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Abstract

It should be possible to predict the fold of a protein into its native conformation, once we
are given the sequence of the constituent amino acids. This is known as the protein structure
prediction problem and is sometimes referred to as the problem of deciphering the second half
of the genetic code. While large proteins fold in nature in seconds, computational chemists
and biologists have found that folding proteins to their minimum energy conformations is a
challenging unsolved optimization problem. Computational complexity theory has been useful in
explaining, at least partially, this (Levinthal’s) paradox. The pedagogic cross-disciplinary survey
by Ngo, Marks and Karplus (Computational Complexity, Protein Structure Prediction and the
Levinthal Paradox, Birkhauser, Basel, 1994) provides an excellent starting point for non-biologists
to take a plunge into the problem of folding proteins. Since then, there has been remarkable
progress in the algorithmics of folding proteins on discrete lattice models, an account of which
is presented herein.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Proteins are among the most important biological molecules, and are responsible
for correct bodily functioning in all living organisms. Each protein has well-defined
functions, which range from building up DNA and RNA molecules to controlling
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Fig. 1. Backbone of a protein: amino acids connected by peptide bonds. R refers to a side chain

different parameters in living cells. It is amazing that all proteins are built of very
simple building blocks, known as amino acids. There are 20 different amino acids,
each of which consists of a central carbon atom—called the alpha carbon—bonded to
an amino group (NH;), a carboxyl group (COOH) and a side chain. The side chain
is different in each amino acid, and is solely responsible for the characteristics of the
amino acids like shape, size and polarity. The structure and properties of a protein in
turn depend on the these basic features of the constituent amino acids.

Amino acids are linked to each other by means of peptide bonds. They result in a
constrained backbone of the alpha carbons (see Fig. 1), with limited values for bond
angles, which can be derived by steric constraints (akin to configuration space diagrams
for collision-free motion of kinematic assemblies and robot arms).

Proteins fold into compact and very varied structures, but these are usually a com-
bination of some simple motifs called secondary structures. Two important types of
motifs are o helices and f§ sheets. The final protein structure can be viewed as being
built up of the secondary structures connected in specific ways.

Determining the structure of proteins is a very important problem. The three-
dimensional (3D) structure of a protein is believed to be a very important determinant
of the properties of the protein. This becomes crucial in drug design where the aim is
to obtain proteins with specific functionalities. The most remarkable discovery in this
area was made by Christian Anfinsen and his colleagues in the 1950s when they found
that many simple proteins had a unique native structure, which just seems to depend
on the sequence. This has been subsequently verified for a large number of proteins
and it is now believed that the native structure is a minimum energy configuration
(the Thermodynamic Hypothesis). This has led to an enormous interest in trying to
develop methods to predict the 3D structure from the sequence information via opti-
mization techniques. Determining a protein sequence has become feasible with current
technology, but determining the exact 3D structure is still a very slow and expensive
process.

Proteins usually fold into their native structure very fast, though the conformation
space is very large. The way nature figures out the right folding pathway has remained
a mystery. The view that an intermediate conformation evolves via a sequence of
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somewhat random modifications leads to a paradox, called Levinthal’s paradox. 1t is
very likely that a better understanding of the nature of dominant forces would lead to
better success in predicting the 3D structure.

The difficulty of working with the detailed atomic level model has motivated biolo-
gists to work on simple discrete models. These problems are essentially combinatorial
optimization problems, and one purpose of this paper is to survey recent results.

Section 2 describes the basic lattice model and the experimental results of Dill et al.
[11]. Section 3 discusses various aspects of the computational intractability of folding
proteins. Section 4 gives an overview of the various approximation algorithms known
for this problem. Section 6 gives a brief description of the work by Clote [8] that
tries to explain the Levinthal paradox by means of Markov chain theory. We conclude
in Section 7 with a discussion of the value of existing results, and interesting open
questions.

2. Discrete models for protein folding

A very general model for protein folding could be derived by a detailed modeling
of all possible interactions. This would be of little value, as the conformation space
would be very large, and finding a minimum energy conformation would be quite
hopeless. This has driven biologists to design simpler discrete models for studying
this problem, which should be relatively simpler to analyze, and could suggest useful
properties. Apart from searching for the minimum energy native structure, biologists
are also interested in the folding pathway, by which the native state is reached, and
an explanation to Levinthal’s paradox, mentioned in the previous section

One way to discretize this problem is to restrict attention to embeddings on a lattice.
The energy function also has to be defined appropriately in this new setting. Broadly,
three discrete models have been proposed for protein folding [23]. These are described
in the next three sub.section We follow the conventions and notations of [23] in the next
three sub.section Then we describe a very simple model known as the Hydrophobic—
Hydrophilic model and survey the known empirical results about it.

