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Abstract

In the 19th century, the French geometer Charles Pierre Dupin discovered a nons-
pherical surface with circular lines of curvature. He called it a cyclide in his book,
Applications de Geometrie published in 1822. Recently, cyclides have been revived for
use as surface patches in computer aided geometric design (CAGD). Other applications
of cyclides in CAGD are possible (e.g., variable radius blending) and require a deep
understanding of the geometry of the cyclide. We resurrect the geometric descriptions
of the cyclide found in the classical papers of James Clerk Maxwell and Arthur Cayley.
We present a unified perspective of their results and use them to devise effective algo-
rithms for synthesizing cyclides. We also discuss the morphology of cyclides and
present a new classification scheme,




1. INTRODUCTION

Early last century the French geometer C. Dupin discovered a non-spherical
surface with the property that all its lines of curvature were circular. In his book,
Applications de Geometrie published in Paris in 1822, he called this surface a cyclide.
Mathematicians, including [Casey 1871] and [Darboux 1887], have analyzed and
generalized Dupin’s cyclide in various ways. Until the early part of this century, most
books on analytical geometry confained material on Dupin’s cyclides and their
generalizations [Salmon 1915] [Woods 1922]. However, the generalized cyclides have
properties quite different from those discovered by Dupin. In this paper, Dupsn eyclide
and cyclide will be used interchangeably, and will always refer to the cyclides of Dupin.

After a lapse of more than fifty years from their discovery, a paper of James Clerk
Maxwell [Maxwell 1868], revived the interest in Dupin cyclides. Maxwell was interested
in finding two curves such that the congruence of lines meeting the curves can be cut
orthogonally by a family of surfaces. He found that Dupin cyelides were such surfaces if
the two curves were conics in perpendicular planes, with vertices of one passing through
the foci of the other. A few years later, Cayley wrote about his investigations of the
cyclide [Cayley 1873|. He was interested in the mathematics of cyclides and in his paper,
Cayley simplified the earlier definitions by Dupin. Since then, to our knowledge, the
interest in cyclides waned, gradually leading to its omission from most geometry books

of this century.

Interest in cyclides revived again in the 1980's. This time it was motivated by
research in Computer Aided Geometric Design (CAGD). In 1982 at Cambridge
University, UK., Martin introduced prineipal patches — surface patches bounded by
their lines of curvature — in surface modeling and proposed using cyclides to generate
such surface patches [Martin 1983]. Since then there has been continued interest in
cyclides at Cambridge [Martin et al. 1986]. About the same time at Chrysler
Corporation, U.S., McLean proposed a different technique for composing cyclide patches
to model automobile surfaces [McLean 1984]. Finally, our own interest in cyclides arose
from its applicability as a variable radius blending surface [Hoffmann 1988]. In a recent
book, the authors Nutbourne and Martin describe the use of cyclidal patches in surface
modeling and briefly trace the history of cyclides [Nutbourne and Martin 1988].

The recent Cambridge/Chrysler interest in cyclides as surface patches focuses on
properties "in the small" rather than properties "in the large". This approach reflects the



intended use of a cyclide by designers who are not required to know about its global
properties. It is our thesis that the realization of the true potential of cyclides in CAGD
applications can be facilitated if we understand and utilize its global properties. In that
case, one is faced with the formidable task of visualizing the cyclide and its various
forms in the classical framework, i.e. in terms of envelopes, cones, spheres and conics.
While the papers of Maxwell [Maxwell 1867] and Cayley [Cayley 1871] are a starting
point for such a project, their style and lack of appropriate figures can be dissuading
[cf. page 223, Nutbourne and Martin 1988].

We attempt to fill this gap by translating the classical results into the modern
context. In doing so, we unify the classical definitions (§2), give complete proofs of some
of the key properties (§3), formulate algorithms {constructions) for computer aided
synthesis (§4), and present a new classification of the morphology of cyclides (§5). We
conclude with a short catalogue of cyclide properties (88) we deem useful for geometric
modeling. In the appendix, we briefly describe our implementation of algorithms for

drawing cyclides along with a sample of generated pictures.

2. DEFINITIONS

The following definitions of the cyclide can be found in the classical literature
[Dupin 1822], [Maxwell 1868], [Cayley 1873|. We give a brief explanation for each and
provide relevant figures. All references to Maxwell and Cayley in this paper, refers to
[Maxwell 1868] and [Cayley 1873). As will be evident later, cyclides are symmetric
about a pair of orthogonal planes — the planes of their copics. Thus, illustrations
become much simpler on the planes of symmetry 2s all spheres can be replaced by their
circles of intersection. All figures in this paper are on the Planes of symmetry. Let F,,
Fy and Fy denote three fixed spheres and ¢ denote a null sphere.

Definition 1 [Dupin]: A cyelide is the envelope of a variable sphere that touches three

fixed spheres in a continuous manner.

Given the fixed spheres F,, F,, Fj, a variable sphere V tangent to all three of
them is in ome of eight possible topological positions. With the variable sphere
represented by a parenthesis pair, i.e. ( ), we denote the eight positions gymbolically as

follows:



F\FyF3(@): The fixed spheres touch V from the outside of V.
@(F FoF3): The fixed spheres touch V from the inside of V.
FyFo(F3): V contains Fj but neither F, nor F,.

