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Homoclinic bifurcation in Chua’s circuit

S K DANA1, S CHAKRABORTY2 and G ANANTHAKRISHNA3

1,2Instrument Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
3Material Research Centre and Centre for Condensed Matter Physics, Indian Institute of
Science, Bangalore 560 016, India
E-mail: skdana@iicb.res.in; satya iicb@yahoo.com; garani@mrc.iisc.ernet.in

Abstract. We report our experimental observations of the Shil’nikov-type homoclinic
chaos in asymmetry-induced Chua’s oscillator. The asymmetry plays a crucial role in the
related homoclinic bifurcations. The asymmetry is introduced in the circuit by forcing a
DC voltage. For a selected asymmetry, when a system parameter is controlled, we observed
transition from large amplitude limit cycle to homoclinic chaos via a sequence of periodic
mixed-mode oscillations interspersed by chaotic states. Moreover, we observed two inter-
mediate bursting regimes. Experimental evidences of homoclinic chaos are verified with
PSPICE simulations.
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1. Introduction

Homoclinic orbit is asymptotic to a saddle limit set both forward and backward in
time [1,2]. In the vicinity of the homoclinic orbit, if a control parameter is tuned
to the bifurcation point, there exists a countable infinity of periodic orbits, which
are at the origin of chaos in nonlinear dynamical system. The homoclinic orbit is
structurally unstable and difficult to observe in experiments. However, homoclinic
chaos of the Shil’nikov-type has been observed in BZ reaction [3], liquid crystal flow
[4], CO2 laser [5,6], optothermal bistable device [7] and electronics [8]. The tra-
jectory of homoclinic chaos switches irregularly between firing state and quiescent
state. The geometry of homoclinic chaos appears regular globally yet instabilities
are bounded to a local domain close to the saddle, which may be a saddle focus
or a saddle cycle in 3D system. The local instability has its manifestation in large
fluctuations in the return time of the spiking oscillation. It has striking similari-
ties with spiking of neurons [9,10]. In fact, homoclinic bifurcation is considered,
in recent times [11–13], as one of the important mechanism of the emergence of
spiking and bursting behaviors of neurons. Recent experiments [14] on message
encoding using phase synchronization of external signal in the interspike intervals
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of homoclinic chaos in CO2 laser have explored the potential of homoclinic chaos
as a suitable candidate of message encoding for secure communication.
The Shil’nikov scenario [1,2] deals with a saddle focus with real and complex

conjugate eigenvalues, (σ ± jω, γ) in 3D systems. The homoclinic orbit escapes
spirally from the saddle in 2D eigensapce and re-injects into it along the stable
eigendirection for γ < 0 and σ > 0 and if it satisfies the condition |γ/σ| > 1. In
period-parameter space, the period of a limit cycle (period-n: n0, n = 1, 2, 3...)
increases asymptotically with a control parameter as it approaches the homoclinic
orbit. Further studies [15] on Shil’nikov chaos show later that a Shil’nikov wiggle
appears in period-parameter space if 1/2 < |γ/σ| < 1 for γ < 0 and σ > 0. When
a control parameter is tuned from both sides of the homoclinic point, the period of
a limit cycle increases in a wiggle with alternate sequences of stable and unstable
orbits via saddle-node (SN) and period-doubling (PD) bifurcation respectively.
In nonlinear systems, the dynamics usually changes with a parameter from stable

equilibrium to limit cycle by super-Hopf bifurcation and to chaos via PD. With
further changes in parameter, the system shows period-adding bifurcation when
a sequence of periodic windows appears intermediate to chaotic windows. The
periodic windows are created via SN bifurcation while the chaotic states appear via
PD. Subsequently, the dynamics follows a reverse PD before moving to unstable
limit cycle via sub-Hopf bifurcation.
Several numerical studies [16–19] showed evidences of mixed mode oscillations

