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Abstract

Blind equalization algorithms for non-minimum-phase channels are generally based on oversampling the output of the
system. In this paper, we consider a symbol-rate sampled scheme that requires the periodic transmission of a few zeros
within the data sequence. Sampling at the symbol rate relaxes some of the identi4ability conditions, and ensures that the
additive noise is uncorrelated. We develop a least-squares approach for the blind equalization of such a system, that works
well with very short observation windows. The price paid for eliminating the oversampling is the reduced throughput. We
derive the necessary and su7cient conditions for the identi4ability of the system. Our simulations show that channels with
near-common zeros can be equalized better using the proposed scheme, as compared to existing schemes. Also, the proposed
method is seen to perform much better than the recently proposed methods (IEEE Trans. Signal Process. 47 (1999) 2007) in
terms of bit error rate, for short observation windows, and requires much less stringent identi4ability conditions. However, the
computational complexity of the method is high. The method can be applied directly to the blind equalization of orthogonal
frequency division multiplexing systems that use a zero pre4x instead of a cyclic pre4x.

Keywords: Blind estimation; OFDM (orthogonal frequency division multiplexing); SISO (single input single output); Deterministic

1. Introduction

The problem of blind estimation is to estimate,
from the observed output alone, the input and the
impulse response of the system. It is well known that
non-minimum-phase systems cannot be estimated
from the second-order statistics (SOS) of the input
and output [8,9]. However, if the input is cyclostation-
ary, it has been shown that the SOS contains the phase
information necessary to identify the channel [2,11].
Normally, blind estimation techniques make use of

the cyclostationarity of oversampled digital commu-
nication signals. Alternatively, they use multiple an-
tennas at the receiver. Either way, the problem is
transformed to one of identifying an SIMO system
[7,12].

There are certain limitations associated with the
equalization of oversampled systems. If the polyphase
components of the oversampled channel share com-
mon zeros, the system is unidenti4able [7,11,12].
Near-common zeros lead to drastic deterioration in
performance. Again, a complication that would arise
in practice, and is usually ignored in research work,
is that oversampling at a rate faster than the baud rate
would generally lead to the corresponding samples
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Nomenclature

y(n)
h(n)
s(n)
yi(n)
si(n)

H(z)
Yi(z)
Si(z)
L

N
K
H
yi

channel output
channel coe7cients
input to channel
channel output for the ith block
input to channel for the ith block
z transform for channel coe7cients
z transform for output, ithe block
z transform for input, ithe block
length of impulse response of the
channel
block size
number of blocks used
channel matrix
output vector for ith block

si

n
Yi

YG

H G

SG

SG

Gr

m fi

E

input vector for ith block
vector of AWGN
Toeplitz matrix of output for ith
block
Toeplitz block matrix of output
matrix of channel coe7cients
stacked matrix of inputs
vector of stacked inputs for diFerent
blocks
stacked matrix of channel coe7-
cients
number of possible combinations of
n elements out of m
summation

of the additive noise being correlated. Under these
conditions, the noise samples cannot be assumed to be
iid. Many methods require this assumption (or, other-
wise, knowledge of the actual statistics of the noise),
and others may suFer from bias or increased variance
when it becomes invalid.

In this paper, we examine a semi-blind strategy that
works with the symbol-rate sampled output. L — 1
zeros (where L is the length of the impulse response) are
transmitted at the beginning of every block of N sym-
bols. It then becomes possible to develop determinis-
tic approaches1 for channel and symbol estimation.