F3(F1F,): V contains F| and F, but not F;.

F\F3(Fy): V contains F, but neither ¥, nor F.

Fy(F1F3): V contains Fy and F; but not F,,

FyF3(Fy): V contains F but neither F, nor F,

F1{FyF3): V contains F, and Fj but not F,.

[Figs. 1a & 1b here]

We consider these positions in more detail. Let P be the plane of symmetry defined
by the centers of the fixed spheres. Let V be 2 sphere in position F,F,F(p) with its
center on P. The intersection of this configuration is shown in Fig. 1a. We imagine that
the radius of V increases while its center rises above P as needed to maintain tangency
with the fixed spheres. As V enlarges, the points of contact with the fixed spheres F;
move above P towards the north poles of the F;. If the radius of V is increased
indefinitely, its center moves to infinity and V' becomes a plane tangent to the F; in
points above P. At that moment, V can also be considered as a sphere of infinite radius
with its center below P, i.e. we may exchange the inside and outside of V at that
position. We do so, and now diminish the radius of V. Then, the center of V
approaches P from below and the contact points with the F ; move across the respective
north poles reapproaching the equators of the F;. When the center of V reaches P, we
have the configuration shown in the Fig. 1b, and ¥V is now in position g(F,F,F;). We
continue increasing the radius of V while raising its center above P. This time the
contact points move below P towards the south poles of the F;. In the limit, ¥ becomes
a second plane touching the F; below P. Once again we switch the inside and outside,
reduce the radius of V, and approach P with the center of ¥ from below until we reach

the starting configuration of Fig. 1a.



These considerations show that all spheres in positions F 1F2F3(@) and @(F F,Fy)
belong to the same series. The envelope of this series of spheres is a eyclide. The cyclide
corresponding to this series (i.e. Figs. 1a and 1b) is a ring cyclide, as explained later.

Stmilar considerations show that the spheres in positions F,F,(F;) and Fa(F . F,)
form a series; the spheres in positions F';F4(F,) and Fy(F,F;) form another series; and
the spheres in positions FyF3(F,) and F,(F,F3;) form yet another series. These are the
series being referred to by Cayley, in the next definition of a cyelide.

Deflnition 2 [Cayley]: A cyclide is the envelope of a variable sphere belonging to one
of the four series of spheres which touch three given spheres,

Consider any one of the four series of variable spheres. Their circles of intersection
V1 and V, on the plane of centers of F,F, Fj is shown in Fig. 2a. If the role of fixed
and variable spheres are now reversed i.e. the two variable spheres of Fig. 2a are the
fixed spheres F'; and F; in Fig. 2b and the three fixed spheres of Fig. 2a are the variable
spheres V; V, and V; in Fig. 2b, we again obtain a eyclide. This cyelide is defined in
terms of only two fixed spheres but with an additional constraint that all variable
spheres have their centers on a plane namely, the one defined by V,V,V; in Fig. 2b.

[Fig. 2 here]

Definition 3 [Cayley]: A cyclide is the envelope of a variable sphere having its center
on a given plane and touching two given spheres.

The envelope of a series of spheres whose centers lie on a fixed curve has been
called a canal surface and is attributed to the 19th century French mathematician
Gaspard Monge [Hilbert and Cohn-Vossen 1932]. Such an envelope can be thought of as
a collection of all circles of intersection between adjacent spheres of the series. These
have been referred to as the characteristic cireles of a canal surface. All surface
normals of a canal surface pass through its characteristic circles and hence through the
fixed curve. Lines of curvature on a surface are defined to be curves such that normals
to the surface at two consecutive points on the curve intersect. Thus, all characteristic
circles on a canal surface are its lines of curvature. Each sphere that forms the canal

surface is tangent fo it along a line of curvature.




The envelope of variable spheres in each of the definitions 1, 2 and 3 is a ecanal
surface. Now consider the envelope as obtained by any one definition (e.g. definition 1).
If three spheres of this envelope are fixed and the definition 1 reapplied, a second
envelope is obtained. All spheres of the second envelope are tangent to the fixed spheres
of the first envelope. Since the choice of fixed spheres from the first envelope is
arbitrary, all spheres of the second envelope are tangent to all spheres of the first. Both
envelopes are canal surfaces and, furthermore, they are complements of each other in
the sense that the space swept by the spheres of the first envelope is the outside of the
space swept by the spheres of the second envelope, and vice versa. Thus, they share a
common surface which is by definition 1, a cyeclide. The curvature lines of each eanal
surface form the curvature lines of the cyclide. Hence, every cyclide can be thought of
having a pair of canal surfaces associated with it. The surface normals of these canal
surfaces by definition pass through two fixed curves. Thus, we arrive at a2 new definition

for the eyclide.

Definition 4 [Maxwell]: The cyclide is a surface, all normals of which pass through

two fixed curves.

