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High resolution solution state double quantum spectroscopy
of two-spin-1 AX systems and mimics

By S. VENKATA RAMAN and N. CHANDRAKUMAR
Laboratory of Chemical Physics, Central Leather Research Institute, Adayaru,

Chennai-600 020, Tamil Nadu, India

(Received 19 August 1996; accepted 1 November 1996)

Double quantum spectroscopy (DQS) of the two-spin-1 AX system in the liquid state is
investigated theoretically. The two kinds of double quantum coherence (DQC) that arise
are studied and expressions are given for their evolution under weak scalar coupling and
chemical shifts. A one-dimensional double quantum J (DQJ) ® lter sequence for the separation
of the two kinds of DQC is introduced. Analytical expressions are given for the spin response
to the general two-dimensional DQS sequence, for an arbitrary reconversion pulse ¯ ip angle b .
A detailed investigation of the coherence transfer (CT) amplitudes has been carried out by
computer simulation of CT amplitudes as a function of b . The di� erences in the behaviour of
CT amplitudes of one-spin DQC, `outer’ and c̀entral’ components of two-spin DQCs are
discussed. Optimum ¯ ip angles for maximizing sensitivity of N-type, P-type and pure phase
double quantum spectra of this system are deduced. The detailed predictions are borne out by
recently published experimental work on two-spin-1 AX systems, as well as our studies on a
mimic arrangement, viz., a spin-1/2 A2X2 system.

1. Introduction

The NMR of spin-1 systems has proved to be of
fundamental signi® cance in a range of investigations of
molecular structure and dynamics [1± 19]. For solution
state structure elucidation, techniques such as hetero-
nuclear polarization transfer and homonuclear COSY
optimized for small couplings have been employed
successfully [14, 15]. Recently, it has been shown that
solution state rotating frame coherence transfer
(TOCSY) is superior to the laboratory frame counter-
part in terms of its e� ciency because: (i) unlike coher-
ence transfer in weakly coupled spin-1 systems in
laboratory frame experiments, the state with mI = 0
also takes part in rotating frame coherence transfer
experiments; and (ii) the transfer of coherence is
in-phase [16]. More recently, it has been shown that
solution state multiple quantum spectroscopy of scalar
coupled spin-1 systems gives unique information on
molecular structure. In particular, triple quantum
spectroscopy reveals three-spin connectivity as well as
the direct connectivities of the system [17], while
double quantum spectroscopy (DQS) [17± 19] reveals
both two-spin double quantum peaks that delineate
direct spin connectivities, as well as one-spin double
quantum peaks, which exhibit ampli® ed couplings.
These features of spin-1 DQS have been exploited
recently to measure unresolved homonuclear couplings

in deuterium NMR and also to deduce organolithium
cluster sizes in the solution state [13, 19].

In this work we make a detailed analysis of the
solution state DQS of the two-spin-1 AX system. In
the theory section we discuss brie¯ y the preparation of
the two kinds of double quantum coherences (DQC),
viz., one-spin DQC and two-spin DQC. We give expres-
sions for their shift refocused evolution under weak
coupling and introduce a spectral editing strategy to
separate the two kinds of DQCs. We also give expres-
sions for 2D-DQ evolution under the free precession
Hamiltonian of such a system and consider the e� ects
of a reconversion (mixing or transfer) pulse of arbitrary
¯ ip angle b . Further, we analyse the coherence transfer
(CT) to individual coherences using the rotation matrix
approach, and discuss the behaviour of the CT ampli-
tude for small values of b . In the simulation section
we present simulations of the CT amplitude as a
function of b and discuss the salient features of the
CT process as seen from the simulations. We discuss
also the optimal ¯ ip angles for echo/anti-echo selection
and for pure phase spectroscopy. In the experi-
mental and discussion section we present experimental
evidence for the theoretical predictions, citing both the
recent spin-1 ® ndings and our work with a spin-1/2
A2X2 system that is a two-spin-1 AX mimic for our
purposes.
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2. Theory

2.1. Preparation of DQC
A cluster of spin-coupled spin-1 nuclei exhibits two

kinds of double quantum excitation. One, familiar
from spin-1/2 DQS [20], corresponds to correlated
single quantum ¯ ips of two coupled spins; this therefore
may be termed two-spin double quantum excitation, and
corresponds to type I peaks in spin-1/2 DQS. The
second originates in the fact that a spin 1 is a three-
level system; this may hence be termed one-spin
double quantum excitation. The latter corresponds in
fact to the type II DQC of a pair of equivalent spins-
1/2. The standard double quantum preparation
sequence [17, 18, 23, 24], viz., 90x - ¿ /2 - 180x -
¿ /2 - 90x , results in excitation of both one-spin DQC
as well as two-spin DQC when applied to a two-spin-1
system IS; this can be seen from the density matrix that
results at the end of the double quantum preparation
sandwich:

Iz + Sz ----- ®
90x - (Iy + Sy) ----- ®

180x
Iy + Sy

Iy + Sy ----- ®
2 p JIzSz¿ (c2J - 1)(IyS

2
z + I2

z Sy)
- s2J(IxSz + IzSx) + Iy + Sy

----- ®
90x (c2J - 1)(IzS

2
y + I2

y Sz)
+ s2J(IxSy + IySx) + Iz + Sz

º 1
2(c2J - 1)(Iz(S2

y - S2
x) + (I2

y - I2
x )Sz)

+ s2J(IxSy + IySx)

+ c2J(Iz + Sz) - 1
2(c2J - 1)(IzS

2
z + I2

z Sz), (1)
where c2J = cos 2p J¿ and s2J = sin 2p J¿.