A possible application of the method is in block
transmission techniques such as orthogonal frequency
division multiplexing (OFDM) [1,6]. Several recent
papers make use of similar techniques for OFDM sys-
tems. In [5], a blind method of estimating an OFDM
system making use of the cyclic pre4x is described.
The method assumes knowledge of the second-order

1 We use the term "deterministic" to connote a method that
does not use knowledge of the actual source statistics for system
estimation. A characteristic of such a method is that, provided
certain identi4ability conditions are met, and there is no noise
present, the channel and the input can be perfectly reconstructed
from a 4nite length of observations. A "statistical" method, on
the other hand, though using additional information about source
statistics, would give perfect performance only asymptotically.
Hence, when we do have system noise, and only short data lengths,
deterministic methods may be expected to perform better.

cyclostationary statistics of the input. However, the
redundancy introduced by the cyclic pre4x is not
su7cient for blind identi4cation in a deterministic
framework. Reddy et al. [10] and Giannakis et al. [3]
consider a scheme for OFDM systems that uses a zero
pre4x instead of the usual cyclic pre4x. In [4], deter-
ministic methods for the blind estimation of such a
scheme are presented.2 The methods require at least
as many blocks as the number of symbols per block
(the number of subcarriers, in the case of OFDM). In
OFDM systems, which typically use a large number
of subcarriers (sometimes hundreds or thousands),
this would mean an estimation delay of the order of
hundreds or thousands of symbols, which might not
be acceptable for rapidly fading channels.

Here, we present a deterministic method that is at-
tractive because it performs well with comparatively
very short data lengths. The method requires a mini-
mum of only two blocks for estimation. However, the
computational complexity is signi4cantly higher than
that of [4].

We derive the necessary and su7cient conditions
required for identi4ability of the system, assess the

2 As part of this work, we had independently developed the
subspace method proposed earlier in [4]. Because of its earlier
publication, however, we limit our discussion in this paper to only
a comparative performance evaluation of the subspace method,
and the least-squares approach of this paper.



S. Prasad, A.S. Varikat / Signal Processing 83 (2003) 1105-1115 1107

L-l zeros N-L+1 symbols L-1 zeros N-L+1 symbols L-1 zeros

a block of N symbols

Fig. 1. Transmission format.

computational complexity of the proposed method,
and discuss the advantages of a symbol-rate sampled
scheme for blind identi4cation, as compared to an
oversampled scheme. We compare performance with
that of the subspace method for channel estimation
in [4] using Monte Carlo simulations, where we 4nd
that the proposed method performs better in terms of
bit error rate (BER), when we use small numbers of
blocks. We also compare performance with a standard
blind estimation technique relying on oversampling of
the output [12], and con4rm that the proposed scheme
works better when the channels have near-common
zeros.

The paper is organized as follows: In Section 2 we
present the proposed scheme of transmission, and for-
mulate the problem of identi4cation mathematically.
In Section 3 we propose schemes for the blind identi-
4cation of the system, derive the identi4ability condi-
tions, and also compare the symbol-rate sampled and
oversampled schemes for blind equalization. Simula-
tion results are presented in Section 4. Finally, we
draw some conclusions about the proposed method in
Section 5.

2. System model and problem formulation

The transmission scheme: We propose that L - 1
zeros be transmitted at the beginning of every block
of N symbols, where L is the length of the channel
impulse response. The scheme is shown in Fig. 1.

The system model: The output of a linear,
time-invariant channel, sampled at the symbol rate,
may be represented by the convolution

y(n) = h(n) * s(n); (1)

where y represents the output sequence, h the channel
impulse response, and s the sequence of transmitted
symbols, and the symbol * denotes convolution.

Since L — 1 zeros are transmitted at the beginning
of every block of N transmitted symbols, a block of
N observed outputs maybe represented as in the fol-
lowing equation:

(2a)

where

H = Sylv([h(L - 1 )h(L - 2) • • • h(0)];N -L+1),
(2b)

y = [y(N-l)y(N-2)---y(0)]T,

s = [s(N-L)---s(0)]T,

(2c)

(2d)

y(i) is the ith observation, s(i) the ith transmitted
symbol, h(i) the impulse response coe7cients, and
Sylv([h(L - 1) • • • h(0)];k) is a Sylvester matrix with
k columns, de4ned as follows:

Sylv([h(L - 1 )h(L - 2) • • • h(0)];k)

'h(L-l)
h(L-2) h(L-l)

h(L - 2)