In general, the normal sections at any point on a surface yield curves through the
point. The centers of the osculating circles of these curves lie on the normal through the
point. The two centers farthest apart on the normal are referred to as the centers of
curvature corresponding to the principal directions of the surface, at that point. In
general, the centers of curvature of the points on a surface, form a pair of surfaces.
This pair of surfaces is referred to as the surface of centers of the original surface. By
definition 4, the surface of centers of a cyclide are two fixed curves. The nature of these

curves is revealed by the following theorem.

Theorem 1: The fixed curves of 2 cyclide are conics.

Proof: Let ¢, and ¢ denote the pair of canal surfaces common to a cyclide. Consider
any sphere S of the first canal surface dl. By definition 1, S is tangent to all
spheres of the second canal surface (. Let (P1y Pay P3, p4) denote the points of

tangency between S and any four spheres of Cz.

If (py,esP4) are non-coplanar ¢, consists of a single sphere, namely S, since four

non-coplanar points uniquely define a sphere. Thus the cyclide is 2 sphere and its



spine is a degenerate conic. If (py,...,p4) are coplanar but not cocircular, ¢, is the
plane since (p,,...,p,) cannot lie on 2 sphere of finite radius. Once again the spine
is a degenerate conic. Finally, if (p,,...,p,)} are cocircular, ¢; is no longer a
singleton since there are an infinite number of spheres that pass through a given,
circle. Thus, for the general cyclide, all spheres of (fz must be tangent to S along
a circle M of S,

The circle M along with the center of S define 2 right circular cone. The centers
of all spheres of C, lie on this cone. If S is the smallest sphere of (*; then M has
to be a great circle of S. This implies the right circular cone is now a plane
through the center of S. Thus, the centers of all spheres of dz also lie on a plane.
Hence the spine curve of ¢, is a conic. Similarly it can be shown that the spine

curve of Cl is also a conic. M

Corollary 1: Viewed from any point on one conie, along the tangent, the other conmic

appears as a circle.

Proof: From Theorem 1 it follows that each comic spine of a cyclide is the locus of
vertices of all right circular cones that pass through the other. This implies that
each conic is the envelope of the axes of all right circular cones that pass through
the other. The tangent at any point on one conic is the axis of the corresponding
right circular cone. Clearly, a conic when viewed along the axis of any cone that

passes through it will appear as a circle B.

[Fig. 3 here]

An ellipse and a hyperbola on mutually perpendicular planes, oriented such that
the vertices of one are the foci of the other, are called anticonics (see Fig 3). Anticonics
are also referred to as the focal conics of an ellipsoid since they serve the same purpose
in its thread construction as do the foci in the thread construction of an ellipse [Hilbert
and Cohn-Vossen 1932]. The terms “anticonics” and "a pair of anticonics” will be used
interchangeably in this paper, to refer to a pair of conies positioned as defined above. It
follows from Corollary 1 that the spine curves of a cyclide are anticonics. It is a
property of the anticonics that, if two points be fixed on the hyperbola then the sum of
distances between 2 variable point on the ellipse to the two fixed points is a constant if



the fixed points lie on two branches of the hyperbola, and the difference between the
distances is a constant if the fixed points are on the same branch of the hyperbola.
Similarly, if the two fixed points be on the ellipse and the variable point on the
hyperbola, then the absolute value of the difference between the distances of variable to
fixed points is a constant, Thus, in definition 3, one of the two fixed spheres is
redundant in view of the fact that their centers lie on anticonics. So, definition 3 can be

further simplified as follows.

Definition & [Cayley|: Considering any two anticonics, the cyelide is the envelope of a
variable sphere on the first anticonic and touching a given sphere whose center is on the

second anticonic.

Visualizing a cyclide by definiton 5 is easy (e.g. one form of the cyclide resembles a
squashed forus and has been referred to as a ring cyclide of Figs. 1a & 1b). Tt follows
from the definition that planes of symmetry of a cyclide are the planes of its anticonics.
In general, sections by these planes will yield a pair of circles that "bound” the eyclide.
We shall refer to these as the ezireme cireles on the plane of symmetry. In definiton 5,
consider the variable circles generated by intersections of the variable spheres. The
centers of these circles lie on a plane of symmetry, whereas the circles themselves lie on
planes that are perpendicular to it. Therefore, each variable circle intersects the plane
of symmetry at two points. These are the end points of the diameter of the variable
circle since they are collinear with its center. Thus, a section of the cyclide by an
anticonic plane yields (see Fig. 4a): the conic which is the locus of centers of all variable
spheres (e.g. the ellipse E); the curve X which is the locus of centers of all variable
circles generated by these variable spheres; the extreme circles C; and C,, which are the
locus of the two diametral end points of these variable circles. Hence, the cyclide can

also be defined in terms of the variable circles.

[Figs. 4a & 4b here] |

As shown in Fig. 4b, the centers of symmetry (or centers of similitude) of two
circles on a plane are the two points T and S, that cut the line through their centers in '
the ratio of their radii [Hilbert and Cohn-Vossen 1932]. The diameter of the variable
circle of a cyclide, on the plane of its anticonic, is given by the segment between the
extreme circles, of a line joining the center of the variable circle to either center of
symmetry of the two extreme circles. The end points of the diameter on the extreme
circles are so chosen that the tangents to the extreme circles at those points are not

-7-



parallel. In the following definiton of a cyclide by variable circles, Cayley refers to the
diametral endpoints as anti-parallel points.