The ® rst term of the last member corresponds to one-
spin DQC of phase x, while the second term corresponds
to two-spin DQC of phase y; the third and fourth terms
represent longitudinal order. It can be seen that the
amplitude of one-spin DQC is maximized at the prep-
aration time ¿ = 1 /(2J), at which point the two-spin
DQC in fact vanishes. This o� ers immediate scope for
the selective preparation of one-spin DQC with this
choice of the preparation time. On the other hand,
the amplitude of two-spin DQC is a maximum at
¿ = 1 /(4J); note, however, that one-spin DQC does
not vanish for this value of ¿; in fact its amplitude at
this point equals one half the amplitude of two-spin
DQC. Clearly, no simple preparation strategy would
suppress one-spin DQC selectively.

2.2. Separation of one-spin DQC from two-spin DQC
We examine next the evolution of the two DQCs

under weak homonuclear coupling alone. We have for
two-spin DQC:

IxSy + IySx ----- ®
2p JIzSzt 1

2(c2 + 1)(IxSy + IySx)
+ 1

2(c2 - 1)([Iz,Ix]+[Sy,Sz]+
+ [Iy,Iz]+[Sz,Sx]+ )
+ 1

2s2([Iy,Iz]+ Sy + Iy[Sz,Sy]+
- [Iz,Ix]+ Sx - Ix[Sz,Sx]+ ), (2)

where c2 = cos 2p Jt and s2 = sin 2p Jt. For the evolution
of one-spin DQC under coupling, on the other hand, we
® nd:

Iz(S2
y - S2

x) + (I2
y - I2

x )Sz ----- ®
2p JIzSzt

c4(Iz(S2
y - S2

x) + (I2
y - I2

x)Sz)

- s4(I2
z [Sx,Sy]+ + [Ix,Iy]+ S2

z ), (3)

where c4 = cos 4p Jt and s4 = sin 4Jt.
Based on the properties displayed in equations (2) and

(3) we introduce here a simple 1D experiment, viz., the
double quantum J ® lter; with this sequence we can
separate the two kinds of DQC. The DQJ ® lter sequence
is given in ® gure 1. Computing the e� ect of the ® nal 90ë

x

pulse, proceeding from equations (2) and (3) we have the
following expression for the observable terms in the
resultant density matrix:

- 1
2s2J(cos 2p Jt1 + 1)(IxSz + IzSx)

- 1
2(c2J - 1) cos 4p Jt1(Iy(1 - 3

2 S2
z ) + (1 - 3

2 I2
z )Sy), (4)

and these result exclusively from the ® rst term of each of
equations (2) and (3), respectively.

The multiplet pattern that results on selection of
two-spin DQC by the choice t1 = (2n + 1) /8J is thus
an anti-phase (- 1,0,1) doublet with a missing central
component. On the other hand, the pattern that results
on reconversion following the selection of one-spin
DQC by the choice t1 = (2n + 1) /2J is a (- 1,2, - 1)
triplet.

Note, incidentally, that the proposed sequence is
analogous in form to the spin ® lter sequence [21, 22]
known in spin-1/2 work; however, no t1 averaging is
involved in our application.
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AQ

Figure 1. Pulse sequence for the DQJ ® lter experiment. u is
stepped through the standard double quantum phase
cycle with concomitant phase alternation of the receiver.

90x+ u 180x+ u 90x+ u 180x 90x

¿

2
¿

2
t1
2

t1
2

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
6
:
3
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



2.3. 2D-DQS for a 90ë reconversion pulse
For the general 2D double quantum evolution

without a refocusing pulse, i.e., evolution under the
free precession Hamiltonian with weak coupling and
chemical shifts, proceeding from equations (2) and (3)
we have for two-spin DQC:

IxSy + IySx -------------- ®
( d IIz+ d SSz+ 2p JIzSz)t1 1

4(cos ( R + 2p J)t1

+ cos ( R - 2p J)t1 + 2cos ( R t1))(IxSy + IySx)
+ 1

4(sin ( R + 2p J)t1 + sin ( R - 2p J)t1

+ 2sin ( R t1))(IySy - IxSx)
+ 1

4(cos ( R + 2p J)t1 + cos ( R - 2p J)t1

- 2cos ( R t1))([Iz,Ix]+[Sy,Sz]+ + [Iy,Iz]+[Sz,Sx]+ )
+ 1

4 (sin ( R + 2p J)t1 + sin ( R - 2p J)t1

- 2sin ( R t1))([Iy,Iz]+[Sz,Sy]+ - [Iz,Ix]+[Sx,Sz]+ )
+ 1

4 (sin ( R + 2p J)t1 - sin ( R - 2p J)t1)
´ ([Ix,Iz]+ Sx + Ix[Sz,Sx]+ - [Iz,Iy]+ Sy - Iy[Sz,Sy]+ )
+ 1

