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Abstract. The Portevin–Le Chatelier effect is one of the few examples of organization of
defects. Here the spatio-temporal dynamics emerges from the cooperative behavior of the
constituent defects, namely dislocations and point defects. Recent dynamical approach to
the study of experimental time series reports an intriguing cross-over phenomenon from
a low dimensional chaotic to an infinite dimensional scale invariant power-law regime of
stress drops in experiments on CuAl single crystals and AlMg polycrystals, as a function
of strain rate. We show that an extension of a dynamical model due to Ananthakrishna
and coworkers for the Portevin–Le Chatelier effect reproduces this cross-over. At low and
medium strain rates, the model shows chaos with the structure of the attractor resembling
the reconstructed experimental attractor. At high strain rates, the model exhibits a power-
law statistics for the magnitudes and durations of the stress drops as in experiments.
Concomitantly, the largest Lyapunov exponent is zero. In this regime, there is a finite
density of null exponents which itself follows a power law. This feature is similar to the
Lyapunov spectrum of a shell model for turbulence. The marginal nature of this state is
visualized through slow manifold approach.

Keywords. Chaos; power law; Lyapunov spectrum; Portevin–Le Chatelier effect; slow
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1. Introduction

When spatially extended systems are driven away from equilibrium, they are known
to give rise to spatio-temporal structures described usually by a few collective de-
grees of freedom. Consequently, there is a reduction in the effective dimension of
the system. Despite this reduction, the system can exhibit complex dynamics such
as chaos [1]. Dimensional reduction may not always be possible. In such situations,
sometimes a scale-free correlated state with a power-law distribution of avalanches
is seen. Most known power laws arise in slowly driven dissipative systems evolving
naturally to a critical state without any tuning going by the name self-organized
criticality (SOC) [2,3]. However, power laws are occasionally seen at high drives
(as in hydrodynamics). In contrast to the infinite dimensional nature of the latter,
chaos is low dimensional characterized by the self similarity of the strange attractor
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and sensitivity to initial conditions. Thus, these two states are dynamically distinct
[1–3] and hence they are rarely observed in the same system. Recently, a cross-over
from chaos to power-law regime have been reported as a function of strain rate in
experiments on the Portevin–Le Chatelier (PLC) effect [4,5]. The purpose of this
report is to summarize our efforts to understand this cross-over dynamics within
the framework of a model introduced by Ananthakrishna and coworkers [6].

The PLC effect or the jerky flow refers to a type of plastic instability seen when
metallic alloys are deformed under constant strain rate ε̇ [7]. Here, one observes a
series of yield drops accompanied by inhomogeneous deformation of the specimen.
The effect is observed only in a window of strain rates and temperatures. The
physical origin of the PLC effect is the competing time-scales corresponding to
the dislocation mobility and that of the solute atoms, called dynamic strain aging
(DSA) [7,8]. At low strain rates (or high temperatures) the average velocity of
dislocations is low, and there is sufficient time for solute atoms to diffuse to the
dislocations and pin them (aging). At high strain rates (or low temperatures),
the time available for solute atoms to diffuse to the dislocations decreases and
hence the stress required to unpin them decreases. However, in a range of strain
rates and temperatures where these two time-scales are typically of the same order
of magnitude, the PLC instability manifests. The competition between the slow
rate of pinning and sudden unpinning of the dislocations, at the macroscopic level
translates into a negative strain rate sensitivity (SRS) of the flow stress which is the
basic instability mechanism used in most phenomenological models [7,9]. Each of
the stress drops is generally associated with the nucleation and often propagation
of a band of localized plastic deformation [7]. In polycrystals, these bands and the
associated serrations are classified into three generic types C, B and A found with
increasing strain rate or decreasing temperature.

The inherent nonlinearity and the presence of multiple time-scales demands the
use of tools and concepts of nonlinear dynamical systems. While there is consid-
erable theoretical work to understand this complex collective phenomenon [7], the
first dynamical approach was taken in mid 80s by Ananthakrishna and coworkers
[6]. Apart from predicting the generic features of the PLC effect, the model also
predicted chaotic stress drops in a certain range of temperatures and strain rates
[10] subsequently verified through a dynamical analysis of several data sets of ex-
perimental stress–time series [4,5,11,12]. Further experiments and analysis have
showed an intriguing cross-over from chaotic to power-law state of stress drops in
both single and polycrystals [4,5]. In addition, this cross-over is unusual in the
sense that the only other example is the hydrodynamic turbulence [13]. In this
paper, we present an extension of the Ananthakrishna’s model [6] to explain this
cross-over in the PLC effect. Here, we concentrate on characterizing the dynamical
causes responsible for this cross-over [14,15].