Definition 8 [Cayley]: Consider in a plane any two circles, and through either of the
centres of symmetry draw a secant cutting the two circles, in the perpendicular plane
through the secant, having for their diameter the chords formed by two pairs of anti-
parallel points on the secant (viz. each pair consists of two points, one on each circle,
such that the tangents at the two points are not parallel to each other): the locus of the

variable circles is the cyclide.

Definition 5 might be easier for the purpose of visualizing cyclides. However,
definition 6 is useful for computer implementation and gives better access to analyzing

geometric properties of cyclides.

3. GEOMETRICAL INSIGHTS

It is known that each of the conics namely, ellipse, parabola and hyperbola, is
the locus of all points whose distance from a fixed point is in a constant ratio to the
distance from a fixed line. This ratio is called the eccenirietly of the conic. The fixed
point and fixed line are referred to as the focus and directriz, respectively. The
eccentricity of the ellipse is < 1; of the hyperbola >1; and for the parabola it is 1. All
conics can also be generated by plane sections of a right circular cone. (Henceforth by
cones we shall always mean 2 right circular cone). The eccentricity of a conic by this

mode of generation can be expressed as the ratio of the angle of inclination of the plane

of the comic and the apex angle of the cone ie., cos(y) in Fig 5. All planes

8
cos{f)

perpendicular to the axis of a cone intersect it in circles. If the cone passes through a
conic, these planes intersect the plane of the conic, in lines parallel to its directrix.
These are special lines and we shall refer to them as charactersstic lines of the conic
(e.g. D, is a characteristic line in Fig 5). Each characteristic line of a conic can be
thought of 23 generating a unique circle on every cone that passes through the conic. If
a characteristic line intersects the conic, so does its generated circle at the same points
on the conic. It is evident that a pair of characteristic lines for anticonics are mutually

perpendicular.

[Fig. 5 here]




Let ellipse E on the XY plane and hyperbola H on the YZ plane be a pair of
anticonics. From Theorem 1, we know that each conic spine of a cyclide is the locus of
vertices of all right circular cones that pass through the other conic. Let Cg denote the
family of cones with vertices on H and passing through E. Similarly, let Cg denote the
family of cones with vertices on E and passing through H. The XY plane is a degenerate
cone of Cg, just as the XZ plane is one of Cg. We shall now describe the cyclide with

respect to these two families of cones.

On the plane of the ellipse, choose a characteristic line D,. If D, remains fixed for
all cones of Cg, a family of circles is obtained (see Fig 8). These are circles of
intersection on the planes that pass through D, and are perpendicular to the axes of all
cones of Cp. Thus corresponding to E and D, a family of circles is obtained that lie on
planes orthogonal to the plane of H. These circles form the family of latitudsnal
curvature lines on the cyclide. If D, intersects the ellipse so do all circles, at the same
points on the ellipse. Otherwise, depending on the position of D, with respect to E, the
radii of the circles might either be positive always, or diminish to zero and increase
again. If it is the latter, in genmeral, there are two circles of zero radii, located on

opposite points on any one branch of the hyperbola.

[Fig. 6 here]

By a similar process a second family of circles, corresponding to the cones of Cjg,
is obtained once characteristic line D, is fixed. These circles are on planes orthogonal to
the plane of the ellipse and form the family of longitudinal curvature lines on the
cyclide. As before, if D, intersects a branch of the hyperbola, so do all circles of this
family, at the same points on the hyperbola. Otherwise, depending on the position of
D) with respect to H, the radii of the circles might either be positive always, or
diminish to zero and increase again. If it is the latter, there are two circles of zero radii
at opposite points on either side of the major axis of E. Therefore, associated with each
cyclide is a pair of characteristic lines D, and D, that are parallel to the Y and Z axes

respectively.

Theorem 2: The family of circles obtained from all right cones passing through ome
conic, by fixing the position of its characteristic line, forms a family of

curvature lines on the eyclide.t



Proof: Let (fl and éz with spine curves ¢; and ¢, respectively, be the pair of canal
surfaces defining the cyclide. Suppose characteristic line Dy corresponding to
conic ¢, is fixed. All cones passing through ¢, belong to spheres of (fz. It suffices

to show that every circle generated with respect to D, is a line of curvature on

Co

From Theorem 1, the circle m; defined by D; on any sphere S; e, is the locus
of points of tangency between S; and all spheres of ¢*;. We know that the lines of
curvature on a canal surface are the circles of intersection of adjacent spheres.
Thus spheres S; and S;;, of (¢, intersect in a circle which is a line of curvature
on ¢,. But Si+1 I8 also tangent to all spheres of ¢*,. Thus it must intersect S; at

circle m;, which implies m; is a line of curvature on éz. =

From differential geometry it is known that lines of curvature on any surface form
an orthogonal nef. Thus, given one family of curvature lines the other family is
determined. Consequently for the cyclide, fixing one characteristic line automatically
fixes the other. These lines intersect only at the origin, yielding circles of curvature
which we refer to as the reference circles of each conme. Otherwise, when one
characteristic line is at a distance A from the origin, all latitudinal and longitudinal
circles of curvature are at a distance r from their respective reference circles. This
distance r, is a function of A and the focal lengths of the anticonics and is measured
along the generating lines of the cones. One can either choose r or A as the one
parameter to define a cyclide, the other two being the focal lengths of the anticonics.