It is hard to objectively compare these models. The success of any model will
probably depend on how much it can be analyzed practically.

2.1. The Protein Structure Prediction (PSP) model

This is a very general non-discrete model, and we mention it only for completeness.
The model was defined formally by Ngo and Marks [22], who also give an NP hardness
result for this model.

In this model, the protein is described by the complete list of the atoms in the
molecules, their connectivities, bond lengths and angles and force constants between
all pairs of atoms. The energy of a conformation is a non-convex function obtained by
summing the contributions of different kinds of interactions: U = >, Kf™(l, — 19)* +

50, K0, — @) + 30, Ko (1 — coslm(dy — ¢0)]) + Sr , KR £y /1),
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As one would suspect, finding a conformation that minimizes this function is NP
hard [22]. The hardness is shown by a reduction from the Partition problem. No ap-
proximation algorithms are known for this problem.

2.2. The Lattice Polymer Embedding (LPE) model

This model was formulated by Unger and Moult [30]. The protein is modeled as a
chain of beads, S=sj,...,s,. The space is the collection of embeddings in the 3D cubic
lattice. An embedding means that each bead must be placed at some lattice site, and
successive beads must be adjacent on the lattice. In addition, the embedding must be
non-self-intersecting. A coefficient c(s;,s;), known as the affinity coefficient, is defined
for each pair s;,5;. And finally, we are given a function f:[S] x [S] x [S] — R.

The energy of any conformation is defined as U =}, _; c(si,s;) f(|x(s:) — x(s;)),
|¥(si) — w(s;)|, |z(s;) — z(s;)|), where (x(s;), ¥(s;),z(s;)) is the position of bead s; in
the embedding. The objective is to find the conformation that minimizes this energy.
Unger and Moult show that this problem is NP hard, by a reduction from the Optimal
Linear Arrangement for this problem.

2.3. The Charged Graph Embedding (CGE) model

This model also describes the protein as a sequence S =sj,...s, of beads. A charge
C(s;)e{—1,0,1} is associated with each s;. For each pair s;,s;, the contribution
Ul(si,s;) to the energy is C(s;)C(s;)/d(si,s;) if d(si,s;) < dmax, and otherwise it is
0. dmax is defined to be a distance cutoff, beyond which interactions are not assumed
to exist. The function d(s;,s;) is the euclidean distance between (x(s;), y(s;),z(s;)) and
(x(s;), ¥(s;),2(s;)). One important condition is that bonds are allowed to cross, as long
as there is at most one bead per site. Fraenkel [12] showed that this problem is also
NP hard by reduction from 3D matching.

An interesting feature of the CGE model is that it incorporates charges on the
residues. On the other hand the bonds permitted are not realistic.

2.4. The Hydrophobic—Hydrophilic model

We now consider a popular model of protein folding called the Hydrophobic—
Hydrophilic model, introduced by Dill [10] and studied extensively in [13,18-20,30—
32]. This is the simplest possible abstraction of the folding problem, which is still
non-trivial and retains the hardness features of the original problem. The success of
Dill et al. in explaining several different phenomena regarding folding pathways and the
space of native conformations has made the study of discrete models more respectable
with traditional biologists.

The model starts with classifying the twenty amino acids as H (hydrophobic or
non-polar) or P (hydrophilic or polar). This classification is known from experimental
results. A protein is viewed as a sequence S =sy,...,s,, with s; € {H, P},Vi. Allowed
conformations are non-self-intersecting embeddings on a lattice, usually taken to be
cartesian. The energy of any folding is inversely proportional to the number of pairs
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of H’s that are neighbors in the folding. Therefore, minimizing the energy is equivalent
to maximizing the number of contacts, or the H—H pairs that become adjacent. Since
the number of H—H pairs that occur in successive positions in S is fixed, the energy
depends only on the number of non-consecutive H—H pairs that become adjacent, also
called topological neighbors.

Natural generalizations of this model have also been considered. These involve either
changing the underlying lattice, or changing the underlying alphabet and the energy
function.

