotic physics of

topological insulators [17, 18]. There have been two earlier studies [19, 20] of Bi2Te3 using

non-degenerate pump probe experiments at room temperature with 100 fs pulses where

pump fluence was kept below 1 mJ/cm2. In ref [19], the two observed coherent phonon

modes at 1.85 THz and 3.68 THz were assigned as A1g and its second harmonic. In a

later study [20], the modes seen at 1.85 THz and 4.02 THz were assigned to two allowed

A1g modes, in agreement with conventional Raman measurements [21]. The objective of

the present work is to study coherent phonons in single crystal of Bi2Te3 as a function of

temperature (from 296 K to 3 K) at high photoexcited carrier densities, with a view (i) to

understand the assignment of the high frequency coherent mode (first order vis a vis second

order) and (ii) to study phonon chirping. The Gabor wavelet transform has been performed

on time domain data to study the evolution of the coherent phonon modes. We note that

earlier studies on Bi2Te3 [19, 20] were done only at room temperature and low pump fluences

(with negligible chirping).

EXPERIMENTAL DETAILS

A single crystal of Bi2Te3 (6 × 6 × 0.5 mm3) with a cleaved surface perpendicular to the

trigonal axis mounted on a continuous helium flow cryostat was used in our experiments.

Femtosecond pulses were derived from Ti:Sapphire amplifier (Spitfire, Spectra Physics Inc)

producing ∼ 50 fs pulses with the central photon energy of 1.57 eV at a repetition rate of

1 KHz. The pump beam was modulated at 393 Hz with a chopper and the reflected probe

intensity was recorded using a Si-PIN diode and a lock-in amplifier. The spot size (half

width at 1/e maximum) of the pump and probe beams were kept at ∼ 600 µm and 400 µm,

respectively at the overlap of the two beams on the sample. The pulse width was measured

to be 65 fs (full width at half maximum) using a thin beta-barium borate (BBO) crystal

at the sample point. The polarization of the pump beam was kept perpendicular to that

of the probe beam to avoid scattered pump light reaching the detector. Both the pump

and probe beams were kept close to normal incidence. The crystal surface is seen to get

damaged at pump fluence beyond ∼ 4.5 mJ/cm2 and hence all our experiments were done

3



at pump fluences of 3.3 mJ/cm2 and 1.3 mJ/cm2, whereas the probe fluence was kept at 0.4

mJ/cm2. The time resolved reflectivity of the sample was recorded as a function of sample

temperature varying from 296K to 3K.

Bi2Te3 is a narrow band semiconductor with an indirect band gap of 0.15 eV and it

crystalizes in the R3m structure with the point group D5
3d. It is made up of close-packed

atomic layers which are periodically arranged along the c-axis in five layers (Te(1)-Bi-Te(2)-Bi-

Te(1)) called as ‘quintuples’. These layers are bonded by van der Waals force and the weakest

link among the layers is Te(1)-Te(1). Five atoms per hexagonal unit cell (a = 4.38 Å, c =

30.49 Å) give totally twelve optical phonons out of which four are Raman active modes

[21, 22] represented as 2 A1g(observed at 1.86 THz and 4.02 THz) + 2 Eg (observed at 1.1

THz and 3.09 THz). The linear absorption coefficient, α of Bi2Te3 at 1.57eV is ∼ 4 × 105

cm−1 [23] and thus the penetration depth, ξ (∼ 1/α) is 25 nm. This corresponds to PCD,

N0 (≡ 6.25 × 1018 Fα(1 − R)/Ep) ∼ 1.7 × 1021 cm−3 at pump fluence F = 3.3 mJ/cm2

at the sample surface, which is about 1% of all the valence electrons. Here R=0.68 is the

reflectivity coefficient of Bi2Te3, at photon energy Ep of 1.57 eV.