In his formulation of the implicit equation for a cyclide, Maxwell chose the
parameter r and the focal lengths of the anticonics. The reason we adhere to Maxwell’s
choice is because in the context of CAGD, the parameter r can be used directly to
generate offsets of the cyclide. Recall that the cones are the collection of surface normals
at any circle of curvature on the cyclide. Thus parallel circles on each such cone

represent offsets of the corresponding curvature lines and hence can be used to form the

t_This theorem can be viewed as a direct consequence of a more general theorem due
to Mon%g, which states that the necmsari and sufficient condition for a curve on a
surface to be a line of curvature is that the surface normals along this curve form 2
developable surface {Struik 1961].

-10 -



offset of an entire cyclide. As such, any circle of curvature on a cyclide can be viewed as

a positive or negative magnification of its reference circle parameterised by r.

4. CYCLIDE CONSTRUCTIONS

Maxwell’'s Method: This method of construction is due to Maxwell and is the
procedure described in section 3 for generating all lines of eurvature on the cyclide. The
three parameters used in this construction provides a basis for an analysis of the various

forms of the cyclide.

Let ellipse E and hyperbola H form a pair of anticonics, with E on the XY plane
and H on the XZ plane, both centered at the origin. Let the eccentricity of E be ep =

L. Thus the eccentricity of H is eg = %. Thus the general equation for E is
a

72 %

1t =1

a a“—f

If o is the eccentric angle of a point P on E (see Fig. 7a), the parametric equations for P

is given by
z(P) = a cos(a), y(P)="Va®—f%sin(a), z(P)=0

Similarly for the hyperbola H we get

f2 gi—j? =1

and the parametric equations for point Q on H are

z(Q) = f sin(f), y(Q)=0, 2(Q)="Va’—f*tan(f)

where f is the auxiliary angle of H (see Fig. 7b).

[Figs. 7a & 7b here]
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Cg and Cp denote the families of cones passing through E and H respectively. For
each family the reference circles are those special circles generated when characteristic
lines D, and D, are the Y and Z axes respectively. As shown in Fig. 8a, for any cone
passing through the ellipse E, the distance between a variable point on the ellipse and
the corresponding point on the reference circle, along a generating line of the cone, is
(— J cosa). Similarly as shown in Fig. 8b, for any cone passing through the hyperbola
H, the distance between a variable point on the hyperbola and the corresponding point
on the reference circle, along a generating line of the cone, is (— a sec5). Let M be any
circle distinet from its reference circle, on a cone of Cy or Cg. Let r be the distance of
M from the reference circle along a generating line of the cone. If the cone belongs to
Cp then the distance from a variable point on the ellipse to corresponding points on M
along generating lines of the cone is given by (r — f cosc). If the cone belongs to Cyg

then the same distance is given by (r — a secf3).

[Fig. 8a & 8D here]

The distance between the apex of any cone of Cg or Cy and a variable point on
the conic it passes through, is simply the distance between the variable points, P on the

ellipse and Q on the hyperbola. Thus,
(PRI = [2(P)—=(Q) + [y(P)—y(Q)]* + [2(P)—2(Q)]?
which upon simplification yields
PQ =a secfl — f cosa

Thus, for all cones of Cp with apex @ on the hyperbola and variable point P on the

ellipse, distance @R is a constant if
PR =r — f cosa

and R generates a latitudinal circle of curvature on the cone. Similarly, for all cones of
Cg with apex P on the ellipse and variable point @ on the hyperbola, distance PR is a

constant if
QR =r —a seef

and again R generates a longitudinal circle of curvature on the cone. Therefore, as

-12 -



points P and @ traverse the ellipse and hyperbola respectively, the point B traces out
all latitudinal and longitudinal lines of curvature on the cyclide. For a cyclide, the
parameter r could be chosen to be a positive or negative constant and represents the
fixed distance of each circle of curvature from its reference circle. The following steps
can be outlined for a computer implementation of Maxwell's construction.

INPUT : Parameters [f,a,r]

STEP 1: Longitudinal circles — for each flxed point [P(c) | 0<a<360°] on the ellipse,
take variable points [@(f) |0<3<360°] on the hyperbola. On line segment
PQ, the point [R(x,0) | QR =r — a sec f), traces out a longitudinal circle

of curvature.

STEP 3: Latitudinal circles — for each fixed point [Q(6) |0<3<360°] on the
hyperbola, take variable point [P(c) |0<<360°] on the ellipse. On line
segment QF, the point [R(B,a) | PR =r — f coso| traces out a latitudinal

circle of curvature.