2.4.1. Theoretical results

This simple model was shown to be NP complete by Berger and Leighton [4] for
3D and by Crescenzi et al. [9] for 2D, which are briefly discussed in Section 3. Even
before hardness results were known, Hart and Istrail [14] gave a simple approximation
algorithm, which is described in Section 4.

2.4.2. Experimental results

A lot of empirical work has been done on this model. Dill et al. [11] have extensively
studied the properties of this model by actual enumeration of all conformations for
small sequences. Unger and Moult [31,32] used genetic algorithms to obtain compact
foldings of fairly long sequences, but could not give any guaranteed bounds on their
algorithms.

It is interesting to look at the empirical results of Dill et al. [11] and the original
motivations for studying this model. There have been two divergent views about the
dominant forces responsible for protein folding. The first view held that the folding
process is dominated by local interactions, with hydrogen bonding being primarily
responsible, which explained the formation of secondary structures like o helices and
p sheets satisfactorily. The second view, which has only recently gained support, is
that non-local interactions are the primary determinants of the folding process. As
mentioned in [11], Kauzmann argued, way back in the 1950s, that a strong force is
the tendency of non-polar amino acids to form hydrophobic cores.

2.5. The value of discrete models

Analyzing discrete models for protein folding are very interesting and challenging
questions for computer scientists, but may be unsatisfactory for traditional biologists.
It is therefore important to understand the pros and cons of studying discrete models.

Since real experiments are slow and expensive, biologists have begun to rely on
computer simulations to understand protein folding. The complete biological model is
too complex to simulate, and therefore lots of researchers have started trying to use
results from simulations on simple discrete models to deduce general properties of the
folding process.

There are certainly many shortcomings in these simple models:

(1) The resolution of the original problem is lost. Bond angles are in reality not right
angles, but lie in some other allowed regions (as in, e.g. the Ramachandran plot).
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(2) Details of protein structure, bond energies and charges cannot be represented ac-
curately in such models.

(3) Bond lengths are not captured well enough.

In spite of these limitations, discrete lattice models have been studied for their many

virtues:

(1) Lattice models allow simulations of a large number of conformational changes.
Detailed atomic models would not be able to explore more than small changes
that occur over very small timescales.

(2) Simulation of atomic models involve many parameters and approximations, making
their validity just as doubtful as for the simple models. The lattice models can be
checked for specific phenomena and also allow almost exhaustive enumeration for
small sequences. This is useful in deducing statistical properties of conformations.

See [11] for a wealth of predictions based on simulations on this model.

3. NP hardness results

We survey the known hardness results about various lattice models of protein folding
in this section, and their implications for designing good algorithms. The proofs of NP
hardness for the various models are quite involved and we only sketch the proof here.

Informally, problems whose solutions can be verified in polynomial time, are said to
be in the class NP (refer to [13] for details). An NP-complete problem is one that is in
NP and is at least as hard as any other problem in NP. Some well-known examples are
Travelling Salesman Problem and satisfiability. No efficient algorithm has been found
so far for any NP complete problem, and it is widely believed that it might not even
exist. The NP hardness of protein folding in various models implies that it might be
hopeless to look for efficient algorithms to find the exact optimum in general.

It is usually very simple to show that a given problem is in NP. Showing the
other part, i.e., it is as hard as any other problem in NP involves proving that an
algorithm for the given problem can be used to solve some other known NP complete
problem.

Worst case hardness: 1t is important to keep in mind that the notion of NP com-
pleteness is a statement about the worst case hardness of a problem. It is, therefore,
still possible that the protein folding problem is not hard on the average, an issue
that deserves attention. It is also possible that additional constraints about the prob-
lem may make it tractable. Also, since solving the folding problem exactly is hard, it
immediately raises the question of approximation, discussed in the next .section

Folding with larger alphabet size: The hardness results for the HP model were
preceded by results for slightly more general models, which used larger alphabet sizes.
The first result about hardness of string folding problems was by Paterson and Przytycka
[26], where they use a score function that counts the number of times identical letters
become adjacent in the lattice. One shortcoming of their reduction was that they used
an unbounded alphabet size, which came from a reduction from Satisfiability. This was
remedied in a result by Nayak et al. [24], where they use bounded alphabet size, and
also show an approximation hardness result. This means that getting arbitrarily good
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approximations is also unlikely. Still, their alphabet size was larger than a realistic size.
Atkins and Hart [2] gave a hardness reduction for a smaller alphabet size. Hart and
Istrail [15] introduced the notion of robustness of hardness for protein folding. They
showed that by parameterizing the underlying lattice, one could show hardness for the
energy function of the LPE model, for any reasonable lattice.