2. The Ananthakrishna’s model

The fully dynamical nature of the Ananthakrishna’s model makes it the most suit-
able model for studying this cross-over. (We emphasize here that there are no
models that predict all the features of the PLC effect as well as chaotic stress drops
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found in stress–time analysis.) Following the notation in [16], we present the evo-
lution equations in terms of the scaled dislocation densities for the mobile ρm(x, t),
the immobile ρim(x, t), and the Cottrell’s type ρc(x, t). These equations are cou-
pled to the rate of change of the scaled stress φ(t) using the machine equation. The
equations are:

∂ρm
∂t

= −b0ρ
2
m − ρmρim + ρim − aρm + φmeffρm +

D

ρim

∂2(φmeff(x)ρm)

∂x2
, (1)

∂ρim
∂t

= b0(b0ρ
2
m − ρmρim − ρim + aρc), (2)

∂ρc
∂t

= c(ρm − ρc), (3)

dφ(t)

dt
= d

[

ε̇−
1

l

∫ l

0

ρm(x, t)φ
m
eff(x, t)dx

]

. (4)

The first term in eq. (1) refers to the annihilation or immobilization of two mobile
dislocations, the second term to the annihilation of a mobile dislocation with an
immobile one, and the third term to the re-mobilization of immobile dislocation due
to stress or thermal activation. The fourth term represents the immobilization of
mobile dislocations due to solute atoms. Once a mobile dislocation starts acquiring
solute atoms we regard it as the Cottrell’s type dislocation ρc. As they progressively
acquire more solute atoms, they eventually stop, and then they are considered as
immobile dislocations ρim. The fifth term represents the rate of multiplication of
dislocations due to cross-slip. This depends on the velocity of mobile dislocations

which is taken to be Vm(φ) = φmeff , where φeff = (φ − hρ
1/2
im ) is the scaled effective

stress, m the velocity exponent and h a work hardening parameter. The non-local
nature of the cross-slip gives rise to the last term, i.e., the spatial coupling term.
(See for details, [14].) Here it suffices to note that the spatial term contains the
factor ρ−1im and hence this term mimics the fact that cross-slip spreads only into
regions of minimum back stress. Finally, a, b0 and c are the scaled rate constants
referring, respectively, to the concentration of solute atoms slowing down the mobile
dislocations, the thermal and athermal reactivation of immobile dislocations, and
the rate at which solute atoms are gathering around the mobile dislocations. In
eq. (4), ε̇ is the scaled applied strain rate, d the scaled effective modulus of the
machine and the sample, and l the dimensionless length of the sample.

The PLC state is reached through a Hopf bifurcation as in the original model. The
domain of instability in ε̇ is 10 < ε̇ < 2000 for the parameter values a = 0.8, b0 =
0.0005, c = 0.08, d = 0.00006,m = 3.0, h = 0.07 and D = 0.5 as shown in figure 1.
Beyond this regime, uniform steady states exist. The numerical solutions of these
equations are obtained by discretizing the specimen length into N equal parts and
solving 3N + 1 equations for ρm(j, t), ρim(j, t), ρc(j, t), j = 1, ..., N , and φ(t). The
system size has been varied from N = 100 to 3333 with a view to investigate the
convergence of the properties with the system size. The results discussed below
hold true for a wide range of other parameters in instability domain including a
range of values of D.
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Figure 1. (a) and (b) Experimental stress–time series: (a) chaotic state at
ε̇a = 1.7 × 10−5 s−1 and (b) SOC state at ε̇a = 8.3 × 10−5 s−1. (c) and (d)
Stress–time series from the model at (c) ε̇ = 120, (d) ε̇ = 280.

