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Cooperative jumps and hop-back motion in supercooled liquids
near the glass transition in binary colloids
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Abstract. – Brownian Dynamics simulations on binary charged colloids have been performed
to get a liquid to crystal (at volume fraction φ = 0.2) or glass (φ = 0.3) as the temperature
is lowered. The subdiffusive and staircase behaviours of the mean-squared displacements as
well as the behaviour of van-Hove self-correlation functions for the supercooled liquid with
φ = 0.3 indicate strongly cooperative particle motion. The van-Hove distinct correlations
follow a factorization property predicted by the mode-coupling theory. Most interestingly, a
few particles show an interconnected cooperative hop and subseqent hop-back motion very
close to the glass transition.

Easy tunability of interparticle interactions simply by controlling the impurity-ion concen-
tration ni and the particle volume fraction φ makes aqueous suspensions of charged polystyrene
spheres ideal model systems for studies concerning relaxation dynamics near freezing [1].
Computer simulations provide us with particle level insight into the structural and dynamical
aspects of the transitions (CT and GT) from liquid to crystal [2] and glass [3]. Detailed com-
parisons of experimental and simulation results [4] in diverse systems with the mode-coupling
theory (MCT)[5] predictions have improved our understanding of the GT.

In this letter, we report Brownian Dynamics (BD) simulation results on the slow microscopic
dynamics of a colloidal liquid as it is “cooled” and the relevance of hopping at low tempera-
tures. Our results show, for the first time, that a few of the particles perform interconnected
cooperative jumps to new positions and remarkably hop-back (cooperatively) to their starting
positions in the supercooled-liquid state close to its GT.

We consider a binary colloidal mixture [6] of N1 = 216 particles with radius a1 = 545 Å,
valence Z1 = 300 and N2 = 216 particles with a2 = 1100 Å and Z2 = 600. The particles
interact at large distances via a purely repulsive, size-corrected DLVO potential [1], Uij(r) =
(ZiZje2/ε)(eκai/(1 + κai))(eκaj/(1 + κaj))(e−κr/r), where ε is the dielectric constant of water
(= 78) at temperature T (= 298 K). For a binary suspension, the inverse Debye-Hückel
screening length κ is given by κ2 = (4πe2/εkBT )

(
npZ̄ +

∑
i niz

2
i

)
, where np and ni are the

number densities of the particles and the monovalent impurity ions (zi = 1), respectively,
Z̄ = xZ1 + (1 − x)Z2 and x = N1/(N1 + N2) = 0.5. As detailed elsewhere[6], we use
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s vs. time for a) φ = 0.2 and b) φ = 0.3.

the centre-of-mass–corrected finite-difference BD algorithm [7] with the usual cubic periodic
boundary conditions. The potential is cut off at rc such that Uij(rc) ∼ 0.001 kBT . The system
is characterized by its total φ = 4

3πnp[xa3
1 +(1−x)a3

2] and reduced temperature T ? = kBT/U0

where U0 = ((Z̄e)2/ε)(eκā/(1 + κā))2(e−κas/as) is the energy scale. Here ā is the mean radius
and as = n

−1/3
p the average interparticle separation.

The starting liquid configuration at each φ is obtained by melting a body-centred cubic
lattice with a high impurity concentration ni = 5npZ̄. This is then sequentially cooled by
reducing ni in 11 more steps to a crystal at φ = 0.2 or a glass at φ = 0.3 (T ? varies from ∼ 1 to
∼ 0.03). At each T ?, the equilibration is ensured from a steady value (rms deviation ≤ 0.15%)
of the internal energy per particle E = (1/NkBT )

∑
j 6=i Uij(r) together with monitoring the

pair distribution functions over the equilibration run of ∼ 2×106δt, where δt is the basic time
step. The next ∼ 3× 106δt are used for evaluating the static and dynamic quantities reported
here, as well as the density and the bond-orientational correlation functions [8]. For φ = 0.3,
δt = 3 × 10−6 s and the GT temperature is T ?g ' 0.0312 while, for φ = 0.2, δt = 7 × 10−6 s
and the CT temperature is T ?f ' 0.0374 [6].