4 (cos ( R + 2p J)t1 - cos ( R - 2p J)t1)
´ ([Ix,Iz]+ Sy + Iy[Sz,Sx]+ + [Iz,Iy]+ Sx + Ix[Sz,Sy]+ ),

(5)

where R = d I + d S . For one-spin DQC we have, on the
other hand:

Iz(S2
y - S2

x) + (I2
y - I2

x)Sz -------------- ®
( d IIz+ d SSz+ 2p JIzSz)t1

+ 1
2{(cos (2d I + 4p J)t1 + cos (2d I - 4p J)t1)((I2

y - I2
x)Sz)

+ (cos (2d S + 4p J)t1 + cos (2d S - 4p J)t1)(Iz(S2
y - S2

x))}
- 1

2{(sin (2d S + 4p J)t1 + sin (2d S - 4p J)t1)(Iz[Sx,Sy]+ )
+ (sin (2d I + 4p J)t1 + sin (2d I - 4p J)t1)([Ix,Iy]+ Sz)}
- 1

2{(sin (2d I + 4p J)t1 - sin (2d I - 4p J)t1)([Ix,Iy]+ S2
z)

+ (sin (2d S + 4p J)t1 - sin (2d S - 4p J)t1)(I2
z [Sx,Sy]+ )}

- 1
2{(cos (2d I + 4p J)t1 - cos (2d I - 4p J)t1)((I2

y - I2
x)S2

z)

+ (cos (2d S + 4p J)t1 - cos (2d S - 4p J)t1)(I2
z (S2

y - S2
x))}.
(6)

Here, the anti-commutator [A,B]+ denotes (AB + BA).
Note from equations (5) and (6) that while the one-

spin DQC is a doublet in F1 without a c̀entral’ com-
ponent, the two-spin DQC is a triplet in F1 with a
c̀entral’ component which is independent of J. This is
to be compared with the spin-1/2 system, the DQC of
which is independent of J. The absence of a `central’
component in one-spin DQC results directly from the

fact that it was prepared anti-phase with respect to the
coupling to the second spin.

On reconversion with a 90ë
x pulse, proceeding from

equations (5) and (6) the observable terms of the
resultant density matrix for two-spin double quantum
coherence are:

s2J(IxSy + IySx) -------------- -- ®
( d IIz+ d SSz+ 2p JIzSz)t1,90ë

x

1
4s2J(cos ( d I + d S + 2p J)t1 + cos ( d I + d S - 2p J)t1

+2 cos ( d I + d S)t1)(IxSz + IzSx). (7)
These terms arise exclusively from the ® rst term of
equation (5). It can be seen from equation (7) that the
multiplet pattern in F1 is an in-phase (1,2,1) cosine
triplet with a splitting of J, and the pattern in F2 is a
(- 1,0,1) anti-phase doublet.

The observable terms of the resultant density matrix
in case of one-spin DQC are given by:

1
2(c2J - 1)(Iz(S2

y - S2
x) + (I2

y - I2
x)Sz) ---------------- ®

( d IIz+ d S Sz+2p JIzSz)t1,90ë
x

1
2(c2J - 1)

1
2(cos (2d S + 4p J)t1 + cos (2d S - 4p J)t1)(Iy(1 - 3

2 S2
z ))

+1
2(cos (2d I + 4p J)t1 + cos (2d I - 4p J)t1)((1 - 3

2 I2
z )Sy)

.

(8)

These terms arise exclusively from the ® rst term of equa-
tion (6). It is clear from equation (8) that for one-spin
DQC the multiplet pattern is an in-phase cosine (1,0,1)
doublet in F1 with missing central component, resulting
in a multiplet splitting of 4J. Note that this is four times
the splitting observed in the single quantum spectrum.
The F2 multiplet pattern is an anti-phase (- 1,2, - 1)
triplet.

2.4. Response to reconversion pulse of arbitrary ¯ ip angle
In order to characterize the general case of an

arbitrary reconversion pulse ¯ ip angle b , as well as the
resulting 2D-DQ spectra, we give below the observable
terms in the density matrix in such a case. For two-spin
DQC we ® nd:

IxSy+IySx ---------------- -- ®
( d IIz+ d SSz+ 2 p JIzSz)t1,b x,obs

1
4(cos ( d I + d S + 2p J)t1 + cos ( d I + d S - 2p J)t1

+ 2cos ( d I + d S )t1)(IxSz + IzSx) sin b

+ 1
4(sin ( d I + d S + 2p J)t1 + sin ( d I + d S - 2p J)t1

+ 2sin ( d I + d S )t1)(IySz + IzSy) sin b cos b

+ 1
4(sin ( d I + d S + 2p J)t1 - sin ( d I + d S - 2p J)t1

- 2cos ( d I + d S )t1)((2 - 3I2
z )Sy

+ Iy(2 - 3S2
z )) sin b cos2

b . (9)
The observable terms in the case of one-spin DQC, on
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the other hand, are given by:

Iz(S2
y - S2

x) + (I2
y - I2

x)Sz ---------------- -- ®
( d I Iz+ d S Sz+ 2p JIzSz)t1,b x,obs

1
2(cos (2d I + 4p J)t1

+ cos (2d I - 4p J)t1)((2 - 3I2
z )Sy) sin3

b

+ 1
2(cos (2d S + 4p J)t1

+ cos (2d S - 4p J)t1)(Iy(2 - 3S2
z)) sin3

b . (10)

Note the ¯ ip angle dependence of the various terms.
This is to be compared with the ¯ ip angle dependence
in the two-spin-1/2 system [27] given below:

IxSy + IySx; ---------------- -- ®
( d IIz+ d SSz+ 2p JIzSz)t1,b x,obs

(cos ( d I + d S )t1) sin b (IxSz + IzSx)
+ (sin ( d I + d S )t1) cos b sin b (IySz + IzSy). (11)

Note also, incidentally, that the `central’ component of
one-spin DQC, even if it could be prepared, is unobserv-
able regardless of the reconversion pulse ¯ ip angle:

(S2
y - S2

x) ---- ®
b x (cos2

b )S2
y + (sin2

b )S2
z - S2

x

+ (sin b cos b )[Sy,Sz]+
º (sin2

b )(S2
z - S2

y) + (S2
y - S2

x)
+ (sin b cos b )[Sy,Sz]+ . (12)

The coherence transfer process itself can be understood
better by looking at the individual coherences rather
than the whole density matrix. We make a detailed
analysis of this coherence transfer process from the
viewpoint of the energy level diagram shown in ® gure
2. In a two-spin-1 system there are 10 DQCs, which are
listed in table 1, along with their frequencies.

From table 1 it may be noted that DQCs 1 and 4
correspond to `outer’ components of two-spin DQC,
while 2 and 3 correspond to the doubly degenerate
c̀entral’ component of two-spin DQC. DQCs 5, 7, 8
and 10 correspond to the `outer’ components of one-

spin DQC, while DQCs 6 and 9 are the c̀entral’ com-
ponent of the one-spin DQC, which is not created by the
preparation sequence as seen from equation (6).

There are 16 SQCs in this system. The SQCs along
with their frequencies are listed in table 2.

The observable SQCs in a weakly coupled system are
the ® rst 12 SQCs of table 2. Note that this corresponds
to the two multiplets of three components each centred
at d I and d S , respectively, each component being doubly
degenerate. SQCs 13± 16, being combination coherences,
are not observable in weakly coupled systems.

3. Simulation of the coherence transfer function

The coherence transfer function [24 ± 26]quanti® es the
amplitude and phase of the transfer between any two
coherences under the action of a mixing pulse. The
coherence transfer function Zqrtu for CT from a double
quantum coherence tu to a single quantum coherence qr
is given by
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Figure 2. Energy level diagram of a two-spin-1 system.

Table 1. Double quantum coherences in
the two-spin-1 AX system.

S. No. DQC Frequency

1 |5l k 1| d I + d S + 2p J
2 |8l k 4| d I + d S
3 |6l k 2| d I + d S
4 |9l k 5| d I + d S - 2p J
5 |7l k 1| 2d I + 4p J
6 |8l k 2| 2d I
7 |9l k 3| 2d I - 4p J
8 |3l k 1| 2d S + 4p J
9 |6l k 4| 2d S

10 |9l k 7| 2d S - 4p J

Table 2. Single quantum coherences in
the two-spin-1 AX system.

S. No. DQC Frequency

1 |7l k 4| d I + 2p J
2 |4l k 1| d I + 2p J
3 |8l k 5| d I
4 |5l k 2| d I
5 |9l k 6| d I - 2p J
6 |6l k 3| d I - 2p J
7 |3l k 2| d S + 2p J
8 |2l k 1| d S + 2p J
9 |6l k 5| d S

10 |5l k 4| d S
11 |9l k 8| d S - 2p J
12 |8l k 7| d S - 2p J
13 |7l k 2| 2d I - d S + 2p J
14 |6l k 7| 2d I - d S - 2p J
15 |3l k 4| - d I + 2d S + 2p J
16 |8l k 3| - d I + 2d S - 2p JD
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Zqrtu = (R( b ))qt ´ (R( b ))*
ur, (13)

where R( b ) is the rotation matrix for a mixing pulse of
¯ ip angle b . The rotation operator that corresponds to a
resonant RF pulse along the interaction frame j axis
with ¯ ip angle b for a spin-1 system is given by

(Rj( b )) = exp (- i b Ij) = cos ( b Ij) - i sin ( b Ij)
º 1 + (cos b - 1)I2

j - i(sin b )Ij . (14)