For the HP model, Crescenzi et al. [9] proved NP hardness for the 2D model. The
hardness for the 3D model was shown by Berger and Leighton [4], and this is briefly
discussed in the next section.

3.1. The hardness of the 3D-HP model

We discuss here the hardness of the 3D-HP model, proved by Berger and Leighton
[4]. The reduction will be sketched informally and most of the details of the proof will
be omitted here. A subproblem in the reduction is a variant of a classical 3D VLSI
wire routing problem. We shall highlight the main points in this interesting connection,
as this might be a useful tool in other string folding problems.

The starting point for the reduction of Berger and Leighton is a seemingly simpler
version of the folding problem, which they call the Perfect HP String-Fold problem:
Given a sequence containing n® Hs, is there a folding in which all the Hs can be
packed into a n X n X n cube? By a simple argument, it can be shown that if a
sequence has n® H’s, the only way to get a score of 3n%(n — 1) is to pack all the H’s
into a cube, and this implies that the Perfect HP String-Fold problem is a special case
of the HP folding problem.

The NP-hardness of the Perfect HP String-Fold problem is shown by reduction from
a variant of the Bin Packing. The input to this problem consists of a set U of items,
with s(u) denoting the size of an item u <€ U, and integers B and K. Each s(u) is
even, and the items satisfy ) s(u) = BK. The objective is to decide whether U
can be partitioned into sets Uj,...,Ux such that the sum of the items in each U;
equals B.

The Reduction: We are given an instance, %, of Bin Packing, as described above.
The reduction constructs an instance Sy of the folding problem with the following

property.

Theorem 1 (from Berger and Leighton [4]). The sequence Sy can be folded with a
score of n® if and only if B has a solution.

The instance S = Sy is now described here. The sequence has many parts, whose
functionality is described informally here. The items in the bin packing problem are
encoded as the suffix of the string S. While describing S, we will also describe the
folding of S that packs all H’s into a cube, assuming that # has a solution. This will
also be a proof that if # has a solution, S can be folded with a score of n3. The
following observation is needed in the construction:

Observation 1. Suppose S can be folded so that all the H’s can be packed into a
cube. Then, a substring of the form (PHHP)* can be mapped to a connected path
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Fig. 2. The reduction of Berger and Leighton [4]: (a) The edges of the cube being covered from the starting
point to the ending point. (b) The snake-like packing on each face. (¢) Formation of bins on the front face.

on the surface of the cube and a substring of the form (PHP)* can be mapped to a
path along the edges of the cube.

The prefix of S can be functionally broken down into four parts.

(1) The first part has the form (PHP)”~'* and it forms a path (from the above obser-
vation) that goes through all the corners and nine of the 12 edges
(Fig. 2(a)). The points in the cube have coordinates (i,/,k),0 <i,jk <n— 1.
The path starts at (n —2,n — 1,n — 1) and ends at (n — 2,0,n — 1), as shown in
the figure.

(2) The second part of the prefix is designed to cover five of the six faces of the
cube, starting from the back face and leaving out the front face and has the
form (PHHP)"=2'2(PHPY'~2P*(PHHP)"~»"2PT)3(PHHP)"~2"/2=1_ Each of
the five faces is covered by the substring (PHHP)"=2)"/2 which is possible by
the observation above. After this prefix of S has folded, all the faces of the cube,
except the front face, are covered by H’s. The packing on each face is done in a
snake-like fashion (as in Fig. 2(b)).

(3) The third part is H"~2+2¢, where o is a sequence of Ps, long enough to ensure
connectedness. This substring winds through the interior in a snake-like pattern
filling it up, and ends at (n — 1,n — 1 — g, —2), where ¢ = 2max(K, B'/3). At this
point, only the front face is uncovered.