Figure 1 shows the temporal evolution of the lighter sublattice (α = 1) mean-squared
displacement (MSD)

〈
[∆rα(t)]2

〉
in a log-log plot for a) φ = 0.2 and b) φ = 0.3 for various

temperatures while cooling the system towards ni = 0 state. 〈...〉 indicates an averaging
over 50 initial conditions to improve the statistics. At high temperatures (T ? > 0.0722 for
φ = 0.2 and T ? > 0.0876 for φ = 0.3), the motion is clearly diffusive (

〈
[∆r(t)]2

〉
∝ tm;

m = 1 for all t), while the particles are localized or trapped (m = 0 for all t) at the lowest
T ?. We note that the reduction in the long-time value of MSD for the CT is sharp (refer to
the curves with T ? = 0.0388 and 0.0369 in fig. 1 a)) as compared to the slow kinetic nature
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Fig. 2. – The function S1(r, t) at a few different times.

of the GT (fig. 1 b)). At intermediate temperatures, MSD follow three distinct stages. The
initial stage can be associated with the “cage-diffusion”, having diffusivity higher than the
long-time value. This regime spans up to t ∼ 10−3 s for φ = 0.3, while the choice of δt does
not allow us to see this regime for φ = 0.2. Following this, there is an intermediate subdiffusive
regime [9] and a long-time diffusive behaviour for both φ. The span of the subdiffusive regime
increases successively as T ? is lowered and, as expected, it is more for the denser system
(φ = 0.3). Near the GT, this regime covers the entire simulation length and the asymptotic
values for the diffusion constants are not reached. We note that these short-time features of
the MSD are very similar to the recent experimental [10] and simulation [11] findings. More
importantly, we note that the MSD at these intermediate T ? show a “staircase” profile in b)
which is completely absent in a). This supports the cage-concept in supercooled liquids near
the GT, indicating that a particle repeatedly gets arrested in a cage-structure formed by its
neighbours and intermittently hops from one cage to another. Since the MSD are small for
these low-T ? states, cooperative hops ∼ as by a few particles will always show up in these plots.
Interestingly, there is an anomalous increase in the long-time diffusion at some intermediate-T ?

range (between 0.0407 and 0.0378 for φ = 0.2 and 0.0313 and 0.0302 for φ = 0.3) with respect
to the value at its immediate higher T ?. This could be the result of a constrained dynamics
of more mobile lighter particles in the background of heavier particles and/or a structural
readjustment at the onset of a CT or a GT.

Figure 2 shows the function Sα(r, t)= 4πr2Gs
α(r, t) for the lighter particles (α=1), where the

van-Hove self-correlation functions are defined as usual [12], Gs
α(r, t) = (1/Nα)

∑Nα
i=1〈δ(|rαi (t)−

rαi (0)|− r)〉. The supercooled liquid just before the CT in a) shows typical liquid-like features,
namely the function has a single peak, whose maximum moves rapidly to larger r in time t
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Fig. 3. – δri(t) of 9 representative particles are shown in a) for φ = 0.3 and T ? = 0.0313. Averaged
coordinates for 7 particles (A through G) executing to and fro hop motions are shown in b), where
the dimensions of X and Y denote the simulation boxlength in units of as.

and reasonably reproduces the long-time hydrodynamic limit (dashed lines in a)). This limit
is not reached if the particles execute discrete hops. Figure 2 b) demonstrates the situation
for T ? ≤ T ?g . The first-peak position becomes nearly independent of time, implying that the
system is kinetically frozen. The area under the first peak reduces gradually to give rise to a
second peak at the interparticle spacing r = as, whose height increases with time, as shown
by the magnified curves. This, in contrast with the situation in a), is a clear manifestation of
the slow relaxation of quenched disordered states via activated jump processes which must be
taking place cooperatively to reflect in the statistically averaged quantities like the MSD and
Sα(r, t). Interestingly, there is an anomalous increase in the first-peak height at a later time
(t = 1.02 s) (at the cost of the second peak), after the expected decrease at somewhat earlier
time (t = 0.306 s). This clearly indicates that some particles must be hopping back very much
cooperatively to their original positions!

This unusual observation and a similar inference from our study of non-Gaussian parame-
ters [13] as well as the presence of a staircase behaviour in MSD is borne out by a close look at
the tagged-particle dynamics. The analysis of the particle displacements δri(t) ≡ |ri(t)−ri(0)|
over the entire simulation runs indicates that the motion in a supercooled liquid near the CT
is primarily diffussive [13]. By contrast, near the GT, there are four types of particle motions
present, namely, A) vibrations (∼ 0.1as) around the local potential minimum, B) hopping
(∼ as) to a neighbouring equilibrium position and persisting there till at least the end of the
simulation run, C) transient vibrations, i.e. hopping by ∼ as to a new position, staying there
for a short while (≤ 10 times the time scales of A)) and then hopping back to its original
position and D) motion similar to C) but the time of residence in the hopped position being
much higher (≥ 100 times the time scales of A)).