3. Dynamical analysis

To begin with, consider the plots of two experimental stress–strain curves corre-
sponding to the chaotic and power-law regimes of applied strain rates and time
series from the model at intermediate and high strain rates (shown in figure 1).
The visual similarity of the experimental time series at medium and high strain
rates with that of the model in similar range of ε̇ is evident. The similarity extends
to other dynamical features such as the nature of attractor as well. It was shown
earlier in [4] that the stress–strain curve in figure 1a is chaotic with a correlation
dimension, ν = 2.3. Thus, the number of degrees of freedom required for the
description of the dynamics of the system [17] is four in this case, consistent with
the original model. Figure 2a shows a plot of the strange attractor obtained using
singular value decomposition [18] of the experimental time series at applied strain
rate ε̇a = 1.7 × 10−5 s−1. Here an appropriate combination of the first three prin-
cipal directions of the subspace Ci; i = 1–3, has been used to facilitate comparison
with the model. This can be compared with the strange attractor obtained from
the model in the space of ρm, ρim and ρc (j = 50 and N = 100) shown in figure 2b
for ε̇ = 120 corresponding to the mid-chaotic region. Note the similarity with the
experimental attractor, particularly the linear portion in the phase space (shown
by an arrow in figure 2a) which can be identified with the loading direction in fig-
ure 1a. Note that the identification of the loading direction is consistent with the
absence of growth of ρm.

As stated earlier, the time series at high strain rates shown in figure 1b exhibits a
power law for distribution of stress drop magnitudes [4,5]. The stress–time series at
high strain rates beyond ε̇ ∼ 280 shown in figure 1d obtained from the model also
exhibits no inherent scale in the magnitudes of the stress drops. The distribution
of stress drop magnitudes, D(∆φ), shows a power law D(∆φ) ∼ ∆φ−α. This is
shown in figure 3 (◦) along with the experimental points (+ along with the arrows)
corresponding to ε̇a = 8.3×10−5 s−1. It is clear from figure 3 that both experimental
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Figure 2. (a) Reconstructed experimental attractor, (b) attractor from the
model for N = 100, j = 50.
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Figure 3. Distributions of the stress drops from the model (◦) for N = 1000,
from experiments (+ with arrows). Solid line is guide to the eye.

and theoretical points show a scaling behavior with an exponent value α ≈ 1.1. The
distribution of the durations of the drops D(∆t) ∼ ∆t−β also shows a power law
with an exponent value β ≈ 1.3. The conditional average of ∆φ denoted by 〈∆φ〉c
for a given value of ∆t behaves as 〈∆φ〉c ∼ ∆t1/x with x ≈ 0.65. The exponent
values satisfy the scaling relation α = x(β − 1) + 1 quite well.

3.1 Dynamical characterization of the cross-over

The next natural step is to study the distribution of Lyapunov exponents, λi (i =
1, . . . ,M = 3N + 1) using eqs (1)–(4) for the entire range of strain rates where
the interesting dynamics is seen. As the existence of a limiting distribution of
Lyapunov exponents [19] as a function of system size [20] is an important issue for
spatially extended systems, we have verified this point for various values of strain
rate [20]. Note that this also implies the existence of a limiting Lyapunov exponent
(LLE) as a function of system size. As the gross changes in the dynamics can be
understood by following the largest LLE, we have shown the average LLE in figure 4
as a function of the strain rate for N = 500 (left panel). As can be seen, the LLE
practically vanishes around ε̇ = 250. For ε̇ ≥ 250, the value of the LLE is ∼5×10−4.
We have also followed the changes in the distribution of Lyapunov exponents as a
function of strain rate. We find that in the mid-chaotic region, the distribution of
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Figure 4. The largest Lyapunov exponent of the model for N = 500 (left
panel). The peaked nature of the distribution of the null Lyapunov exponents
(right panel) at ε̇ = 280 for M =10,000.

Lyapunov exponents is quite broad (see [20]). However, as we increase the strain
rate further into the power-law regime of strain rate (from ε̇ = 250), the LLE
becomes vanishingly small (≈ 5.2× 10−4). Below a resolution of ∼10−4, exponents
close to each other cross as a function of time even as the first few exponents are
distinguishable. However, the (time averaged) distribution remains unaffected. In
this regime, the number of null exponents (almost vanishing) increases gradually
reaching a value ≈0.38M in the range [−0.00052, 0.00052] at ε̇ = 280. The finite
density of null exponents has a peaked nature (figure 4 (right panel)) in the interval
250 ≤ ε̇ ≤ 700, a result similar to GOY shell model for turbulence [21]. Thus, the
spectrum changes from a set of both positive and negative, but few null exponents
in the chaotic region, to a dense set of null exponents and negative exponents with
no positive exponents in the scaling regime, as if most exponents are pushed toward
the zero value. As null exponents correspond to a marginal situation, their finite
density in the power-law state implies that most spatial elements are perpetually
close to the marginal state.