Cayley’s Method: This method of construction of a cyclide is due to Cayley. It is
essentially a procedure for generating one family of curvature lines on the cyclide, as
mentioned in definition 8. Here the cyclide is viewed as an envelope of variable circles.
The parameters required for this construction are a pair of extreme circles of the
cyclide, on a plane of symmetry. The cyclide is then constructed such that it is bounded
by the extreme circles and symmetric about the given plane.

INPUT: Extreme circles C; and C, on a plane P and the center of symmetry of C; and

Cy ( fnner or outer).

STEP 1: Locate inner and outer centers of symmetry of C; and C,. Take pencil of lines
L through the chosen center of symmetry.

STEP 2: On each [;cL draw two circles perpendicular to P, with diameters, the
segments of /; terminated by circles C; and C,. The end points of every
diameter belong one each, to C,; and C, such that, the tangents to the circles
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at these points are not parallel.

To obtain the second family of curvature lines the two extreme circles of the first
family can be used as parameters. This procedure is simple and amenable for computer
implementation. The choice between Maxwell’s and Cayley's method for cyclide
construction depends on the context of the intended application. For example, if a
cyclide (or a portion of it) is to be constructed on a given spine, Maxwell’s method is
more suitable. But if the cyclide is to be used for a variable radius rolling-ball blend of
a cylinder and inclined-plane intersection [Hoffmann 1988|, it might be easier to
visualize (and specify) it by the extreme circles which then represent the minimum and

maximum diameter of the rolling ball (see Fig. 9).

[Fig. 9 here]

Implicit Forms: For a cyclide with anticonic parameters a and f and a magnification

parameter r, the implicit equation has been shown by Maxwell to be
(32+y2+z2_r2)2 _ 2(32+r2)(f2+62) — 2(y2_22)(a2_f 2) + Safrz + (az_f 2)2 = 0

When f and e are increased to infinity, in the limit, the anticonies become a pair of
parabolae in perpendicular planes, the focus of one coinciding with the vertex of the
other. Thus, parameters f, a, r are no longer valid. This form of the cyclide is a cubic
surface and its implicit equation can be derived using Cayley’s definition 5 as follows.

[Fig. 10 here]

In Fig. 10, let P, be a parabola on the horizontal plane with directrix Dp, and
focus M, and let P, be another parabola on the vertical plane, with directrix Dp, and
focus N. Furthermore, if M and N are the vertices of P, and P, respectively, then the
parabolae are a pair of anticonics. Assume a fixed sphere F of radius r to be centered at
the vertex M of P,. The cyclide is the envelope of the variable spheres U, centered on

Py, tangent to F. Points on P, have coordinates (z;,y,) where,
y1 = 2pt

z =2t2—P—
1 B 4
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where p is the distance between the focus and directrix of P, and P,, and, ¢ is a
parameter indentified geometrically with the gradient of the tangent to the parabola at
that point. The variable radius r; of the spheres U is now given by

=2t2—'2 2, P
e P

Thus, the spheres of U are given by
St (z —2pt* + 2+ (y=2pt)’ + 2 (2pt? + L1’

The envelope of U is obtained by eliminating the parameter #, between S and -j—f

Using resultants to do so and then simplifying, the equation for a parabolic eyclide

becomes
z—g) + v¥(z—h) + (s—¢)(z—A)z—f) =0
where,
r P
g=r+7
i 3
h=yr—=
r y D
' P
f r + 4

Furthermore, the characteristic lines of this cyclide are the lines

and are on the surface of the cyclide. The meridian and equatorial circles are given by

z =0 y2+(z—-§)2—r2=0

y=0 2 +(z+Ly - (r=£y =0
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5. MORPHOLOGY OF CYCLIDES

Let cyclide [f,a,r] denote a cyclide with the parameters f,a,r and let parameters
in bold indicate their values fixed (i.e. the cyclide [ f, a,r| represents a particular
family of cyclides with fixed anticonies). The forms of a cyclide[f,a,r] can be classified
at two levels. A primary classification is based on the first two parameters f and a.
Once these parameters are fixed, a secondary classification can be made based on the
third parameter r. Thus the basic form of a eyclide depends on the form of its
anticonics, while the subform depends on the magnification of the lines of curvature
There are four pairs of conies that satisfy the anticonic property viz.,
(ellipse/hyperbola), (parabola/parabola), (circle/straight line) and (degenerate conics)
Le., points, double lines, and intersecting lines. Since the ellipse and hyperbola are often
referred to as the central conics, we might call the associated family of cylides, central
cyclides. Cyclides having the parabolae as anticonics have been referred to as
parabolic cyclides . The cyclides with a cirele and a straight line as anticonics always
generate surfaces of revolution and so we might refer to them as revolute cyclides
and finally the ones with degenerate conics might simply be called degenerate
cyclides . Fixing the anticonics and their parameters, f and @ yields 2 one parameter
family of cyclides that Maxwell refers to as confocal eyclides (analogous to confocal

quadrics and confocal conies in the classical literature [Hilbert and Cohn-Vossen

1932]).