(4) The final part of the prefix sets up ¢ bins on the front face and has the form
((PHP)?(PHHP)"~2/2(PHP)*¢*! P*(PHHP)"~2/2(PHP)?P?7) 3. This substring is
first embedded on the front face to create the walls of ¢ bins, as shown in Fig.
2(c). The string f§ is designed to first fill ¢ — K bins completely, and fill all but B
points in each of the remaining K bins.
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The suffix is of the form IT,cyP"(PHHP) )2, where c is some large constant, cho-
sen by the considerations described below (II denotes a concatenation of strings). So
this part encodes the sizes of the items in the lengths of the blocks of (PHHP)’s. For
the region corresponding to bin Uj;, the goal is to pack the strings corresponding to
the items packed in bin U;. These strings can be placed in any order, but must be
packed contiguously in a snake-like winding manner. The real difficulty is to ensure
that connect the substrings (PHHP )™ with the sequence of P’s between them. This
corresponds to a VLSI wire routing problem where a set of non-intersecting substrings
in 2D have to be connected by wires in the third dimension, with the additional con-
straint that the connecting wires have the same length. Berger and Leighton construct a
nice gadget (which they call a crossbar switch) which takes in inputs at points (i, j, —4),
and produces outputs at k = —10r + 2. Within the switch, the inputs can be connected
to any permutation of outputs, using vertex disjoint paths. The permutation is chosen
so that item strings which are subsequent in S become adjacent at the output level.

For the converse of the proof, it can be shown that a solution to the Perfect Folding
problem in which all the H’s are packed into a cube must have a bin like structure,
because of the sequence constraints. Refer to [4] for the complete details.

4. Approximation algorithms

Since solving the protein folding problem exactly is NP-hard in all the models dis-
cussed earlier, it is natural to look for an approximate solution, i.e., a folding whose
energy is only slightly higher than that of the optimum. An o factor approximate
solution is defined as a folding whose energy is at most aEopr, where Egpr is the
minimum energy over all foldings, with o < 1. We are interested in polynomial time
approximation algorithms that produce such a solution. Unfortunately, very few signif-
icant approximation algorithms known, which is probably an indicator of the hardness
of this problem. All the current algorithms are for variants of the HP model. The heart
of these approximation algorithms involves good folding rules. These are compact
paradigms for folding, which result in constant factor approximations.

For the HP model, an « approximation corresponds to obtaining a folding in which
the number of H—H contacts is at least an « fraction of that in the optimal, since
the energy is inversely proportional to the number of H—H contacts. The first such
approximation algorithm was designed by Hart and Istrail [14], who obtained approx-
imation factors of % and % for the 2D and 3D HP models, respectively. We give an
overview of their algorithm in Section 4.1. We also discuss a recent improvement for
2D by Newman [21]. Section 4.2 describes results known for the HP model in other
lattices and under more generalized notions of hydrophobicity. Finally, in Section 4.3,
we discuss the relevance of such results.

4.1. The Hart-Istrail algorithms

We now discuss the algorithm due to Hart and Istrail [14]. The input to the algorithm
is a sequence S=s ...s,, where s; € {H, P},Vi. The score of a folding is the number of
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non-consecutive Hs that become adjacent in the folding. The goal is to find a folding
of S in the cartesian lattice which maximizes the score.

The starting point of this algorithm is the important observation that s; and s; can be
adjacent in any folding if and only if |i — j| is odd, as a consequence of the cartesian
lattice. In order to simplify this discussion, let us assume that s; =s, = P. Let us call
any s; = H to be odd if j is odd and even otherwise. Clearly, an odd H can have only
an even H as a topological neighbor. For a subsequence s of S, define Ny(s) and Ne(s)
to be the number of odd H’s and even H’s in s, respectively. Also, let N, = Ny(S)
and N, = N(S). Let N =N, + N, be the total number of H’s in S.

An upper bound: Let N, and N, be the number of odd and even H’s, respectively.
In a d-dimensional cartesian lattice, the degree of any lattice vertex is 2d. Since each
H has two connected neighbors (by our assumption above), it can have at most 2d — 2
topological neighbors. As a result, the score of any folding (including the optimum
fold, in particular) is at most M = (2d — 2) min(N,, N ).

Notice that we do not know the optimum score. We shall prove that the algorithm
achieves a factor of o by showing that it has a score of at least oM.

We need the following important combinatorial fact from [14]:

Lemma 1. There is an index i (called the folding point) such that either Nyo(Sy) = N,/2,
Ne(S) = Ne/2 or No(Sy) = No/2,No(S2) = No/2, where Sy is the subsequence sy,...,s;_;
and S, is the subsequence s;,...,s,.

Without loss of generality, assume that the first condition of the lemma holds.

4.1.1. The algorithm in 2D

For the 2D lattice, the upper bound is M =2 min(N,, N, ). The algorithm produces a
folding with score at least M/2, which implies an approximation factor of %.