(0)
h(L-l)
h(L - 2)

h(0)

(3)

H is a matrix of dimensions N x (N — L+1), and full
column rank.
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The matrix representation in (2a) is equivalent to
the polynomial representation

Y(z) = H(z)S(z);

where

H(z) = hL-Xz-

S(z) = s(N-L
7-Qi-L) • + s1

y0;

•h,

+s0:

(4a)

(4b)

(4c)

(4d)

In the presence of additive noise, (2a) is modi4ed to

y = Hs + n; (5)

where n = [n(N — 1) • • n (0)]T is a vector containing
samples of noise, which is assumed to be white and
gaussian.

Problem formulation: The problem of interest here
is to separate H and s from y, or H(z) and S(z) from
Y(z), with only minimal knowledge of the character-
istics of the channel and the transmitted symbols.

What we have been able to achieve by the periodic
transmission of the zeros are: (i) forcing the multi-
plicative property on the polynomials as in (4a), and
(ii) forcing full column rank on the channel coe7-
cients matrix, as de4ned in (2a). These properties are
crucial for the methods of blind estimation presented
here.

3. Blind channel estimation

In this section, we propose two approaches to ob-
tain blind estimates of H and s appearing in (2a). The
estimation is carried out over K blocks of data. We
assume that the channel impulse response remains un-
changed over the transmission of K blocks, and that
the application of interest would permit an algorithmic
delay of KN symbols, or K blocks.

In what follows, the subscripts of yi(n); Yi(z); yi; Yi,
etc. refer to the block indices.

3.1. Separation of the zeros ofH(z) and S(z)

We 4rst discuss a simple method of estimating the
system that gives an intuitive understanding of the
problem. The zeros of H(z) and S(z) can be separated

Real Axis

Fig. 2. Plot of the roots of Y(z); 10 blocks, 20 symbols per block,
38 dB. Channel roots at: 1:54 +j0.9,-1 :27 +j0 :02 ; 0:27 -jO.04.

150

1 0 0

50 -

eX -2 -2

Fig. 3. Two-dimensional plot of the cost function (6), with
SNR = 27 dB, 20 symbols per block, over 5 blocks. Channel roots
inside the unit circle: -0.5 - j0:6;0:5 - j0:25; 0:4 + j0:75.

as follows: Find the zeros of Y(z) for each received
block. In the absence of noise, the zeros that repeat
in every block are the zeros of H(z). In the presence
of noise, these zeros may be determined by plotting
the zeros of Y(z) for every block, as in Fig. 2, so that
the densest regions (i.e. zeros with small variances)
correspond to the zeros of H(z), or by maximizing a
suitably formed cost function of the polynomial over
the complex plain. As one example, the cost function

(z .... (6)

is plotted in Fig. 3.
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It is observed from the plot in Fig. 2 that we
have the densest clusters of points around the chan-
nel zero locations, and it is easy to pick out these
zeros.

We also note a phenomenon that occurs when N is
increased. The roots of typical polynomials represent-
ing the symbol sequence, viz., S(z) (which we call
the signal zeros), tend to concentrate in a band around
the circumference of the unit circle. As N increases,
the band becomes narrower, and tends to the unit cir-
cle. This means that as N increases, the density of the
signal roots in the band increases. This makes it dif-
4cult, or impossible, even at moderate SNRs, to pick
out the channel zeros from the composite set of chan-
nel zeros and signal zeros, based on the density of the
clusters. One would expect this to happen at SNRs at
which the spread in the channel roots created by the
noise is equal to or greater than the natural spread of
the roots of S(z). Hence, performance can be expected
to deteriorate with the block size, for a given number
of blocks and SNR.

We also expect that as we increase the number of
blocks used for the estimation, for a given SNR and
block size, the performance would saturate, the satura-
tion level being lower for higher SNRs and for higher
block sizes.

These observations become obvious from Fig. 2,
and are reLected in the simulation results, reported in
Section 4.