The corresponding matrix representation of Rx( b ) in the
Zeeman basis is

R |+ 1 l |0 l | - 1 l
k +1| 1

2
(cos b + 1) - i

Ï 2
sin b

1
2

(cos b - 1)

k 0| - i
Ï 2

sin b cos b
- i
Ï 2

sin b

k - 1| 1
2
(cos b - 1) - i

Ï 2
sin b

1
2
(cos b + 1)

The coherence transfer function in the general case of N
weakly coupled, inequivalent spin-1 nuclei is therefore
given by [17]:

Zqrtu = i(N
ru
s - Nqt

s )(cos b )(Nqt
0 + Nru

0 ) (cos b + 1)
2

(Nqt
1 + Nru

1 )

´
(cos b - 1)

2

(Nqt
d + Nru

d ) sin b

Ï 2

(Nqt
s + Nru

s )

, (15)

where Nqt
s indicates the number of spins which require a

single quantum ¯ ip to convert state q to t, Nqt
d indicates

the number of spins which require a double quantum
¯ ip to convert state q to t, Nqt

0 indicates the number of
spins having the same quantum number m = 0 in both
the states q and t, and Nqt

1 indicates the number of spins
having the same quantum number m /= 0 in both the
states. Note that the spin state of each nucleus must
belong to one of these four categories in the two states
considered. For an N spin system this leads to the
condition Nqt

s + Nqt
d + Nqt

0 + Nqt
1 = N. The form of the

Z coe� cients clearly follows from the matrix represen-
tation of R.

3.1. Coherence transfer amplitude
We have studied the coherence transfer function

numerically. To this end, we have developed a
`Matlab’ program (a listing may be obtained from the
authors). In ® gures 3± 5, we plot coherence transfer
amplitude as a function of reconversion pulse ¯ ip
angle b for transfer from DQC to various SQCs, with
P-type double quantum selection.

While numerically simulating the amplitude we have
accounted for degeneracy in both the DQCs as well as
SQCs by adding together complex CT amplitudes in
such cases. For example, the CT amplitude for the
c̀entral’ component of the two-spin DQC (C2DQ) to
the central component of the SQC (CSQI), precessing
with frequency d I is given by

Spectroscopy of two-spin-1 AX systems 859

Figure 3. Simulation of the coher-
ence transfer amplitude as a
function of the reconversion
pulse ¯ ip angle b , from one-
spin DQC to various SQCs:
dotted curve, CT amplitude for
transfer to the central SQC com-
ponent of the coupled spin; solid
curve, CT amplitude for transfer
to the outer SQC component of
coupled spin; solid line with
amplitude of zero gives the CT
amplitude for transfer to the
parent spin.
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ZCSQI ; C2DQ = Z8562 + Z5262 + Z8584 + Z5284 . (16)

From ® gures 3± 5 we note that, unlike the situation with
two-spins-1/2, here the coherence transfer amplitudes
from DQCs to various SQCs are not equal.

3.1.1. One-spin DQC
From ® gure 3 we note that for one-spin DQC the

coherence transfer amplitudes to outer components of
single quantum multiplets are symmetric, but di� erent

860 S. Venkata Raman and N. Chandrakumar

Figure 4. Simulation of the coher-
ence transfer amplitude as a
function of the reconversion
pulse ¯ ip angle b , from `outer’
component of two-spin DQC
(precessing with frequency
d I + d S + J), to various SQCs:
´´´´´ ,́ CT amplitude for transfer
to the central SQC component
(precessing with frequency d I or
d S ); + , CT amplitude for trans-
fer to the connected outer SQC
component with precession fre-
quency d I + J or d S + J; and
solid line, CT amplitude for
transfer to the remote outer
SQC component with precession
frequency d I - J or d S - J.

Figure 5. Simulation of the coher-
ence transfer amplitude as a
function of the reconversion
pulse ¯ ip angle b , from c̀entral’
component of two-spin DQC
precessing with frequency
d I + d S , to various SQCs:
´´´´´ ,́ CT amplitude for transfer
to one of the outer components
of the SQC; and solid curve, CT
amplitude for transfer to the
other outer component of the
SQC. Note that the amplitudes
are equal and opposite. The
solid line with an amplitude of
zero gives the CT amplitude for
transfer to the central com-
ponent of the SQC.
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from the coherence transfer amplitude to the central
component of the SQC. The maximum transfer occurs
in both the cases for b = 90ë . Also note that the single
quantum multiplet pattern that results on reconversion
is a (- 1,2, - 1) triplet for any value of b .

