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We consider a modified Burridge-Knopoff model with a view to understand results of acoustic

emission (AE) relevant to earthquakes by adding a dissipative term which mimics bursts of acous-

tic signals. Interestingly, we find a precursor effect in the cumulative energy dissipated which

allows identification of a large slip event. Further, the AE activity for several large slip events

follows a universal stretched exponential behavior with corrections in terms of time-to-failure.

We find that many features of the statistics of AE signals such as their amplitudes, durations and

the intervals between successive AE bursts obey power laws consistent with recent experimental

results. Large magnitude events have different power law from that of the small ones, the latter

being sensitive to the pulling speed.
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1. Introduction

Causes of failure of materials and the possibility of predicting them is of interest in science and
engineering (electrical breakdown, fracture of laboratory samples to engineering structures, etc).
This is particularly important in seismology due to the enormous damage earthquakes can cause.
Indeed, predicting earthquakes has been of interest to geophysics for a long time. At a practical
level, this amounts to identifying useful precursors at a statistically significant level. The absence of
useful precursors could possibly arise due to the inherent limitations set by measurement processes
[1]. Even so, there has been records of individual earthquakes where precursor effects have been
reported [1]. Some insight into the dynamics of earthquakes has been possible by mapping the
problem to fracture processes. In the case of fracture, the nucleation and propagation of cracks
culminates in the failure of the material. In such situations, the nondestructive nature of acoustic
emission (AE) is a very convenient tool for studying the process as the emitted signals are sensitive
to the microstructural changes taking place inside the system [2, 3]. Such studies have shown that it
is possible to follow the nucleation and growth of fracture by imaging the fracture process (through
an inversion process of arrival times) [4]. In addition, the statistics of the AE signals exhibit a
power law [2, 4, 5] similar to the Gutenberg-Richters law for the magnitudes of earthquakes. One
aim of these studies has been to look for precursor effects [1, 6]. Thus, most laboratory studies on
AE relevant to earthquake dynamics are on rock samples subjected slip with appropriate geometry
[3].

Apart from the power laws observed in AE signals during fracture, acoustic activity of un-
usually large number of situations exhibit power laws in systems as varied as volcanic activity [7],
microfracturing process [8, 9], collective dislocation motion [10] and martensitic transformation
[11] to name a few. Though the general mechanism attributed to AE is the release of stored strain
energy, the details are system specific. Thus, the ubiquity of the power law statistics of AE signals
suggests that the details of the underlying processes are irrelevant. One framework which uni-
fies such varied situations is that of the self-organized criticality (SOC) [12]. This approach has
been successful in explaining the statistical self similarity of the seismic process reflected in the
Gutenberg-Richter’s law for earthquake magnitudes [13], as also the power laws in other systems
[7, 8, 9, 10, 11, 14]. However, given that earth is in a SOC state, at a conceptual level, doubts
have been raised about the possibility of predicting an earthquake. A recent debate on this subject
concluded that deterministic prediction of individual earthquakes is unrealistic [15]. Clearly, the
lack of predictability is applicable to all power law systems. However, in the general context of
failure, time-to-failure models have been used for the prediction of failure [16]. These models are
thought to be applicable to earthquake like situations also. There are some theoretical efforts to
look for precursor effects before the onset of large avalanches in SOC type models as well [17, 18].

The power law statistics of the AE signals (on rock samples) is believed to result from slip
events. However, there are no phenomenological models that mimic AE bursts. One other interest-
ing feature of earthquake magnitudes is the change in the power law exponent for small and large
magnitudes [19, 20]. Laboratory studies on AE signals on rock samples also appear to indicate
such a change [21]. Finally, recent studies on AE also show that the exponent value is sensitive
to the deformation rate [22]. To the best of our knowledge, there has been no explanation of these
observations. Here, we introduce an additional dissipative term into the Burridge-Knopoff (BK)
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Figure 1: (a) The Burridge-Knopoff spring block model. (b)Friction laws: The coulomb friction law at
zero velocity beyond which a smooth velocity weakening friction law (solid line). Dashed curve describes a
creep branch with a similar velocity-weakening behavior.

model which captures the main features of AE signals. This also helps us to identify a possible
precursory effect.