Figure 3 a) shows δri(t) of 9 particles for φ = 0.3 and T ? = 0.0313 in order of decreasing
δrmax
i = max[δri(t)] from top to bottom, shifted by 1.5as from each other for clarity. We

have followed the movements of 7 particles in b), which simultaneously hopped with 0.90as <
δrmax
i < 1.15as at t ≈ 0.3 s and after persisting in the new position for up to t ≈ 0.48 s, have

hopped back to their respective initial positions. This is done to check if they permute their
positions to show a rotation or a caterpillar motion, seen in earlier simulations [14] as distinct
from hole-induced jumps. We have named these particles as A through G, in descending
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magnitude of δrmax
i . All of these, except for A and G, are lighter species. The averaging of

the coordinates are performed over all the BD steps i) before the hop, between t = 0 and
t = 0.24 s, ii) at the hopped position, between t = 0.3 s and t = 0.48 s and iii) after the
return, between t = 0.54 s and t = 0.66 s. Averaged coordinates thus available for these 7
particles at times i) and iii) overlap almost identically and hence, when plotted in fig. 3 b),
we can often see only two points corresponding to the initial (marked A through E) and the
hopped positions (marked A′ through E′). By calculating the interparticle distances in their
initial and hopped positions, it is possible to categorize these into three groups: 1) E ⇀↽ G,
2) A ⇀↽ D ⇀↽ B ⇀↽ C and 3) F . Figure 3 shows that in group 1), at t ≈ 0.3 s, the particle G
hops to some position G′, leaving a vacancy behind where E hops in. During the same time,
in a chain-like motion of the particles in group 2), the sequence of events followed are the hops
A to D, D to B, and B to C. During this time, the group 3) particle F makes a hop to a
neighbouring position F ′. After staying at their hopped positions till t ≈ 0.48 s, surprisingly
enough, they almost simultaneously hop back to their respective original positions and persist
there! The flight time of these hop or hop-back motion is ∼ 0.003 s and the residence time
∼ 0.2 s. Any fluctuation in position of one particle at this T ? is very strongly correlated
with a few other particles and hence show up in the statistically averaged quantities too.
The configurations before and after the cooperative and interconnected hop can perhaps be
viewed as two states of the “two-level” system conjectured to occur in the glassy regime. The
cooperative hop-back motion was found to be present for three different phase points close
to T ?g (namely the runs with T ? = 0.0313 and 0.0302 for one system and T ? = 0.0360 for a
differently prepared system with N1 = N2 = 128 [13]) and also in a recent work [15] supporting
the universality of such an occurrence.

The collective dynamics of the system is investigated via the van-Hove distinct-correlation
function [12], Gd

αβ(r, t) = (1/
√
NαNβ)

∑Nα
i=1

∑Nβ
j=1

′
〈
δ
(
r− rαi (0) + rβj (t)

)〉
, where the prime
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indicates j 6= i. The inset of fig. 4 shows the relaxation of Gd
11(r, t) from its t = 0 static

counterpart, the pair distribution function g11(r), for a supercooled liquid (T ? = 0.0416)
approaching the GT. After an initial rapid decay corresponding to the vibration in a cage and
the β relaxation steps in its corresponding density correlation function F s

α(q, t) [13], it stabilizes
during the time 0.05 s ≤ t ≤ 0.3 s corresponding to the plateau in F s

α(q, t). The difference
of the plateau value of Gd

11(r, t) from its initial g11(r) is discernible primarily in the first
neighbour shell (r/as < 1.2) in the inset of fig. 4 and in other Gd

αβ(r, t). This clearly supports
the picture that β relaxation is a localized process involving only a few nearest neighbours [16].
We have studied this difference by monitoring [Gd

αβ(r, t)−Gd
αβ(r, t = 0.3 s)] as a function of t.

This quantity indeed follows a factorization of the type predicted by MCT in the β relaxation
regime, namely,

[
Gd(r, t)−Gd(r, t = 0.3 s)

]
= H(r) [f(t)− f(0.3 s)], where we have dropped

the pair indices αβ. The function H(r) is shown in fig. 4 for different times.
In conclusion, the nature of relaxation when a colloidal liquid approaches the glass transition

(φ = 0.3) is completely different from that near the equilibrium transition to a crystal
(φ = 0.2). This is perhaps the first observation of the staircase behaviour for a system of
Brownian particles. In the β relaxation regime, the difference of Gd

αβ(r, t) from its plateau
value obeys a factorization property as per the prediction of MCT. The existing simulations
and experiments [4], [14], [17] have already pointed out the importance of cooperative hops in
systems near the GT. A significant result of this paper is the unusual observation of strongly
cooperative interconnected hop-back motion of about 2% of the particles. A maximum of 10%
of the particles show marked cooperative hindrance in their motion during this time, making
the effect show up in the statistically averaged MSD and Gs

α(r, t). This calls for a careful
analysis of the GT data using the extended MCT incorporating activated hopping processes.
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