If we know a priori that the channel does not have
unit circle zeros, performance could be improved by
placing a constraint on the search for the channel ze-
ros. The densest areas away from the unit circle would
yield the channel zeros. This can be directly done in
the methods of separation of zeros. But it may not be
possible to introduce such a constraint easily into the
cross relations with zero pre4x (ZPCR) or subspace
with zero pre4x (ZPSS) [4] approach discussed sub-
sequently.

We note that in the absence of noise, the channel
zeros can be separated out for any block size, provided
the input sequence is su7ciently diverse. This is be-
cause the channel zeros of the various blocks would
be superimposed upon each other, while the input ze-
ros, however closely spaced, would not be the same
for every block. Hence, in the absence of noise, the
clusters of input zeros cannot be as dense as the clus-
ters of channel zeros.

Identi0ability: In the absence of noise, the roots
of H(z) are separable from the roots of {Yi(z); i =
1;:::;K};K Js 2, iF {Si(z); i=1;:::;K} do not share
any common roots.

Digital communication signals are su7ciently
diverse to make such sharing of zeros extremely
unlikely.

3.2. A cross relations approach (ZPCR)

In this section we propose a deterministic method,
similar to that of the cross relations (CR) approach
[12], which we call the ZPCR method. Note that the
outputs of any two blocks may be written as

= h(n) * si(n);

yj(n) = h(n) *

(7)

(8)

where the subscripts refer to the block indices.
Now, h(n) may be eliminated from the two equa-

tions as follows. From (8), using the commutativity
of the convolution operator, we have

si(n) * yj(n) = si(n) * h(n) * sj(n)

= h(n) * si(n) * sj(n):

Using (7), this reduces to

si(n) * yj(n) = sj(n) * yi(n):

(9)

(10)

This is the required cross relation. It may be written
in a matrix form as

isj = Yjsi ViJ, (11)

where Yi is a Toeplitz matrix formed from the obser-
vations as follows:

Yi = Sylv([yi(N - 1) yi(N - 2)

N-L+l), (12)

with dimensions (2N - L) x (N - L + 1).
Stacking the equations for all pairs of i and j, we

have

YGsG = 0; (13)

where YG is a Toeplitz block matrix of dimensions
KC2 x (2N -L)x K(N - L + 1) (where C represents
the combinations operator), with each row containing
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a pair of matrices from the matrix set {Yi; i=1;:::;K}
located at suitable positions:

' Y2 - Y i

Y3 - Y i

-Y,
Y3 - Y 2

-Y,

Yr -Yr_ \ .
(14)

and sG is obtained by stacking {si;i = 1;:::;K} one
below the other. Eq. (13) may be solved to get the
transmitted symbols directly.

Effect of noise: In the absence of noise, the method
gives the exact solution with a minimum of two blocks
of data. In the presence of noise, more blocks would
have to be used to obtain good performance. Eq. (13)
may then be solved in the least-squares sense to get
an estimate of the transmitted symbols.

Identi0ability:

Theorem 1. The necessary and su5cient condi-
tion for the solution of (13) to be unique up to
a scale factor is that the polynomials {Si(z); i =
1 . . . ,K}, K ^ 2, do not share common zeros.

Proof of the su5cient condition. It is easy to see that
YG may be written in terms of the channel coe7cients
and the input as

Y G = H G x S G , (15a)

where HG is a block diagonal matrix given by

HG = diag(GrGr • • • G r) ; (15b)

with Gr repeated K C2 times along the diagonal. The
(N + N' - 1) x (2N' - 1) matrix Gr is given by

Gr = Sylv([h(L - 1)h(L - 2) •

(15c)

where the matrix Sylv(a; k) is de4ned in (3), N' =
N — L + 1, and SG is a block matrix de4ned similar to
YG in (14), with the Yi replaced by the (2N' - 1) x
(N — L + 1) matrix Si, given by

Si = Sy\y([si(2N,-2)---si(0)lN -L+ 1): (15d)