The basic idea of this algorithm, and all related subsequent work is to design folding
rules, which result in a careful placement of the H’s. Let the folding point i be as
defined in Lemma 1. Also, S;,S; are as defined in the lemma. The folding rule in the
algorithm arranges all the odd H’s in S; (and the even H’s in S,) at regular intervals
on a straight line, called its face, in the lattice. This allows each odd H in S; to
become adjacent to an even H in S,, resulting in a score of N,(S)) = M/2.

The folding rule is described by the following algorithm. Order the even H’s in S,
from s; to s, and the odd H’s in S} from s;_; to s1. Let s/(1),57(2),... be the successive
odd H’s in S; and sy1),S402),--- be the successive even H’s in 5.
Fig. 3(a) shows the folding point and the labeled odd and even H’s for an example. The
subsequence s (1), ...,Sy1) is arranged as in Fig. 3(b), so that sy(1),s,1) are adjacent,
and the subsequence between them is above both of them in the lattice. Now, assume
that the first j — 1 odd H’s in S; and first j — 1 even H’s in S, have been arranged.
The subsequences §y7(j—1)4+1,--.,87(;) and Sgj—1)+1,...,54) are now arranged as in
Fig. 3(c). This ensures that s(;_1),5r(;j—1)+1,51(;) are in the same vertical face, as are
Sg(j—1)»Sg(j—1)+1>S¢(j)- This construction is done repeatedly for j=2,... No(S1)=Nc(S2).
Fig. 3(d) shows the final folding for the sample sequence.
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Fig. 3. (a) Sequence PPHPHHPPHHPHHPHH. Odd H’s are shown as dark circles and even H’s as dark
squares and P’s as light circles. The odd and even H’s to participate in contacts are labeled. (b),(c) Inter-
mediate folding steps. (d) Final fold.

This folding has the nice property that for each j, s;) and sy, are adjacent, and
contribute 1 to the total score. As a result, the total score of the resulting folding is
No(81) = Ne(S$2).

4.1.2. Folding in 3D

The upper bound in 3D is M = 4 min(N,,N.). The algorithm ensures that at least
half of these H’s have three contacts, giving a total score of 3 min(N,,N.)/2, which
implies an approximation factor of %

A crucial structural property of the 2D folding is that all the adjacent H’s lie on a
face, which is a straight line. This immediately suggests the following heuristic for 3D.
Partition the whole sequence into smaller parts. Each part is folded in a separate x—y
plane, and these are imagined to be stacked on top of each other in the z direction. The
faces along which each part is folded are perfectly aligned for each layer, which gives
each H on any face (except the top-most and the bottom-most parts) three contacts—
one from its own plane, one above and one below. One has to ensure that the faces
have same lengths in each plane, and also that the parity of faces in adjacent layers
is different. This means that if a layer has the face containing odd H’s on the left and
even H’s on the right, then the layers immediately before and after this layer must
place even H’s on the left and odd H’s on the right. As Hart and Istrail [14] shows,
this is easy to achieve.
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4.1.3. Improving the 2D algorithm

We briefly discuss the recent improvement by Newman [21] in 2D, which achieves
a factor of % The algorithm uses the same upper bound M, and is basically a variant
of the folding rule of Hart and Istrail [14].

The motivation for the improvement comes from the following observation. Con-
sider the algorithm described in Section 4.1.1. Suppose index j is such that |f(j) —
fG+ D] =|g(j) —g(j + 1) =2. In this case, one could consider the folding of
S £(j)»S f(j+1)sSg(j)» Sg(j+1) as in Fig. 4(a), which leads to three H—H contacts between
these four elements. If the distances between s/(;y,5(j+1) or between sy, 84(j+1) are
more than two, such an arrangement is possible only sometimes. If | f(j)— f(j+1)| > 2
and |g(j) — g(j + 1)| =2, the folding of Fig. 4(b) is done, involving s (), 8 r(j+1>Sg())
alone, while if |f(j)— f(j+ 1) =2,]9(j)— g(j + 1)| > 2, the folding of Fig. 4(c) is
done, involving s (), S¢(;),Sq(j+1) alone. The algorithm is basically again picking the
odd and even H’s in pairs, and perform the folding of the appropriate type. A folding
of the type (b) or (c) by itself seems to be no good, but observe that an instance
of a folding of type (b) together with that of type (c) involves three odd and three
even H'’s, while yielding a total of four contacts. If the number of type (b) folds is
the same as the number of type (c) folds, we have at least % contacts for each of the
H’s involved, instead of 1 contact before, which improves the factor to % Of course,
they need not be equal, and one of them, say type (b) could occur more often, but
as Newman shows, the difference can be cleverly bounded, yielding an approximation
factor of % This algorithm does not, unfortunately, improve the bound for 3D.