Within each confocal system of a primary category are three subforms that depend
on the value of r in relation to the values of f and . Positive and negative values of
r yield symmetric subforms with reference to the plane orthogonal to the planes of the
anticonics and so it suffices to consider the positive values of r. The central cyclides
are unique in that, their anticonics are devoid of any degeneracies. As a result, their
subforms are distinet and have been portrayed in drawings and plaster models as
typical examples of cyelides [p. 218, Hibert and Cohn-Vossen 1932|. Nevertheless, each
primary category of the cyclides admits a further classification of its subforms based on
the value of parameter r. Basically the value of r, in relation to & and /, determines ':
the existence of pinch points {or nodal points) on the surface of the cyclide.

When {0<r<f) there are two pinch points on the surface of the cyclide. These
points lie on the ellipse on a line parallel to its minor axis. The shape of the cyclide
resembles a pair of cresents touching each other at their ends. When (r=0) the cresents

are equal. As r increases one cresent becomes smaller while the other becomes larger.
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Maxwell has referred to this subform as a horned cyclide since it can also be visualized
thus. When (r=f) the smaller cresent completely vanishes and the larger cresent meets
itself 2t the ends, in what appears to be one pinch point on the surface. This point is
now at the vertex of the ellipse (or, focus of the hyperbola).

When (f <r<a) there are no visible pinch points on the surface anymore and the
cyclide resembles a squashed torus, the minimum diameter being around the last pinch
point. Maxwell refers to this subform as the ring eyclide . When (r=a), the inzer circle
of the annular ring diminishes to a point and again a single pinch point appears on the
surface at the vertex of the hyperbola (or, focus of the ellipse). The surface of the
cyclide now resembles that of an inflated spherical balloon, held by the thumb and
index fingers, meeting at a point away from the center.

When (a<r) the new pinch point becomes a pair which move away from the
vertex of the hyperbola on a line perpendicular to its transverse axis. The creation of
the new pinch point gives rise to a spindle inside the cyclide. Maxwell has referred to
this form of the cyclide as a2 spindle cyclide . The process of creation of the spindle can
be visualized as the inverse of vanishing of one of the cresents of the horned cyclide.
We classify the various forms and subforms of the cyclide in Table-I. The associated

pictures are indicated by the respective plate numbers.
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Central

Cyclides

Revolute
Cyclides

Parabolic
Cyclides

Degenerate
Cyclides

DUPIN CYCLIDES

Horn

Plate-I (a)

Circle

Plate-IIT (a)

Cone

TABLE - I

Ring

Plate -I (b)

Torus

Plate-II (b)

Cylinder

Spindle

Plate-I (c)

Plate-I (b)

Plate-II (a)

Cone

By definition, each cyclide can be viewed as the envelope of two distinet families of

spheres. For the purposes of visualization, the envelope of one family of spheres is what

an observer might actually view the cyclide to be, while the second family of spheres

forms an envelope that gvoids the first. It might be stated, without a discourse on the

process of visualization, that for a parabolic cyelide, the horned and spindle

subforms are mirror images of each other, rotated 90 degrees about the transverse axis

of either parabola. Similarly a cone of revolution if viewed as a degenerate cyclide

isa horn and spindle cyclide with a double line as the anticonie.

Cayley’s comstruction (and definition 6) provides an alternate method for

visualizing ¢ll primary and subforms of the cyclide. By an appropriate choice of
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diameters and positions for the extreme circles, all the forms described earlier can be
obtaired. In fact, by this method the parabolic cyelide, the most complicated form
to visualize otherwise, becomes very simple as follows. The extreme circles are a straight
line and and a circle, non-intersecting for a ring cyelide (Fig. 11a), intersecting
otherwise (Fig. 11b). The centers of symmetry for such a pair is defined to be the points
of intersection of the circle and a perpendicular through its center to the straight line.
The cylinder and cone can also be obtained if the extreme circles are a pair of parallel

and intersecting lines respectively.

[Fig. 11 here]

Offset surfaces are known to be important in CAGD. The cyclides have the
property that they are closed under offsetting. Recall from section 3 that parameter r is
directly related to the offset distance of a cyclide. But there is an exception to this rule
for one subform of the central cyclide namely, the horn cyclide. As mentioned, in this
subform there are two cresents, call them positive and negative cresents, which meet at
two pinch points on the ellipse. As r increases, the positive cresent increases while the
negative cresent decreases which when viewed in terms of offsets, implies a positive
offset of the positive cresent and a negative offset of the negative cresent. The reverse
happens when r is decreased. The reason for this phenomenon is evident since at the
pinch points of the ellipse the plane defined by the characteristic line D; crosses over
the cone apex and the parameter r begins to have an inverse effect. This inherent
problem can be handled by offsetting each cresent appropriately, i.e. by (4r) and (—r).

6. PROPERTIES OF THE CYCLIDE

We now summarize our findings with a short catalogue of the key properties of the
cyclide. While most properties mentioned below have been described in sections 2 and
3, the others can be derived from them. Most of these properties provide insights that
are helpful in understanding the cyclide in its entirety for applications in CAGD.