(MMOs) as a transition route to the Shil’nikov-type homoclinic chaos with control
parameter in slow–fast systems. A sequence of MMOs is observed in the inter-
mediate periodic regimes of the bifurcation diagram of the system, which again
exist in isolated bifurcation curves (isolas) as elaborated in [3,17] and most recently
in a jerky flow model [19]. The MMO as illustrated in Boissonade–De Kepper
model [17,18] arises at a point when a large amplitude limit cycle loses stability
via SN bifurcation. It is seen as transition from large-amplitude limit cycle to
Farey sequences of periodic MMO, 10 → ∞1 → n1 → 1n → 1∞ (n is an integer),
interspersed by narrow chaotic states when a control parameter is tuned to homo-
clinicity. 10 denotes the large-amplitude limit cycle (period-1) while α1 denotes
a periodic orbit with transition to small oscillation for once in a long run. The
alternate sequences of periodic and chaotic MMOs appear via SN and PD bifurca-
tions respectively. The MMOs are usually denoted by Ls, where L and s are the
number of large- and small-amplitude oscillations respectively. L remains fixed for
a set of selected system. The number of small oscillations (s) is stable in a periodic
window but it is highly irregular in chaotic windows. For different sets of selected
parameters, MMO of higher L (= 2, 3, ...) may also be observed. It is noteworthy
that the width of both the periodic and chaotic windows become narrower when
the control parameter is tuned to the homoclinic point. As the control parameter
approaches the homoclinic point, the number of small oscillations increases while
the trajectory moves closer and closer to the saddle. The state of homoclinic chaos
denoted by 1∞ (L = 1) is reached when the small oscillations s become finitely very
large but highly irregular. The number of small oscillations (s) is highly irregular
in the chaotic windows, which is reflected as large fluctuations in return time of
homoclinic spiking. The homoclinic chaos thus may be seen as infinite number of
unstable MMOs embedded into it.
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In this paper, we report our experimental observations of the Shil’nikov-type ho-
moclinic chaos in Chua’s circuit from the viewpoint of induced asymmetry. The
original Chua’s circuit model has reflection symmetry. Experiments are described
here to show that the asymmetry deliberately induced in a Chua’s circuit, can be
controlled to find many complex features, such as mixed mode oscillation and burst-
ing. In real systems, several sources of imperfection always exist, which break the
reflection symmetry of a model system. These imperfections are usually modeled
[20] by an additional constant term to the normal form of a model flow. Using this
concept, we induced asymmetry in a single Chua’s circuit by forcing a DC voltage
to investigate the role of asymmetry in the origin of homoclinic chaos. We observed
sequences of MMOs interspersed by chaotic windows during the intermediate stages
of transitions from one large-amplitude limit cycle to another large-amplitude limit
cycle with a control parameter. The dynamics follows the sequence of transitions
n0 → ∞1 → n1 → nm → Ls → np → n1 → ∞1 → n0 (n,m and p are integers)
when a system parameter is controlled keeping the asymmetry parameter at suit-
ably selected value. We are able to observe at least two different scenarios of MMO
(Ls: L = 1, 2) in the process of transition to homoclinic chaos for two different sets
of selected parameters. Evidences of two intermediate bursting regimes (n1 → nm

and np → n1) are observed for each scenario at the edges of transition from one
large-amplitude limit cycle to MMO and from MMO to the other large-amplitude
limit cycle. Many more scenarios with larger L may be observed by appropriate
choice of system parameters and asymmetry parameter.
The text of this paper is organized as follows: In the next section, we described

the experimental set-up. Evidences of homoclinic chaos and bursting are elaborated
in §3. Details of observed MMO are presented in §4. The results are summarized
with a conclusion in §5.

2. Experimental set-up: Asymmetric Chua’s circuit

We forced a DC voltage to C1 capacitor node in a Chua’s circuit shown in figure 1
to induce asymmetry in the attractor. The model of the asymmetry-induced Chua’s
circuit is given by
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where G = 1/R1 and Ga, Gb are the slopes in the inner and outer regions [21–23]
respectively of the piece-wise linear characteristic f(VC1

). The slopes Ga and Gb
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Figure 1. Asymmetric Chua’s oscillator: ±9 V supply.

are determined by
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. (3)

The state variables VC1
, VC2

, and IL are the voltages measured at the nodes of
capacitors C1 and C2, and the current through the inductance L respectively. The
DC source VDC is connected to the Chua’s circuit using a voltage divider with re-
sistances Rx and Ry, where V0 = VDC(1 +