It is known that slip events result due to deformation and /or breaking of asperities resulting
in an accelerated motion of the local areas of slip. Since AE is due to the release of the built-in
strain energy as the system surmounts the threshold, we consider this accelerated motion during a
local slip as responsible for acoustic emission. Such a rapid movement prevents the system from
attaining a quasi-static equilibrium. This also implies that there are dissipative forces that resist this
abrupt motion. We introduce the Rayleigh dissipation functional which depends on the gradient of
the local strain rate [23] to account for the dissipation arising from the rapidly moving blocks in
the BK model for earthquakes [24, 25]. Indeed, such a dissipative term has been successful in
explaining the power law statistics of the AE signals during martensitic transformation [14].

2. Model

The Burridge-Knopoff model for earthquakes [24] and its variants have been studied in detail
by many authors [25]. It consists of a chain of blocks of mass m coupled to each other by coil
springs of strength kc and attached to a fixed surface by leaf springs of strength kp (Fig. 1a). The
blocks are in contact with a rough surface moving at constant speed V . The velocity-dependent
friction force ‘ f ’ operates between the blocks and the surface. We use two forms of frictional force
schematically shown by the solid and dashed curves shown in Fig. 1b.

Here, we introduce an dissipation associated with the rapid slip events represented by the
Rayleigh dissipative functional [23] R = γc

2

∫
( ∂ u̇(x)

∂x )2dx. Then, in the notation of Ref [25], the
equations of motion can be written as

Ü j = l2(U j+1 −2U j +U j−1)−U j −φ(2αν +2αU̇ j)+ γc(U̇ j+1 −2U̇ j +U̇ j−1), (2.1)

where U j is the dimensionless displacement of the jth block, ν is the dimensionless pulling ve-
locity, the ratio of the slipping time to the loading time, l2=kc/kp represent the stiffness ratio and
the parameter describing the rate of velocity-weakening in the friction is α , The last term arises
from R(t), the additional dissipative term introduced to mimic the AE bursts and γc is the scaled
dissipation coefficient. ( The over dot refers to differentiation with respect to dimensionless time
variable.)
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This model without the last term has been extensively studied [24, 25]. Starting from random
initial conditions, slip events ranging from one-block event to those extending over the entire fault
(‘large events’, occurring roughly over one loading period of τL ∼ 2/ν ) are seen in the steady state.
These earthquake-like events mimic the empirical Gutenberg-Richter law.

3. Results

Simulations have been carried out using fourth-order Runge-Kutta method with open boundary
condition. Random initial conditions are imposed. After discarding the initial transients, long data
sets are recorded when the system has reached a stationary state. The parameters used here are
l = 10,α = 2.5,N = 100 for two sets of values of ν = 0.01 and 0.001 for range of values of γc. The
calculations have been carried out for both the frictional laws shown in Fig. 1b. In the creep case,
the creep branch ends at a value of ν ∼ 10−7 beyond which the velocity weakening law operates.
The modified BK model produces the same statistics of slip events as that without this term as long
as the value of γc is small, typically γc < 0.5. The results presented here are for γc = 0.02.
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Figure 2: (a) R(t) as a function of t. (b) logEae as a function of time t (◦) along with the fit (solid line) for
the friction law with creep branch. Dashed line corresponds to the mean kinetic energy.

Since the rate of energy dissipated [23] due to local accelerating blocks is given by dEae/dt =

−2R(t), we calculate R(t) = (γc/2)∑ j(U̇ j −U̇ j−1)
2. We find that the energy dissipated occurs in

bursts which is similar to the acoustic emission signals. A plot of R(t) is shown in the Fig. 2a for
the case when the frictional law has a creep branch. A gradual increase in the activity of the energy
dissipated can be seen to accelerate just prior to the occurrence of a ’large’ slip event. This feature
is seen for all slip events of observable magnitude which we refer as large. This suggests that R(t)
can be used as a precursor for the onset of a slip event observed in experiments on rock samples
[6]. As the energy dissipated is noisy, a better quantity for the analysis is the cumulative energy
dissipated Eae(t) ( ∝

∫ t
0 R(t ′)dt ′). This grows in a stepped manner and as we approach a slip event,

Eae, increases rapidly with the steps becoming increasingly visible. A plot of logEae is shown in
Fig. 2b along with a fit having the functional form (continuous line),

logEae(t) = −a1t−α1 [1−a2|(t − tc)/tc|
−α2 ]. (3.1)