3.2 Visualization of dislocation configurations

The marginal nature of the dislocation configurations in the power-law regime can
be visualized by studying the slow manifold of the model [16,22]. This method also
allows us to track the configurations during cross-over. The geometry of the slow
manifold has been recently analysed [16]. Here we recall some relevant results on
the slow manifold of the original model (D = 0) and use them when the spatial
coupling is switched on. Slow manifold expresses the fast variable in terms of the
slow variables, conventionally done by setting the derivative of the fast variable to
zero [16]. Thus, setting ρ̇m = 0 gives ρm as a function both the slow variables,
i.e., ρm = ρm(ρim, φ). Instead, we use ρm in terms of a single slow variable δ =
φm − ρim − a. Using ρ̇m = g(ρm, φ) = −b0ρ

2
m + ρmδ + ρim = 0, and noting that

ρm > 0, we get two solutions ρm = [δ + (δ2 + 4b0ρim)
1/2]/2b0, one for δ < 0 and
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Figure 5. (a) Bent slow manifold S1 and S2 (thick lines) with a simple
trajectory for ε̇ = 200 and m = 3. Inset: ρm (dotted curve) and φ. (b) Same
trajectory in the (φ, ρim, ρm) space.

another for δ > 0. We note that δ takes small positive and negative values as both
ρim and φ are small and positive. For regions of δ < 0, as b0 is small (∼10−4), we get
ρm/ρim ≈ −1/δ which takes small values defining a part of the slow manifold, S2.
Since physically pinned configuration of dislocations implies small mobile density
and large immobile density, we refer to the region of S2 as the ‘pinned state of
dislocations’. Further, larger negative values of δ correspond to strongly pinned
configurations, as they refer to smaller ratio of ρm/ρim. Corresponding to δ > 0,
another connected piece S1 is defined by large values of ρm, given by ρm ≈ δ/b0,
which we refer to as the ‘unpinned state of dislocations’. S2 and S1 are separated
by δ = 0, which we refer to as the fold line [16] (see below). A plot of the slow
manifold in the δ–ρm plane is shown in figure 5a along with a simple monoperiodic
trajectory describing the changes in the densities during one loading–unloading
cycle. The inset shows ρm(t) and φ(t). For completeness, the corresponding plot
of the slow manifold in the (ρm, ρim, φ) space is shown in figure 5b, along with
the trajectory and the symbols. Note that in this space, S2 and S1 are separated
by a fold given by δ = φm − ρim − a = 0, and hence the name fold line. The
correspondence between figure 5a and figure 5b is also clear. Note that the burst
in ρm (inset in figure 5a) corresponds to the segment A′DA in figures 5a and 5b.

We first note that the yield drop is a consequence of the generation of mobile
dislocations. Thus, even though stress is an average over the entire sample, some
information is contained in it. As we shall see, considerable insight can be had by
visualizing the dislocation configurations just before the yield drop and after. We
shall do this both in the chaotic regime as well as in the region of the power-law
distribution of the stress drops. Since the yield drop occurs when ρ̄m(t) grows
rapidly, it is adequate to examine the spatial configurations on the slow manifold
at the onset and at the end of typical yield drops. Figures 6a, 6b and 6c, 6d
show respectively, plots of j, δ(j), ρm(j) for the chaotic state ε̇ = 120 and the
power-law state ε̇ = 280, at the onset and at the end of an yield drop. It is clear
that for ε̇ = 120, both at the onset and at the end of a typical large yield drop
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Figure 6. Dislocation configurations on the slow manifold at the inset and
at the end of an yield drop: (a) and (b) for ε̇ = 120 (chaos), and (c) and (d)
for ε̇ = 280 (scaling).