4.2. Folding in other lattices

One severe drawback of the square lattice is the parity problem: two residues cannot
become adjacent if the string between them is of odd length, which is very unrealistic.
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One way of remedying this is by altering the energy function and the lattice. Several
researchers have looked at algorithms for folding in lattices other than cartesian. Agar-
wala et al. [1] consider folding in the triangular lattice model and give folding rules
achieving much higher packing ratios in both two and three dimensions.

A natural generalization is to allow a larger alphabet size (to correspond to the 20
amino acids that make up actual proteins). Agarwala et al. also consider this variation.
They generalize the notion of hydrophobicity, and design approximations for this notion
in the triangular lattice.

4.3. A discussion of the approximation results

Since most of the algorithms work with a very similar kind of upper bound for the
optimum score, the tightness of this bound is an important issue. Newman [21] shows
that with this upper bound, one cannot expect to obtain an approximation better than
%, because there are instances where the optimum could be close to M/2. Therefore,
further improvements in the approximation ratio might come only after better upper
bounds are found. Another interesting issue, which has not received any attention is
the hardness of approximation.

4.4. The HP Side Chain model

The HP model only considers the main chain of a protein. A natural extension is
a model proposed by Bromberg and Dill [6], that allows side chains to appear is to
model the protein as a caterpillar graph instead of a linear chain. In this model, only
the legs (side chains) are marked as hydrophobic or hydrophilic. Hart and Istrail [16]
extended the original algorithm for the HP model and obtained an approximation factor
of 1]—2 for the cubic lattice. They also extend this to the FCC lattice and obtain a factor
of % Heun [17] considers this model on extended cubic lattices, which are the cubic
lattices along with their diagonals and presents approximation algorithms that achieve
performance ratios of % and %.

In an attempt to study an off-lattice model, Hart and Istrail [16] introduce the HP
Tangent Sphere Model, which is an extension of the side chain model, with elements
replaced by spheres of unit radius. They then show how to extend the analysis on the
lattice to this model.

5. Other empirical approaches

Though there has been limited theoretical success in analyzing the discrete models,
a lot of research has gone into empirical analysis.

The first application of genetic algorithms was probably by Unger and Moult [31,32].
Global optimization techniques have been used quite extensively (refer to papers in
[5,25]). Many such papers talk about results on specific sequences and models, and it
is hard to see a sound underlying theory in the known results.
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There are also heuristic approaches based on constraint programming (e.g. [3]),
machine learning and exhaustive enumeration (e.g. [33]).

6. The Levinthal paradox and rapidly mixing Markov chains

In a pioneering work, Sali et al. [27,28], modeled the folding of a protein as a
Markov chain and simulated folding of small proteins (in the Hydrophobic—Hydrophilic
model). They kept the temperature fixed; so it was a metropolis simulation, and not
simulated annealing. The contact energies in their model were normally distributed.
They observed that the folding time seemed to be small if and only if the energy gap
between the lowest energy and the second lowest energies of conformations on the
lattice was large. Thus, their model suggests that thermodynamic factors might have
an important role in driving the folding process, and this answers the Levinthal paradox
in their model.

In a recent paper, Clote [8] shows a mathematical basis for the observation of Sali
et al. Actually, Clote considers a variant of the moves used by Sali et al, which does
not ensure self-avoidance. We sketch the main result here and indicate the direction of
proof briefly.

Let iy and i; denote the conformations having the least and second least ener-
gies, among all conformations on the lattice. Let f(i) denote the energy of confor-
mation i, and 4 = f(i;) — f(ip) is the energy gap between the least and second
least energy conformations. Let 7; denote the stationary probability of conformation i;
n; =exp(—f(i)/T)/Z, where T is the temperature and Z is the normalization constant.
Let S be the set of all conformations of a sequence s=sy,...,s,. Let p be the transition
probability matrix corresponding to p.