RESULTS AND DISCUSSION
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FIG. 1: Normalized time resolved reflectivity change (∆R/R) of bismuth telluride as the function

of the time delay between the pump and probe pulses at various temperatures (a) T = 296 K, (b)

150 K , (c) 90 K, (d) 10 K, (e) 3 K (colour online).

The coherent phonon mode’s normal coordinate is written as [24], Q =

b exp(−πγt)cos(2πν0t+φ) where b, γ, ν0 and φ are the amplitude, damping constant, fre-
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quency and the initial phase of the coherent phonon mode. To first order in Q, the normalized

change in reflectivity (∆R/R) of a probe beam due to generation of two A1g coherent phonon

modes (A(1)
1g and A(2)

1g ) in an absorptive material can be written as

∆R

R
=

∑

i=1,2

[

∂(∆R/R)

∂Q

]

bi exp(−πγit) cos(2πνit + φi) (1)

Here i = 1 and 2 corresponds to A(1)
1g and A(2)

1g respectively. The time resolved reflectivity

data for Bi2Te3 at a few temperatures using pump fluence of 3.3 mJ/cm2 are shown in

Fig. 1. The signal contains both non-oscillatory and oscillatory components. The non-

oscillatory background arising from carrier dynamics was removed by a digital band pass

filter to extract the oscillatory part [19, 20]. The oscillatory part of the transient normalized

differential reflectivity data was analyzed using Eq. (1). The fit was satisfactory at room

temperature but was not good at lower temperatures. This necessitated the inclusion of

chirp parameter β in Eq. (1) as [13]

∆R

R
=

∑

i=1,2

Bi exp(−πγit) cos(2πνit + βit
2 + φi) (2)

where Bi = [∂(∆R/R)
∂Q

] bi is the coherent phonon amplitude and βi is the chirp parameter.

This fit was found to be excellent over the entire temperature range. For example, Fig.

2(a) displays the digital band pass filtered time domain data at 3K recorded using pump

fluence of 3.3 mJ/cm2 along with the fit using Eq. (1) (dashed line) and (2) (solid line),

and Fig. 2 (b) shows the corresponding fast Fourier transform (FFT) of the data and the

fits. Here the FFT intensity of the second mode in the frequency range of 3 THz - 5 THz

is appropriately scaled up to compare with the first mode. The eigen vectors corresponding

to the A1g modes [21] are also shown as the inset of Fig. 2(b). It may be very difficult

to see the chirping effect in time domain as the higher frequency mode is very short lived

(1.2 ps) and therefore, frequency domain is a better choice in identifying the chirp in such

cases. The FFT of the fitted function in time domain (Eq. (2)) with chirp (β 6= 0) shown by

continuous line) fits the FFT of the measured data (open circles) much better than without

β, i.e β = 0 (short dashed line)[Fig. 2(b)]. The value of β2 = 0.38ps−2 is much higher

than β1(∼ 2× 10−3 ps−2). When the pump fluence is decreased to 1.3 mJ/cm2, β2 = 0.045

ps−2 which clearly indicates that the chirping is mainly due to large number of photoexcited

carriers. Since our focus is mainly on the high density photo carriers mediated coherent
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phonons, the temperature dependence of the fit parameters at highest pump fluence of 3.3

mJ/cm2 are discussed from here on.

FIG. 2: (a) Digital band pass filtered normalized time resolved differential reflectivity data at T =

3K (open circles) along with their fits according to Eq. (1) (dashed line) and (2) (solid line). (b)

The corresponding FFT of the time domain data and the fits. The data in the range of 3 THz -5

THz has been scaled appropriately to compare the asymmetry seen at 3K. Here, the short dashed

line is the FFT of the fit without chirp parameter. The eigen vector of the two A1g modes are

shown in the FFT panel (colour online).

The parameters (filled diamond) obtained from the fit of the time domain data are plotted

as a function of temperature in Fig. 3. Though the dependence of β1 and β2 on temperature

are similar, the chirp parameter β2 for the high frequency A(2)
1g phonon mode is almost

two orders higher compared to β1 showing that electron-phonon interaction for A(2)
1g should

be much higher than that for A(1)
1g (Figs. 3(a) and (b)). The increased phonon chirping

seen at low temperatures and its inverse dependence on temperature β ∼ T−1 is shown

using continuous lines. An increase of β with decreasing temperature can be qualitatively

understood by considering the carrier diffusion across the penetration depth of ξ in Bi2Te3.