P1. The cyelide has three degrees of freedom namely, a and f, the focal lengths of its
anticonics, and r, the magnification of its lines of curvature. It is the only quartic

surface with circular lines of curvature.
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P2.

P3.

P4.

Ps.

Ps.

P7.

All forms of the cyclide lie between two tangent planes which meet them along two
circles. The section by planes of its anticonics always yield a pair of extreme circles

of the cyclide.

Fixing the anticonics yleld a one parameter family of confocal cyclides which can
further be classified as horn, ring or spindle. Changing parameters of the
anticonics leads to varying shapes within a primary category. Changing the
anticonics generates cyclides of different primary categories.

Given a cyclide [f,a,r] of 2 confocal system, its longitudinal characteristic Dy is
parallel to the Z-axis and intersects the X-axis at a point P distant (-Lr) from the

T

origin. Its latifudinal characteristic D is parallel to the Y-axis and intersects the
X-axis at a point @ distant (—}z-r) from the origin. The characteristics Dy and Dg
are polars of each other with respect to a sphere of radius r centered at the origin.
For a cyclide[f,a,r], the plane U containing a longitudinal circle of curvature

corresponding to point P on the ellipse makes angle 8, with the XZ plane where o

is the eccentric angle of P and,

Similarly the plane V containing a latitudinal circle of curvature corresponding to
point ¢ on the hyperbola makes angle &, with the XY plane where # is the
auxiliary angle of @ and

tanf, = —Lsinﬂ

a2__f2

Other than the planes of the anticonics, U/ and V are planes which yield a pair of

circles when intersected with a cyclide.
Cyclides admit a rational parametrization [Martin et al. 1988).

The offset of a cyclide| f,a,r] by a distance d along its surface normals, is the
cyclide [f,a,r4d).}

T Offset distance adjusted for a horn eyclide.
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P8. A cyclide can be defined either in terms of variable spheres, or in terms of variable
circles. With each circle of curvature of the cyclide [ fya,r] are associated two
radii namely, the radius of the sphere which contains the circle, and, the radius of
the cirele itself.

P9. Cyclides can always be obtained by inversion in a cone or cylinder, with respect to
a sphere. Cyclides are anallagmatic surfaces, i.e. inverses of themselves [Woods
1922).

7. CONCLUSIONS

Cyclides are being revived by their use in CAGD. They have been proposed for use
as surface patches and blending surfaces. Further applications of the cyelides in CAGD
can arise from knowledge about their overall geometry. We believe that the exercise of
visualizing cyclides by spheres, envelopes and conics (i.e. in the classical framework) is
useful in this context. This geometric approach, as opposed to a purely analytic or
algebraic approach, yields intuitive insights on comstructive and non-constructive
properties of cyclides. The constructive properties led to simple algorithms for
synthesizing cyclides and to a precise classification of the morphology of cyclides.
Several non-constructive properties were also detailed. For example, offsets of cyclides
were easily shown to be cyclides and the radius variation in a cyclide was also

characterized,
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Appendix

The computer program used for generating the cyclides shown in the color plates is |
based on a hybrid scheme. For the central cyclides with input parameters a,f,r the
extreme circles on the plane of symmtery of the ellipse are determined. They have radi :
(a+r) and (a—r) and are centered at (—f,0,0) and (f ,0,0) respectively. Similarly, the |
extreme circles on the plane of symmetry of the hyperbola have radii (f —r) and (f +r),
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and are centered at (a,0,0) and (—a,0,0) respectively. The characteristic lines are also

a
The latitudinal and longitudinal lines of curvature are now drawn using Cayley's
definition 8. The process is simpler for the revolute cyclides since f=0 and the

determined (i.e. D), on the zz plane is at z=£ and D, on the zy plane is at z=£].
f

latitudinal curvature lines are contained in parallel planes z=¢, where —r <¢ <+r.

For parabolic cyclides the approach is the same, but differs sornewhat in detail,
since one of the extreme circles in each plane of symmetry is now a line. Hence there is
only one pair of antiparallel points, one of them on a circle, the other on a line. Note

that the parabolic cyclide is a cubic surface.

-923.



F2

F1 F3

Fig. 1a

F2

F1 F3

Fig. 1b




T
@
N
o

)N

T
Mo

11

6‘@

4

()

P



"Biy
€

=/







g "bi4




Latitudinal
curvature line — \

\N

Fig. 6



Fig. 7a

Fig. 7b



©c T “Cosvy

Y E o

Reference

(-f cos ()
Circl [ =

Vs o
) {a cos )

Fig. 8a






6 'bi4




P2

p/4

P

Pl

Fig.

.

U w.. h //, r ..-.ﬁuo-.

P2



i S Extreme

Circle

Extreme Circle

Center of
Symmetry

Fig. 11a

Extreme

Circle

%

Extreme Circle

Center of
Symmetry

Fig 11b



2, r=1

Plate Ia
Central Cyclide (Horn)

3 f

a=



0
oo
2
s
=
mnw__
~ O™
)
5
8 o
O



r=23

=1,

Plate Ic
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Plate ITb
Cyclide of Revolution (Spindie)
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Plate I1la
Parabolic Cyclide (Horn/Spindle)
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