If SG is a solution of (13), it follows that

H G S G x s G = 0 : (16)

Since HG is full column rank, (13) implies that

SGsG = 0 (17)

or

sj * S, = si *Sj, (18)

implying further that

S1(z)Sj(z) = Sj(z)Si(z). (19)

Using Z{P(z)} to denote the zeros of the poly-
nomial P(z), (19) implies the following relationship
between the zeros of S1(z) and those of the other
polynomials:

= f]Z{Sj(z)}\Jz{Sx(z)}

= Z{Si(z)}, (20)

if Si(z);i = 1;:::;K, do not have any common roots.
This means that

Z{S,(z)}eZ{S,(z)}- (21)

Since S1 (z) has at most N — 1 zeros, it follows that

z)} (22)
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and

S1(z) = a x Si(z) (23)

for some scalar a. This completes the proof.

Necessary condition: If {Si(z);i = 1;:::;K} share
a common root Z0, then Si(z) = S-(z)(z — Z0) and Z0
becomes an unidenti4able parameter of the system. To
see this, let St(z) = S[(z)(z - z'o). Then S't(z) and any
ZQ satisfy (17) and (10). Hence, a necessary condition
for the input to be uniquely identi4able is that {Si(z);

i = 1 . . . ,K} do not share any common roots. •

Computational complexity: The minimization in-
volved in getting the least-squares solution to (13),
could be implemented by obtaining an extreme eigen-
vector of the matrix YGTYG, where YG has dimensions
KC2 x (2N -L)x K(N -L+l). This would require
O(K2N2) Lops. Since YG is extremely sparse, the for-
mation of YGT YG would not have a signi4cant compu-
tational count. Hence, the computational complexity
of the method would be O(K2N2).

3.3. Remarks

We conclude this section by making some general
observations pertaining to the comparison of the meth-
ods proposed here with the blind algorithms based on
oversampling:

(i) Oversampled systems are not identi4able if the
channels resulting from the oversampling have
common zeros [7,11,12]. This problem does not
arise here. However, performance deteriorates at
even moderate SNRs if the channel has zeros on
the unit circle.

(ii) Most schemes for blind equalization assume that
the noise is uncorrelated. This assumption is not
valid when the output is sampled at rates higher
than the baud rate.

(iii) Overestimation of the impulse response length
does not cause these methods to break down, un-
like the standard methods based on oversampling
of the output [7,11,12]. Overestimation would
mean transmitting L' > L zeros per block, and
choosing L' — 1 zeros of Y(z) to be the zeros of
H(z).

Table 1
Computational complexity of the methods

Method Complexity

ZPSS
ZPCR
Subspace (standard)
CR (standard)

O(L2 +KN2)
O(K4N3)
O(M2L2+N2)
O(M2L2+M5LN2)

(iv) In the ZPCR method presented, we have to work
over a number of blocks to get the performance
the CR method in the oversampling framework
[12] gives with a single block of the same size.
This introduces a large delay in the equalization.

(v) For blocks of the same length, the computational
complexity of the methods presented here are
much greater than that of the standard methods.
Table 1 gives a comparison of the complexity of
the various methods.

Summarizing, there are de4nite trade-oFs between
the methods proposed here and those based on the
oversampled approach. A careful choice needs to be
made for selection of the appropriate method in a given
application.

We also suggest that when the block size is large,
the ZPCR method could still be used to advantage as
follows. The choice of the estimation technique at any
time can be made by determining whether the over-
sampled channel has common zeros. (This can be done
by testing the rank of an appropriate matrix.) If the
channel does have common zeros, the ZPCR method
could be used, and otherwise, a method exploiting
oversampling could be used. Thus the presence of
the zeros in a ZP-OFDM system can be exploited for
better estimation.

4. Simulations and performance

Extensive computer simulations have been car-
ried out to assess the performance of the meth-
ods, and to compare them with existing methods.
Non-minimum-phase channels with impulse re-
sponses spanning four symbol periods, and a 16 QAM
inputs were used.