3.1.2. Two-spin DQC
The response of two-spin DQC to mixing pulse ¯ ip

angle is more complex.
(i) It can be seen from ® gure 4 that the `outer’ com-

ponents of the two-spin DQC, with precession frequency
d I + d S 6 J are mixed asymmetrically to the multiplet
components of the single quantum coherence. Clearly
this relates to the fact that for two-spin DQC with pre-
cession frequency d I + d S + J, the directly connected
transitions are d I, d S , d S + J and d I + J and, hence, for
small values of b , the transfer of coherence is only to one
of the outer components of the SQC, as seen from ® gure
4. Similar comments apply to the other component
of the two-spin DQC with precession frequency
d I + d S - J. These features may be understood from
the series expansion of the coherence transfer amplitude
as a function of b :

Zqrtu = (exp (- ib Fx))qt(exp (ib Fx))ur

= 1 - ib Fx +
(ib )2

2!
F2

x -
(ib )3

3!
F3

x ´´´
qt

´ 1 + ib Fx +
(ib )2

2!
F2

x -
(ib )3

3!
F3

x ´´´
ur

= d qt d ur + ib ( d qt(Fx)ur - d ur(Fx)qt)

+
(ib )2

2!
( d qt(Fx)2

ur + d ur(Fx)2
qt - 2(Fx)qt(Fx)ur) + ´´´

= d qt d ur +
ib
Ï 2

( d qt( d ur+ 1 + d ur- 1) - d ur( d qt+ 1 + d qt- 1))

+
1
2!

ib
Ï 2

2

( d qt( d ur+ 2 + d ur- 2 - 2d ur)

+ d ur( d qt+ 2 + d qt- 2 - 2d qt)

- 2( d qt+ 1( d ur+ 1+ d ur- 1)+ d qt- 1( d ur+1+ d ur- 1))) + ´´´.

(17)
Using the constraints that tu is a double quantum
coherence, i.e., t - u = 2 and qr is a single quantum
coherence, i.e., q - r = 1, we observe the following.
(1) The ® rst term is a product of two delta functions
and exists only when q = t and r = u; hence it vanishes
in this case. (2) The second term which is linear in b

exists when one of the delta functions exists, i.e., when

q = t and u = r 6 1; or u = r and q = t 6 1; when q = t
we have u = r - 1 and the value of this term is
k = ib / Ï 2; when u = r we have q = t - 1 and the
value of this term is - k. (3) The third term also vanishes
when q = t + 1, u = r; and when q = t - 1, u = r - 2.
Therefore for values of mixing pulse ¯ ip angle b selected
such that terms in b

3 may be neglected, coherence is
transferred only when there is a common level between
qr and tu. We may employ

(3!)( b / Ï 2)
3( b / Ï 2)3 > 6, i.e., b

2 < 2
3

as the cut-o� condition for cubic and higher order terms
in b .

(ii) The coherence transfer amplitude for transfer
from `outer’ components of two-spin DQC to the
remote and connected outer SQ components are maxi-
mized, respectively, for b = 270 ë and b = 48.6ë .
Further, these maximum amplitudes are unequal. The
coherence transfer amplitude for transfer to the central
SQC component is maximized for b = 40ë ; also note in
this case that the coherence transfer amplitude crosses
zero for b = 90ë ; at this ¯ ip angle the amplitudes of
transfer to the two outer components of an SQ multiplet
become equal and opposite.

(iii) In the case of the `central’ component of the two-
spin DQC precessing with frequency d I + d S during the
evolution period, coherence is not transferred to the
central SQC component. It may be noted from ® gure
5 that transfer amplitudes to the outer SQ components
are equal and opposite for all values of b . This be-
haviour of the CT amplitude is similar to that in the
case of the two-spin-1/2 system [27]. This is due to the
fact that this is the sole DQC component in the two-
spin-1 system which is independent of J, as is the case in
the two-spin-1/2 system. Predictably in this sense, the
coherence transfer amplitude is maximized for b = 60ë .

`SMART’ [28] simulations of 2D-DQS were per-
formed for b = 40ë and b = 48.6ë . It can be seen
from the row spectrum in ® gure 6, corresponding to
the `outer’ component of two-spin DQC, that the
amplitudes of the outer SQC components are indeed
unequal.

3.2. Coherence transfer echoes and anti-echoes
We next inquire into the behaviour of CT echo and

anti-echo amplitudes.
We plot the DQ coherence transfer echoes in ® gures

7± 9. The echo plot is generated by summing the absolute
magnitude of the CT amplitude from a DQC to various
SQCs. For example, the CT echo plot for c̀entral’ com-
ponent of two-spin DQC is generated as follows:

Spectroscopy of two-spin-1 AX systems 861
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Z = |ZCSQI ; C2DQ| + |ZO1SQI ; C2DQ| + |ZO2SQI ; C2DQ|
+ |ZCSQS ; C2DQ| + |ZO1SQS ; C2DQ| + |ZO2SQS ; C2DQ|.

(18)

CSQI refers to central SQC component with precession
frequency d I , O1SQI refers to the outer SQC component
with precession frequency d I + J, O2SQI refers to the
outer SQC component with precession frequency
d I - J, and C2DQ refers to the `central’ component
component of two-spin DQC.

Unlike the situation in the case of the two-spin-1/2
system [27], there are three di� erent coherence transfer
echoes: one corresponding to the `outer’ component and
a second to the c̀entral’ component of the two-spin
DQC, and a third corresponding to one-spin DQC.

It can be noted from ® gure 7 that for one-spin DQC
the maxima of the echo amplitude and the anti-echo
amplitude are achieved with a reconversion pulse ¯ ip
angle of 90ë . This results in maximizing the sensitivity

for both the pathways at the same value of b = 90ë .
Hence the pure phase TPPI spectrum of one-spin
DQC also results in optimum sensitivity (unlike the
two-spin-1/2 situation, where there is a trade-o� of
sensitivity under TPPI [27]).