At very high carrier densities (∼ 1021), it has been shown that the carrier diffusion coefficient,

Da has major contributions from carrier-carrier scattering mediated diffusion, Deh [25, 26].

In such a case Da ∼ T 5/2 and hence the diffusion time τdiff ≡ ξ2/Da ∼ T−5/2. This inverse

power law dependence suggests that at low temperatures, the diffusion time is longer and

hence electron phonon interaction will result in large chirping. The temperature dependence

of chirping as β ∼ T−1 needs new theoretical inputs.
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Next, we turn to the phonon amplitudes. It is seen that both the coherent phonon

amplitudes, B1 and B2 increase as the temperature is lowered (Figs. 3.(c) and (d)). It

has been shown [27] that the coherent phonon amplitude, Bph behaves quite similar to the

temperature dependence of the Raman peak intensity [27] since the source of spontaneous

Raman scattering and the driving force in the generation of coherent phonons through ISRS

are the same [28]. The Raman cross-section increases with temperature as [n(ν)+1] (where

n(ν) is the Bose-Einstein statistical factor) and hence the Raman peak intensity can be

written as, Ip ∼ [n(ν)+1]
[2n(ν/2)+1]

, where the temperature dependence in the denominator comes

from the cubic anharmonic contributions to the linewidth. The fit (solid line) using this

expression is shown along with the data for B1 and B2 in Fig. 3(c) and (d).
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FIG. 3: Phonon chirp parameters [(a) and (b)], amplitude of oscillations [(c) and (d)], damping

constant [(e) and (f)] and frequency [(g) and (h)] of both the coherent A1g modes obtained from

time domain fit to the data with high pump intensity (Filled diamonds) versus sample temperature.

The continuous lines in (a)-(h) are the fits (see text) (colour online).

The temperature dependence of coherent phonon damping factor and the frequency of

the two modes are displayed in Fig. 3(e),(g) and Fig. 3(f),(h), respectively. In the case of

A(1)
1g , the frequency decreases from 1.9 THz to 1.84 THz, i.e., a decrease of 3% as the crystal

is heated from 3K to 296K and the damping term increases by 150 % from ∼ 0.04 THz

at 3K to ∼ 0.1 THz at 296K. The behavior of the second mode is rather interesting: the
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damping constant becomes almost constant after 60K and the frequency decreases from 4.0

THz to 3.6 THz (10% change) when the crystal temperature increases from 3K to 296K.

The fit (thick line) shown in the figure is by using the well known functions [29] based on

cubic anharmonicity where the phonon of frequency, ν decays into two phonons of equal

frequency: γph(T ) = γ0 + C[1 + 2n(ν0/2)] and νph(T ) = ν0 + A[1 + 2n(ν0/2)] where ν0

(frequency at T=0K), A, C and γ0 (disorder induced damping) are the fitting parameters

(A and C are the measures of third order cubic anharmonicity). The parameters obtained

from fitting are, ν0 = 1.908 THz, A = -0.005 THz, γ0 = 0.040 THz and C = 0.005 THz for

A(1)
1g mode; and ν0 = 4.007 THz, A = -0.060 THz, γ0 = 0.263 THz and C = 0.017 THz for

A(2)
1g mode. Thus the disorder induced damping (γ0) and anharmonicity (A and C) are more

for A(2)
1g compared to A(1)

1g . It can be seen from Fig. 3(h) that the temperature dependence

of ν2 is non-monotonic. The decrease of ν2 at 3K may be due to the chirp in the frequency

whose quantitative understanding is lacking.

Finally, to examine whether the second mode at ∼ 4 THz is the second harmonic of the

first A1g mode at 1.8 THz as suggested in ref [19], we re-fitted the digitally band pass filtered

time domain data with ∆R
R

expressed in a second order approximation in Q as [19]

∆R

R
=

[

∂(∆R/R)

∂Q

]

Q +
1

2

[

∂2(∆R/R)

∂Q2

]

Q2 (3)

where Q is for the A(1)
1g phonon mode. Taking the expression for Q as in Eq. (1) (since β1 is

small), the fit according to Eq. (3) was unsatisfactory as the second mode could never be

accommodated in the fit to the data as shown in Fig. 4. In Fig. 4, the time domain data