The channels used represent a mix of conditions
regarding the location of zeros with respect to the unit
circle, and are listed in Table 2.
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Table 2
Locations of channel zeros

Channel
No.

Location of zeros Position with respect to unit circle

11:5414 + j0:9000; -1:2790 + j0:01 63; 0:2706 - j0:0395 In, out
-0.7059 - j0:1 525; j; 0:2860 - j0:5046 In, on, out
0.5 - j0:5; -0.6 + j0:2; -0.1176 + j0:4706 In
40:7072;0:7072;0:1249 In
50:882 — jl.471,—0:8 + j1:6; —1:31 -jO.175 Out
60:384+jl.92,2-j,1:31 +j0:175 Out
- 1 , + 1; 0:7071 +j0:7071 On
80:5477+ j0:8367; 0:9487 +j0:3 162; 0:7746-jO.6325 On

For comparison with the proposed ZPCR method,
we have used the method for channel estimation pre-
sented in [4], referred to hereafter as the ZPSS method.
Equalization in the latter case was carried out using
the pseudoinverse of the appropriate matrix formed
from the estimated channel coe7cients.

Experiment 1: First, we consider the ZPCR method
using 4 blocks of 20 symbols each, with the SNR vary-
ing from 20 to 33 dB. The simulations were carried
out for channels with impulse responses normalized
to have unit norm, and with zeros distributed (i) only
inside the unit circle, (ii) only outside the unit circle
(iii) only on the unit circle, and (iv) inside, outside
and on the unit circle. While the results, shown in
Fig. 4, cannot be taken to be conclusive due to the
small number of channels experimented with, they
seem to indicate that the BER performance is depen-
dent on the position of the roots. Non-minimum-phase
channels are generally seen to have poorer perfor-
mance than minimum-phase channels. Channels with
zeros on the unit circle seem to yield the poorest per-
formance.

Experiment 2: Here, we take up a comparison of the
ZPCR and the ZPSS methods. The BER performance
of the methods was evaluated for varying numbers
of blocks. The experiment was carried out with an
SNR of 30 dB, and a block length of 20 symbols. The
results are shown in Fig. 5. We observe that for short
observation windows, the ZPCR method outperforms
the ZPSS method. In general, it needs far fewer blocks
to give the same performance.

Experiment 3: Next, we compare the performance
of the proposed method with respect to the number
of blocks, at 30 and 35 dB. The results, depicted in

Fig. 4. BER performance of the CR method for various channels,
at 26 dB, with 4 blocks of 20 symbols each. Channel roots: (+)
only inside the unit circle, (x) only outside the unit circle, (o)
only on the unit circle, (*) inside, outside and on the unit circle.

Fig. 6, indicate that for a particular block size, the
BER performance saturates, and the saturation level
is lower for a higher SNR.

Experiment 4: The dependence of performance on
the block size is considered next. We used an output
SNR of 26 dB. The ZPSS simulations were carried
out with 20 and 30 blocks of data, and the block size
varying from 19 to 40 symbols. The ZPCR simulations
were carried out on Channel 2, with 4 blocks, and the
block size varying from 10 to 50 symbols. The results
are presented in Figs. 7 and 8.

We observe that performance actually deteriorates
with increasing block size, as conjectured earlier. This
could be ascribed to the increasing density of roots, as
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Fig. 5. Symbol error rate performance at 30 dB, with 20 symbols
per block, on a Rayleigh frequency selective channel with uniform
power pro4le L = 4.
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Block Size

Fig. 7. ZPCR method: symbol error rate performance for 26 dB,
4 blocks, Channel 2.
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. \ \\ \
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\ v_\ ̂~~~—~——\ ^\\

*: 35 dB

+: 30 dB

Number of Blocks

Fig. 6. Symbol error rate performance of the ZPCR method, with
20 symbols per block, on a Rayleigh frequency selective channel
with uniform power pro4le L = 4.

mentioned in Section 3.1. It could also be explained
by the fact that the ratio of known symbols (zeros) to
unknown symbols (data) is reduced when the block
size increases.