The first step involves a derivation of an upper bound for the mixing time ¢, (the time
within which the distribution of the chain becomes &-close to the stationary distribution,
where distance is measured by variation distance) in terms of a function of m; 7;,. By
using conductance arguments, developed by Sinclair [29], the following bound on the
mixing time can be obtained.

Lemma 2 (from Clote [8]). # < (—Ine — In(min ;) )((n|S|myy 7, /c) + 1), where ¢ =
min 7; p; ;.

The proof of this lemma involves showing that the conductance of the chain (see
[29]) is large. One standard method for this is via the canonical path approach: set up
paths from w to w/, for each (w,w’)€S x S, so that the congestion on any edge is
bounded.

Next, Clote considers another energy function g( ) such that g(i) = f(i),Vi#1i
and ¢(i1) > f(i1), which implies the energy gap 4, = g(i1) — g(ip) is larger than
Ar = f(i1) — f(io). Then 7, = exp(—g(i)/T)/Z’ is the stationary distribution for the
new function g( ), where Z’ is the corresponding normalization constant. Let p’ be
the transition probability matrix corresponding to g. The following lemma relates the
stationary distributions w.r.t. f and g.
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Lemma 3 (from Clote [8]). Let f,g,m,n' be as defined above. Then, mm [c' <
T, ™, /¢, where ¢ = min 7; p; ; and ¢’ =min 7 p; ;.

This clearly implies that the mixing time decreases as m;,m; /c decreases, which in
turn, decreases as the energy gap f(i1)— f(ip) increases. Finally, the first passage time
to the native state is upper bounded by the mixing time plus 2/m;,, which consequently
decreases with the energy gap. It should however be mentioned, that Clote’s result
really says that the upper bound on the first passage time reduces as the energy gap
increases, but even this weaker statement is interesting because it is the first such
theoretical justification.

7. Conclusions

In summary, discrete models for protein folding provide a wealth of interesting al-
gorithmic questions. As observed earlier, NP-hardness is a worst case statement. An
interesting question is to see whether there are constraints coming from real proteins,
whose addition simplifies these models. These could be distributions on the residues
within sequences, folding rules or any other properties of real sequences. Since ap-
proximation algorithms have been developed so far only for variants of the HP model,
solving the other models remains a challenging open question. Hardness/approximation
results on robustness of the sort obtained in [15] will also be valuable. added by anil
Further results on off-lattice models, as in [16] will be very significant.

Many significant results have been obtained for the HP model since the survey
by Ngo et al. [23], but these are still not known to be tight. For the HP model,
more sophisticated folding rules have to be designed for getting better approximations.
Analyzing them requires a more clever upper bound than the one used so far.

The use of other techniques like genetic algorithms, integer programming and non-
linear optimization is still in initial stages, and further exploration of these is likely
to be promising. Since theoretical results are likely to be very hard, these techniques
would be very useful in an empirical study of these models.

To encourage a fresh approach to the problem, we describe an integer program for
the HP model below. Instead of maximizing the number of H—H bonds, we shall
minimize the number of edges e = (u,v) such that a H residue is placed only on one
of u and v. This is possible because the sum of these two quantities is a constant,
which is easy to verify.

Let G(V, E) denote the lattice graph. Let s=s) ...s, denote the sequence to be folded
on G. We shall fix one end point of the fold at vertex a. Let H denote the indices i
such that s; 1s 1.

There are n|V |+ |E| variables: x,;,,v€ V,i=1...n and y,,e € E. All the x,; variables
will be binary. The variable x,; is interpreted to be 1 if s; is placed on vertex v and
0 otherwise. We have the following constraints.

(1) x4 =1 (Starting of the embedding is fixed at a € V),
(2) 2% xy,; < 1,v€V (Non-self-intersection),
(3) Zverxpi=1,i=1...n (Each s; is placed on some vertex),
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(4) Zyevi=1.nxs; =n (Length of the sequence is n),

(5) xui < ZvenwyXviv1,u€V,i=1...n—1 (Forcing an embedding),
(6) ye = ZieuXu; — ZicuXvie = (u,v) EE,

(7) ye = Zieuxvi — LieuXui,e = (u,v) EE,

8) xy;€{0,1},ucV,i=1...n,

) y.=0,ecE.

The objective is to minimize X.cgy.. Chandru et al. [7] observe that for some
sequences the solution by a branch-and-bound technique is much better than the ap-
proximations described earlier. The immediate question is whether suitable relaxations
of this formulation can be shown to yield better approximation bounds.
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