Here, the crucial parameter tc is the time of occurrence of the event and t is time measured from
some initial point after a slip event. The constants a1,a2,α1 and α2 are determined by a fit to the
data. It is clear that the fit is striking. Given a reasonable stretch of the data, the initial increasing
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Figure 3: A plot of logE−1
ae versus t. Inset shows the enlarged section at time t1 (−), t2 (−·) and t3 (solid

line). Data shown (·) is indistinguishable from the fit till t3.

trend in logEae is easily fitted to a stretched exponential, i.e., −a1t−α1 . The second term is intro-
duced to account for the observed rapid increase in the activity as we approach the time of failure.
As the mean kinetic energy is a good indicator of the failure time, we have shown this by a dashed
line. It is clear that the estimated tc agrees quite well with that of the mean kinetic energy.

A proper estimate of the warning time requires that the values of the four constants a1,a2,α1

and α2 do not change in time significantly. Indeed, we find that these constants change very little
given a data Eae(t) over a reasonable initial stretch of time. Only tc changes. Still, we are left with
the problem of obtaining a best estimate of tc. This is done as follows. Consider the plot of E−1

ae (t)
shown in Fig. 3. Given the data till t = t1 ( the first arrow shown in Fig. 3 ), we find that the
four parameters are already well determined (within a small error bar). A fit to Eq. (2) also gives
t(1)
c at t1. One such curve is shown by a dashed line with the arrow shown at t1. The value of t(1)

c

is only an estimate based on the data till t1. However, as time progresses, the data accumulated
later usually deviates from the predicted curve beyond t1 if t(1)

c is inaccurate. This is case for the
fit till t1 and t2 for instance shown in Fig. 3. If on the other hand, the deviation of the predicted
curve from the accumulated data decreases with passage of time within the error bar, then, the
value of tc is likely to be accurate. Indeed, the extrapolated (continuous) curve shown in Fig. 3
corresponding to data fit till t = t3 with the corresponding predicted t (3)

c is seen to follow the data
very well. (Usually, this is followed by a sudden decrease in E−1

ae which is again an indication of a
possible large event, but the general trend soon follows the extrapolated curve.) Then, one can take
t3 to be the warning time of the impending large event. From the data shown in Fig. 3, the actual
tc is 110.4 where as the predicted tc is 111.6. Thus, the percentage error in the prediction of the
onset of the a large event ∼ 1%. The power law nature of Eae also suggests that the approach to
different events is universal. We find that the data corresponding to different events collapses into
a single curve given by a−1

1 log[Eae(0)/Eae(τ)] = τ−α1 [1−a2|(τ −1)−α2 ]+a−1
1 logEae(0) in terms

of τ = t/tc. This is shown in Fig. 4 along with the fit for three different events.

For the Coulomb friction law, we find that R(t) is much more noisy. A plot of logEae for one
large event is shown in Fig. 5. Following the same procedure, we find that we can fix only a1
and α1 reasonably well given an initial stretch of data. However, the parameters a2 and α2 also
converge within some error bar which is more than that for the creep case. Although, the changes
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Figure 4: Collapsed data using a−1
1 log(E(0)/E(τ)) versus τ for three different events along with the fit

shown by (◦) for friction law with creep.
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Figure 5: logEae as a function of time t (◦) along with a fit (solid line) for the coulomb friction . Dashed
line indicates the mean kinetic energy. The inset shows the collapsed curve for three different events along
with a fit (◦).

in tc with t is more than the previous case, the tc is fixed the same way, but the error is larger than the
previous case. The data along with the fit (up to the point shown by arrow) is clearly seen to mimic
the rapid increase in logEae. The data collapse for several such curves (for a−1

1 log[Eae(0)/Eae(τ)]

) is also shown in the inset along with the fit. (The scatter in the collapsed data is reasonable except
for the initial part of the data.) However, we do find that this procedure does pose problems in a
few specific set of events for which approach to the large event is very noisy.