Experiment 5: Finally, it is interesting to compare
the proposed semi-blind scheme with a standard time
domain method for the blind equalization of over-
sampled systems, for a given size of the observation
window.

10°

10-1

10-4

10-5

+: 20 blocks

x: 30 blocks

25 30
Block Size

Fig. 8. Subspace method: symbol error rate performance for 26 dB,
Channel 1.

First, we used a well-conditioned channel, with an
impulse response duration equal to four symbol peri-
ods. The proposed ZPCR method was simulated with
4 blocks of 20 symbols, and the standard CR method
[2], with 80 symbols, and an oversampling factor of
4. The performance is depicted in Fig. 9. CR clearly
performs better for a given size of the observation
window.

We next used a channel with the duration of im-
pulse response equal to 10 symbol periods. The im-
pulse response was the truncated sum of two scaled
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of 10"'

+: ZPCR, 4 blocks

of 20 symbols

x: CR, M = 4,

over 80 symbols

26
SNR

Fig. 9. Symbol error rate performance for a channel without
near-common zeros, and an impulse response length of 4.
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\ \
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\ \

N-

i i i i

x: CR, M =

4, over 200

symbols

+: ZPCR, 4

blocks of

50 symbols

-

_

35
SNR

Fig. 10. Symbol error rate performance for a channel with
near-common zeros and impulse response of length 10.

and shifted sinc functions. When oversampled by a
factor of 4, the resulting four-phase channel impulse
response components tend to have near-common ze-
ros. We may, therefore, expect a signi4cant perfor-
mance degradation in the oversampled approach. This
is noticed clearly in Fig. 10, where we 4nd that the
method presented here performs much better.

Experiment 6: Finally, we simulate the dependence
of the CR and the ZPCR methods on a Rayleigh fre-
quency selective channel with a uniform power pro4le.
The results are depicted in Fig. 11. We observe that
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\

A — _ _
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\

\
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+: ZPCR

x:CR

o:CR

M = 4

M = 2

100 150 200 250
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Fig. 11. Symbol error rate performance for a Rayleigh frequency
selective channel with uniform power pro4le, and an impulse
response length of 4, at 30 dB SNR.

CR performs better than ZPCR for an oversampling
factor of 4, but worse for an oversampling factor of 2.

5. Conclusions

In this paper, we have presented a scheme for
the semi-blind equalization of a system using the
symbol-rate sampled output. A number of zero-valued
samples are transmitted between blocks of symbols,
and the equalization is carried out over several (two
or more) of these blocks. Algorithms have been de-
veloped for the scheme on the lines of the cross rela-
tions [12] and subspace [7] methods for oversampled
systems.

The necessary and su7cient conditions under which
identi4cation is possible have been derived.

Simulation studies have been carried out to assess
the performance of the methods. In the OFDM context,
the proposed method is seen to perform better than
recently proposed symbol-rate methods [5,4].

It is also shown to perform better than existing blind
schemes based on oversampling, when the channels
have near-common zeros. This provides the primary
motivation and application for the work reported here.

The computational complexity of the method is
considerable. It may be possible, however, to exploit
the Hankel structure of the matrices to reduce the
complexity.
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We observe that performance can be improved by
increasing the number of blocks used, but not by in-
creasing the block size for a given number of blocks.
For a given channel response length, throughput can
be increased only by increasing the block size. This
means that we have a tradeoF between throughput and
performance.

In order to obtain acceptable performance even at
high SNRs, the method requires observations over sev-
eral blocks. The resulting increase in data sizes means
that the computational complexity blows up. Hence,
we also have a tradeoF between computational com-
plexity and performance.

There is also a considerable delay in recovering the
transmitted symbols.

Due to the large data lengths required for chan-
nel identi4cation, the methods of this paper could be
useful where the channel can be assumed to remain
stationary over large periods of time, such as slowly
fading channels.
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