In the case of two-spin DQC we have two di� erent
optimum reconversion pulse ¯ ip angles, one for maxi-
mizing the CT echo magnitude for transfer from `outer’
components of DQC and another for transfer from the
c̀entral’ component of DQC. It can be seen from ® gures
8 and 9 that the echoes and the anti-echoes have the
maximum sensitivity for b = 40ë and b = 140 ë , respec-
tively, for transfer from `outer’ components of DQC,
while maximum sensitivity is achieved at b = 60ë and
b = 120 ë for transfer from the `central’ component of
DQC.

The reconversion pulse ¯ ip angle for optimal N/P
suppression ratio for all the two-spin DQC components
is found to be b = 135 ë , which is the same for a two-
spin-1/2 system [27].

4. Experiment and discussion

A system of two equivalent spin-1/2 nuclei has com-
posite angular momentum states with I = 0 and I = 1.
Since I = 0 is a non-magnetic state, such a two-spin-1/2
system is homomorphic with a spin-1 system. One may
thus apply the results we have for the two-spin-1 system,
mutatis mutandis, to a spin-1/2 A2X2 system. Indeed, all
our `Matlab’ simulations of CT involving DQCs are
exactly similar for both the nine-level two-spin-1
system and the 16-level spin-1/2 A2X2 system. This
may be understood readily on the basis that: (i) the
I = 0 composite angular momentum state cannot by

862 S. Venkata Raman and N. Chandrakumar

Figure 6. `SMART’ simulation of the double quantum spec-
trum for a reconversion pulse ¯ ip angle of 40ë with P-type
double quantum pathway selection. The 1D spectrum
corresponds to the row spectrum of the two-spin DQC
with precession frequency d I + d S + J.

Figure 7. Simulation of the CT amplitude of one-spin DQC
echo/anti-echo as a function of reconversion pulse ¯ ip
angle b .
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de® nition participate in two-spin DQC: and (ii) one-spin
DQC may be prepared in solution state only by virtue of
non-zero coupling to a second spin, which again requires
I /= 0. Barring relaxation e� ects, therefore, and focusing
on the DQ-CT behaviour, we may exploit this equiva-
lence. We experimentally demonstrate the results on 2-

aminoethanol in D2O, this system being a good approx-
imation to an A2X2 spin system at 300 MHz. (We have
ascertained this by the fact that there is little observable
transfer to the parent group from the A2 or X2 one-
group double quantum coherence: signi® cant transfer
to the parent group is characteristic of an AA Â XX Â

Spectroscopy of two-spin-1 AX systems 863

Figure 8. Simulation of the CT
amplitude of two-spin DQC
with precession frequencies
6 ( d I + d S), as a function of
reconversion pulse ¯ ip angle b :
solid line, CT amplitude for
echo; and dotted curve/thick
line, CT amplitude for anti-echo.

Figure 9. Simulation of the CT
amplitude of two-spin DQC
with precession frequencies
6 ( d I + d S 6 J), as a function of
reconversion pulse ¯ ip angle b :
solid line, CT amplitude for
echo; and ´´´´´ ,́ CT amplitude
for anti-echo.
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system. Work on the theoretical and experimental impli-
cations of magnetic inequivalence on multiple quantum
spectroscopy is in progress and includes consideration of
these aspects, which have been observed earlier in deu-
terium DQS [17]. We may further note the analogy with
3-aminopropanol, which has been treated as an A2M2X2

system by Ernst et al. [26] in the context of multiple
quantum spectroscopy.) The spectra were obtained on
a Bruker MSL300P NMR spectrometer. The DQJ ® lter
experiment with preparation resulting in both kinds
of DQCs was performed with the DQJ ® lter pulse
sequence of ® gure 1. It can be seen from ® gure 10 that
for t1 = 1 /(8J), (J = 5.42Hz), two-spin DQC gets separ-
ated, resulting in a neat anti-phase (- 1,0,1) doublet as
predicted by equation (4). On the other hand, one-spin
DQC gets separated at t1 = 1 /(2J), resulting in an anti-
phase (- 1,2, - 1) triplet as predicted by equation (4).
Figure 11 shows the pure phase 2D double quantum
spectrum of 2-aminoethanol. The spectrum was run
with a mixing pulse of 90ë , in TPPI mode. It is to be

emphasized that this spectrum has exactly the same
appearance and multiplet patterns as predicted and
observed for the double quantum spectrum of two-
spin-1 systems [13, 19], including [3,3 Â -D2]-norcamphor,
and [3,3 Â -D2]-camphor, where the homonuclear 2H± 2H
couplings involved are well below 0.4Hz; further, clus-
ters of organolithium species with homonuclear 6Li± 6Li
couplings below 0.25 Hz [19] behave as predicted.