(figures 6a, 6b), most ρm(j)s are small with large negative values of δ(j), i.e., most
dislocations are in a strongly pinned state. The arrows show the increase in ρm(j)
at the end of the yield drop. In contrast, in the scaling regime, for ε̇ = 280, most
dislocations are at the threshold of unpinning with δ(j) ≈ 0, both at the onset and
at the end of the yield drop (figures 6c, 6d). This also implies that they remain
close to this threshold all the time (figure 6d). Since δ(j) ≈ 0 (for most js) refers
to a marginally stable state, it can produce almost any response. This in turn
implies that the magnitudes of yield drops ∆φ are scale-free. We have verified that
the edge-of-unpinning picture is valid in the entire scaling regime for a range of
N = 100–1000. Further, the number of spatial elements reaching the threshold of
unpinning δ = 0, during an yield drop increases as we approach the scaling regime.

4. Summary and discussion

We summarize the salient features of the cross-over and comment on them where-
ever necessary.

(a) The cross-over is smooth as changes in the Lyapunov spectrum are gradual.

(b) The power law here is of purely dynamical origin. This situation is to be
contrasted with coupled map lattices where the power law arises with the
inclusion of threshold on each element describing the local dynamics [23]. In
our case, the pinning and unpinning of dislocations is fully dynamical and
is completely determined by the global feed defined by eq. (4). We note
that the stress developed depends on the plastic strain rate (eq. (4)), which,
however, decides the rate of production of the mobile density (fifth and sixth
terms in eq. (1)). Indeed, the set of equations also controls internal relaxation
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mechanism through a competition of the time-scales due to the applied strain
rate and other time-scales determined by various dislocation mechanisms. It
is this competition that leads the reverse Hopf bifurcation at high strain rates
which in turn limits the average stress drop amplitude to small values [16] in
its neighborhood. Note that this implies that the applied strain rate nearly
balances the plastic strain rate. In other words, the system is close to a
critical state. This can only lead to partial relaxation of the plastic strain.

(c) The power-law regime of stress drops occurring at high strain rates belongs
to a different universality class compared to SOC type systems as it is char-
acterized by a dense set of null exponents. As zero exponents correspond to
a marginal situation, their finite density physically implies that most spatial
elements are close to criticality. This is supported by the geometrical picture
of the slow manifold where most dislocations are at the threshold of unpin-
ning, δ = 0. This must be contrasted with the non-uniqueness of the nature
of the Lyapunov spectrum in the few models studied so far. For instance,
no zero and positive exponents, zero exponent in the large N limit etc., have
been reported [24]. (Often, the nature of Lyapunov spectrum is inferred based
on other dynamical invariants [24].) More significantly, the dense set of null
Lyapunov exponents themselves follow a power law. Further, we note that
the Lyapunov spectrum evolves from a set of both positive and negative, but
few null exponents in the chaotic region, to a dense set of marginal exponents
as we reach the power-law regime.

(d) The dense set of null exponents found in our model is actually similar to that
obtained in shell models of turbulence where the power law is seen at high
drive values [21]. However, there are significant differences. First, we note
that the shell model [21] cannot explain the cross-over as it is only designed
to explain the power-law regime. Further, the maximum Lyapunov exponent
is large for small viscosity parameter (λ1 ∝ viscosity−1/2) in shell models
[21] in contrast to near-zero value in our model. Finally, we state here that a
detailed comparison between our model and the GOY model has been studied
in detail [20].

In summary, the original model extended to include the spatial degrees of free-
dom explains the cross-over in the dynamics from chaotic to power-law regime as
observed in experiments. For the sake of completeness, we mention here that the
model also exhibits the uncorrelated bands, the hopping type and the continuously
propagating type as the strain rate is increased as seen in experiments [25]. Thus,
the dynamical model captures the full dynamics of the PLC effect. From a dynam-
ical point of view, the changes in the Lyapunov spectrum provides a good insight
into the underlying mechanism controlling the cross-over. The slow manifold anal-
ysis, applied to study the cross-over, is particularly useful in giving a geometrical
picture of the spatial configurations in the chaotic and scaling regimes. Further,
this is also the first time a methodology has been introduced wherein dislocation
configurations can be realized. Further, this picture explains the origin of small
amplitude stress drops at high strain rates. Finally, this is the first fully dynamical
model for the PLC effect explaining almost all features of the PLC effect in addition
to explaining the cross-over from chaotic to power-law regime. The latter aspect
should be of interest to the area of dynamical systems.
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