(thin line) along with the new fit (thick line) using Eq. (3) and their FFT are shown in (a)-

(b) for 3K and in (c)-(d) for 296K where open circles are the FFT of the data and thick lines

are the FFT of the fit. It can be seen from these figures that the fit is not compatible with

the data in both frequency and time domain. At 296K, though the fit seemingly agrees with

the data in the frequency domain, it is not so in time domain. This confirms that the higher

energy phonon mode is not a second order mode of A(1)
1g . To further elucidate this point,

we have analyzed the temperature dependence of the ratio of the integrated intensities of

coherent phonons, B2γ2
B1γ1

(open circles in Fig.4(e) where the y-axis is normalized to the ratio

at 3K). Here, we consider two cases: (i) For ν1 and ν2 with ν2 > ν1 as the single phonon

modes (SPM), the ratio of their integrated intensity, is ∼ n(ν2)+1
n(ν1)+1

shown by solid line in Fig.

4(e), (ii) for ν2 as the second harmonic or two phonon mode (TPM) of ν1 (ν2 = 2ν1), we note

8



that the ratio of their integrated intensity is [n(ν1) + 1]2/[n(ν1) + 1] = n(ν1) + 1 shown by

dashed line in Fig. 4 (e). Thus, it is clear from Fig. 4 (e) that SPM is compatible with the

data corroborating our conclusion that the high frequency mode is a single phonon mode

and not a second harmonic of A(1)
1g .
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FIG. 4: The time domain data (thin line) along with the fit (thick line) according to Eq. (3) and

their FFT are shown in (a)-(b) for T=3K and (c)-(d) for T=296K. In (b) and (d), the open circles

are the FFT of the data and thick line is the FFT of the fit. The ratio of integrated coherent

phonon intensity (open circles), B2γ2
B1γ1

along with the fit using single phonon (SPM) (thick line) and

two phonon model (TPM) (dashed line) are shown in (e). The estimated lattice displacements for

the two coherent phonon modes (open star for U1 and open inverted triangle for U2) are given in

(f) along with a linear fit (colour online).

The lattice displacement of the coherent phonon modes at 1.9 THz and 4.02 THz can be

estimated for absorbing materials using [11, 30]

U2
i ∼

3.8× 10−3 Bi F

̺νi|ε|

[

( 2ε2
Eph

)

D

]

(4)
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where Ui is in Angstrom (Å), F is the pump fluence in mJ/cm2, ̺ is the density of the

material in amu/Å3 and ε is the dielectric constant (ε1 + jε2), Eph is the energy of the

phonon in eV and D = 1
R

∂R
∂E

with E as the photon energy in eV. Now, for Bi2Te3, D =

1
R

∂R
∂E

∼ 10−1eV −1 at 1.57 eV and 2ε2
Eph

∼ 103eV −1 with ε = 2.75 + j 15 at 1.57 eV [23]. Thus,

for Bi2Te3, the lattice displacement is

Ui ∼

√

Bi
38 F

̺νi|ε|
(5)

The temperature dependence of U1 and U2 thus estimated is shown in Fig. 4 (f), which

essentially arises from temperature dependence of Bi and νi. A linear fit (line) to U is shown

in the figure.

To capture the evolution of coherent phonons with time, we have performed continuous

wavelet transform (CWT) similar to that used by Hase et al. [31] in observing the birth of

a quasiparticle in silicon. We have used the MATLAB code [32] modified for Gabor mother

wavelet based on Gaussian function given as [33],

Ψ(t/s) = π−1/4

(

1

ps

)1/2

exp

[

−
t2

2s2p2
+ j

t

s

]

(6)

where s is the scaling factor (inverse of frequency) and p=π(2/ln(2))1/2 is a constant. Here,

we describe the procedure to calculate the continuous wavelet transform. The wavelet trans-

form of a given time signal, x(t) is given by,

CWT (τ, s) =
1

√

|s|

∫

x(t)Ψ∗((t− τ)/s)dt (7)