For reconversion pulse ¯ ip angle /= 90ë the 2D double
quantum spectra were run with gradient controlled
pathway selection using a 5 mm RF insert in an actively
shielded micro-imaging probe head. The double
quantum pathway selection was e� ected by applying z
gradient pulses immediately before and after the recon-
version pulse, the amplitudes being in the ratio 1 : - 2
(P-type selection). Gradient amplitudes are 2.33 Gcm- 1

and - 4.66G cm- 1. The experimental plots shown in
® gures 12± 14 con® rm all the detailed predictions of the
theory and simulations of CT amplitudes in ® gures 3± 5
and echo plots of ® gures 7± 9.

864 S. Venkata Raman and N. Chandrakumar

Figure 10. Experimental proton spectra of the DQJ ® lter experiment on 2-aminoethanol. The top trace corresponds to two-spin
DQC selection, obtained for t1 = 21.78 ms (1/8J), and the bottom trace corresponds to one-spin DQC selection, resulting from
the choice of t1 = 87 ms (1/2J).
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5. Conclusion

We have investigated in detail coherence transfer
involving DQCs in a two-spin-1 system. We have
shown that the evolution of the two kinds of DQCs
under homonuclear coupling provides a recipe for
their separation. We have introduced a double quantum
J ® lter sequence for the separation of the two kinds of
DQCs and have veri® ed the results experimentally on a
spin-1/2 system that mimics the two-spin-1 AX system.

We have presented in detail the coherence transfer
process for an arbitrary reconversion pulse ¯ ip angle
b . Based on simulations and experimental veri® cation
of CT amplitudes, we note the following.

(1) The behaviour of the coherence transfer amplitude
as a function of b is di� erent for one-spin DQC, the
`outer’ components of two-spin DQC, and the `central’

component of two-spin DQC. The CT amplitude from
each DQC to various SQC components is also di� erent.
(a) CT amplitudes from the `outer’ components of one-
spin DQC to the outer SQC components are equal,
being the negative one half of that to the central com-
ponent of SQC. In all these cases the CT amplitude is
maximized for b = 90ë . The CT amplitude for transfer
from the `central’ component of one-spin DQC to any
SQC component vanishes identically. (b) CT amplitudes
from `outer’ two-spin DQC components to the con-
nected and the remote outer components of SQC are
asymmetric and are maximized for b = 48.6ë and
b = 90ë , respectively. The CT amplitude for transfer to
the central SQC component is maximized for b = 40ë .
The CT amplitude for transfer from the `central’ com-
ponent of two-spin DQC to outer SQC components are

Spectroscopy of two-spin-1 AX systems 865

Figure 11. Experimental 2D pure phase double quantum spectrum of 2-aminoethanol. The ampli® cation of coupling in the case of
one-spin DQC can be seen clearly from the F1 projection shown. Though the triplet of the two-spin DQC is unresolved the
doublet of the one-spin DQC is resolved neatly down to the baseline.
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866 S. Venkata Raman and N. Chandrakumar

Figure 12. Experimental coherence transfer intensity as a function of the reconversion pulse ¯ ip angle b , from `outer’ component
of two-spin DQC (precessing with frequency d I + d S + J), to various SQCs: u , data points of CT intensity for transfer to the
connected outer SQC component with precession frequency d I + J or d S + J; and *, data points of CT intensity for transfer to
the remote outer SQC component with precession frequency d I - J or d S - J. The broken and continuous curves connecting
the experimental data points are polynomial ® ts of the data points and do not have any theoretical signi® cance.

Figure 13. Experimental coherence transfer intensity as a function of the reconversion pulse ¯ ip angle b , from the `outer’ compo-
nent of one-spin DQC to various SQCs: u , data points of CT intensity for transfer to the central SQC component of the
coupled spin; and *, data points of CT intensity for transfer to the outer SQC components of the coupled spin. The solid and
broken curves are polynomial ® ts of the experimental data points, and do not have any theoretical signi® cance.
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equal and opposite for all values of b , with a maximum
at b = 60ë , while that to the central component of the
SQC is zero.

(2) There are three di� erent coherence transfer echoes:
two for two-spin DQC and one for one-spin DQC. (a) In
the case of one-spin DQC, the echo and anti-echo
extremum occurs at the same angle 90ë ; hence the pure
phase spectrum of one-spin DQC does not compromise
sensitivity, unlike the case of the two-spin-1/2 system.
(b) In the case of `outer’ components of two-spin DQC,
echo and anti-echo extremum occurs at reconversion
pulse ¯ ip angles of 40ë and 140 ë , respectively. On the
other hand, the CT echo and anti-echo for `central’
component of two-spin DQC is maximized for b = 60ë

and 120 ë , respectively, which is identical to the situation
with the two-spin-1/2 system. The close similarity
between DQC in a two-spin-1/2 system and the
c̀entral’ component of two-spin DQC in a two-spin-1
system is noteworthy.

The present approach yields readily to a detailed
examination of single, triple and four quantum spectros-
copy of the two-spin-1 AX system as well. The same
formalism can also be extended readily to N-spin-1
systems and can be modi® ed easily to take into account
magnetic inequivalence, as well as strong coupling
e� ects.
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