We now consider the statistics of the energy bursts. The distribution of the magnitudes of
R(t) shows a power law D(A) ∼ A−m, where D(A) is the number of events between A and A+dA.
Instead of a single power law anticipated, we find that the distribution shows two regions, one
for relatively smaller amplitudes and another for large values shown by two distinct plots in Fig.
6a. ( This is for the Coulomb frictional law for ν = 0.01. Similar results are obtained when the
frictional law has a creep branch.) The value of m for the small amplitudes region ( < 10−4) is
∼ 1.78, significantly smaller than that of large amplitudes which is ∼ 2.09. This qualitative feature
is consistent with the recent experimental results on rock samples [21]. Indeed, this is similar to
the well known observation in the case of seismic moments where a deviation from the power law
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Figure 6: (a)Distribution of amplitude of R(A), D(A) versus A. (♦) indicates small amplitudes and (o)
shows large amplitudes for ν = 0.01, (b) Distribution of time intervals of AE events and (c) D(A) versus A
for ν = 0.001, (•) corresponds to the small amplitudes and (o) that for large.

for lower magnitudes beyond a certain value ( > 7.0 on the Richter scale [19, 20]) is noted. Finally,
one other quantity of interest is the time interval between the events which we have calculated.
This is shown in Fig. 6b for ν = 0.01. There appears to single power law with and exponent 2.6.
However, there is considerable scatter in the mid region corresponding crossover in the power laws
from small to large amplitude region. For smaller pulling speeds, we see two different scaling
regimes as for the amplitude.

Recently Yabe et. al. [22] have noted that the exponent value in the small amplitude region
increases with decreasing deformation rate in contrast to the large amplitude region. In order to
check this, we have performed run for ν = 0.001 for which the data (for the Coulomb friction law
) is shown in Fig. 6c. While the exponent for small amplitude regimes is 1.91 higher than that for
ν = 0.01, the exponent for larger amplitudes is insensitive. This result can be physically explained
by analyzing the influence of the pulling velocity on slip events of varying sizes. We first note that
Rayleigh dissipation function is the gradient of local slipping rates. From the arguments presented
in Ref. [25], one knows that the velocity of one block event is proportional to ν . Further, as the
neighboring blocks are at rest, the number of such events are fewer in proportion to the pulling
speed, both of which are evident from Fig. 6a and Fig. 6c. When we consider the two block events,
it clear that the difference in the velocities of the two blocks being of similar magnitude contributes
very little and only edges contribute. In a similar way, it can be argued that for slip events of
finite size, the extent of the contribution to R(t) is decided by the ruggedness of the velocity profile
within the slipping region; it is lower if the velocity is smoother. The ruggedness of the velocity
profile, however, is itself decided by how much time the system gets to ’relax’. At lower pulling
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velocities, there is sufficient time for the blocks to relax compared to higher pulling velocities.
Thus, the velocity profile within slip event of certain magnitude tends to be much more smooth at
low ν compared to at higher higher ν as in the latter case it does not allow for full relaxation (to
attain near quasi-stationary state).

4. Discussions

In summary, within the scope of this model, we have shown that acoustic emission could
be used as a possible precursor for detecting an event during the process of failure. In the case
where the friction includes a creep branch, we find that the time of failure can be predicted quite
accurately. In the coulomb case, the energy dissipated is quite noisy. Even then, the predicted
failure time is quite reasonable. At the first sight, the predictability aspect appears to be surprising
considering the fact the statistics of the events exhibits a power law. However, the data collapse
for different events clearly suggests that the dynamics of approach to large events is itself universal
and scale invariant. This scale invariant form implies that all events of detectable magnitude is
describable by the same equation, the only limitation being the ability to detect. One limitation
of Eq. (2) is that the magnitude of the energy dissipated appears to bear no correlation with the
magnitude of the slip event as larger events often show higher R(t). For instance, even when the
ratio of the kinetic energies between two events is four orders smaller, the energy dissipated R(t)
in the two cases do not scale in proportion. For the same reason, the model is unable to predict the
magnitude of the event. We stress that this precursor effect is absent in the total kinetic energy or
other variables. We also expect these results to be applicable at the laboratory level in failure of
materials and structures. It is worth noting that the form of approach to failure is different from
that given by Huang et al [16]. Apart from this, the model also predicts that there are two exponent
values one for small amplitudes and another for large amplitudes consistent with experimental
results [21]. We also find that the exponent value corresponding to low amplitudes to be much
more sensitive to the pulling speed than that at large amplitudes. This dependence on the pulling
speed has been be traced to the form of R(t), namely, the gradient of the local strain rate. Finally,
our analysis shows that the exponent values of the bursts of acoustic energy is not the same as that
of the event size distribution (as used in Ref.[25]).
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