A starting scale, sstart corresponding to a frequency higher than the highest frequency of

the signal (determined by FFT) is chosen and the starting wavelet Ψstart(t/sstart) in time

domain here is a compressed wavelet. The cross correlation of Ψstart(t) with x(t) is computed

using Eq. (7) with τ = 0. The magnitude of cross correlation will depend on how closely the

frequency components in x(t) and Ψstart(t) match. This procedure is repeated by translating

Ψstart(t) in time domain (τ) and this gives wavelet coefficients for a given s and a range of

values of τ . The whole procedure is again repeated for next higher s. Thus, one gets a range

of wavelet coefficients of x(t) in time-scale plane which is then converted into time-frequency

plane. The wavelet transform of a time domain signal gives three dimensional (3D) plot of

wavelet coefficients vs frequency and time. CWT chronograms (contour of the 3D plot) of
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FIG. 5: (a) CWT chronogram of high pump intensity data at T=3K. The color bars are given at the

right side to symbolically represent the CWT intensity. (b) The maximum of CWT intensity at each

time delay for both modes (thicker line is for A
(1)
1g mode and the thinner line is for the A

(2)
1g mode).

The time delay between the two modes (open stars) are plotted as a function of sample temperature

in the inset where the thick line is the guide to the eye. (c) The frequency corresponding to the

maxima of CWT intensity at each time delay for A
(2)
1g (thicker line is the linear fit to the data) and

for (d) A
(1)
1g mode. (see text) (color online).

the time domain data at 3K and high pump excitation (3.3 mJ/cm2), are shown in Fig 5 (a).

It can be seen from Fig 5 (a) that at 3K, the frequency of A(1)
1g mode starts at 1.5 THz and

reaches 1.9 THz in ∼ 750 fs and this time is seen to be constant at all the temperatures. We

could not resolve a similar build up in frequency for the A(2)
1g due to its short lifetime (0.9-1.6

ps) compared to the first mode (4-10 ps). To get more insight into these chronograms, the

maximum of CWT intensity at each time delay (time slice) was calculated and plotted at

3K for both the modes (Fig. 5(b)). Here, thicker line is for A(1)
1g and the thinner line is for
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A(2)
2g . The time to reach the maximum of CWT is ∼750 ± 20 fs fs for A1

1g mode and ∼ 510

± 20 fs for A2
1g mode. The time delay of ∼ 240 ± 20 fs between the maxima of the two

modes A1
1g and A2

1g is found to dependent on the sample temperature as shown in the inset

of Fig. 5 (b). The reason for the time delay and its temperature dependence is yet to be

understood. The phonon chirp for the second mode is demonstrated through the plot of

frequency(open circles) corresponding to the maxima of CWT intensity at each time delay

at 3K in Fig. 5 (c). Thicker line is the linear fit to the data with ν2(THz) = 3.8+ β2/(2π)t

where t is the time delay in ps. This corresponds to β2 = 0.41 ps−2, closely matching to

the value of 0.38 ps−2 derived from the time domain fit. The oscillatory structures seen in

the frequency is an artifact in the wavelet transform when the separation between the two

frequencies is less than 4 THz. Similar analysis for A1
1g mode is given in Fig. 5 (d) where

the build-up time is ∼ 750 fs (consistent with Fig. 5 (b)) and the frequency is seen to be

constant with delay time as expected since β1 is very small. We note that the above analysis

using AGU-Vallen-wavelet [34] resulted in similar results.

CONCLUSIONS

In conclusion, we have studied coherent A1g phonons in Bi2Te3 as a function of both

temperature and pump fluence. We have observed that the higher frequency coherent phonon

mode at ∼ 4.0 THz is A(2)
1g and is not a second harmonic of A(1)

1g . It acquires two orders

of magnitude higher positive chirping at the lowest temperatures and high pump fluence as

compared to the A(1)
1g phonon. The chirp in time domain is manifested as an asymmetry

in the frequency domain. The wavelet transform of the time domain differential reflectivity

helps to identify the chirp and the time for a phonon mode to build up to its maximum

amplitude. We hope our experiments will motivate theoretical calculations to understand

the exact temperature dependence of phonon chirping at highly excited carrier densities,

higher chirping for A(2)
1g and the different build up times for two coherent modes.
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