Rx

Ry

). To facilitate fine control over the

strength of asymmetry, a series resistance RC is connected between the voltage di-
vider and the Chua’s circuit. The symmetric Chua’s circuit (no DC forcing) shows
[21–23] transition from limit cycle to single scroll chaos via PD and then to alter-
nate period adding and chaotic states via saddle-node (SN) and PD bifurcation
respectively, and finally to double scroll chaos. The original model has three saddle
foci, one near the origin with eigenvalues (γ,−σ ± jω) and other two at reflection
symmetric positions with eigenvalues (−γ, σ ± jω). The trajectory of double scroll
in Chua’s circuit revolves most of the time near either of the mirror symmetric equi-
librium points and switches irregularly between the two. Thus the system shows
two time-scales inherent in the dynamics of Chua’s double scroll attractor, one due
to the single scroll oscillation near either of the saddle foci and other due to a large
cycle around both the equilibrium points. This is atypical of a dynamical system
with piece-wise linear characteristics spreading over three regions. By inducing
asymmetry in the double scroll Chua’s oscillator one of the single scroll shrinks in
size thereby two different time-scales are introduced, which characterize a large-
amplitude oscillation and a small-amplitude oscillation. Effectively, the asymmetry
in the double scroll attractor appears with a shift of the saddle focus near the origin
closer to the saddle focus at one end than that at the other end. However, the basic
nature of the eigenvalues of all saddle foci as noted above remain unchanged in our
experimental parameter setting.
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Figure 2. Homoclinic chaos in asymmetry-induced Chua’s circuit. Time
series of PSPICE simulation for L = 2 in the upper plot for R1 = 1429.9 Ω,
RC = 45 kΩ, Rx = 1580 Ω, Ry = 507 Ω and of experiment for R1 = 1370.1
Ω, RC = 47.25 kΩ, Rx = 9.33 kΩ, Ry = 1.73 kΩ in the lower plot.

3. Homoclinic chaos and bursting

The asymmetry in the Chua’s circuit is controlled by the combination of resistance
Rx, Ry and RC . The resistance RC is used only to control the asymmetry in the
attractor, once the resistance Rx and Ry are appropriately selected. For selected
system parameter R1 and asymmetry parameter RC , the time series from both ex-
periment and PSPICE simulation are shown in figure 2, which show clear evidences
of homoclinic chaos for L = 2 as a train of high-amplitude spikes with irregular
switching to quiescent state. The time series of homoclinic chaos may be seen here
as MMO (2s:L = 2) with highly fluctuating number of small-amplitude oscillations
(s). The number of small-amplitude oscillations decides the time interval of the
large-amplitude spiking, whose successive time intervals are highly uncorrelated. It
may be mentioned here again that the homoclinic trajectory reaches as close to the
saddle as the number of small oscillations increases. A fine tuning of the RC value
is necessary, at this point, to obtain a critical value in close proximity to homoclin-
icity so as to maximize the number of small oscillations with large fluctuations in
the interspike intervals. The corresponding 3D trajectories are shown in figure 3 as
obtained from PSPICE simulation and experiment. The trajectory moves towards
the saddle focus at one end along its stable eigendirection as indicated by the arrows
in figure 3. When the trajectory comes in close proximity to this saddle focus, it
escapes from it in spirals. Next it spirals in towards the middle saddle focus before
totally escaping from this unstable domain along the unstable eigendirection of this
saddle. Finally the trajectory takes two global turns before reinjecting again into
the first saddle focus. In reality, the trajectory of the 3D unstable orbit approaches
homoclinicity in two different saddle foci, one in the middle and the other at one
end of the attractor.
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Figure 3. The 3D trajectory of homoclinic chaos. Left plot from PSPICE
simulation using time series of IL(t), VC2(t) and VC1(t) for L = 2 :R1 = 1429.9
Ω, RC = 45 kΩ, Rx = 1580 Ω, Ry = 507 Ω. Right plot from experimental
time series of VC1(t), VC2(t) and delayed VC1(t−2) using embedding technique:
R1 = 1370.1 Ω, RC = 47.25 kΩ, Rx = 9.33 kΩ, Ry = 1.73 kΩ.

Figure 4. Period parameter bifurcation. RC = 47.25 kΩ, Rx = 9.33 kΩ,
Ry = 1.73 kΩ.

In our first experiment, we set the asymmetry by Rx = 9.33 kΩ, Ry = 1.73 kΩ
and RC = 47.25 kΩ, and then decrease R1 from 1524 Ω. As R1 is decreased, the
circuit dynamics moves from stable focus to limit cycle via super-Hopf bifurcation
at R1 = 1524 Ω and a transition to 2-band chaos occurs via a sequence of PD. A
large-amplitude limit cycle of period-2 (20) appears via reverse PD at R1 = 1373.3
Ω as shown in figure 5 (plot in upper row left). The period–parameter bifurcation
in figure 4 (right diagram) shows asymptotic increase in period with decrease in
R1 indicating an approach to homoclinicity. The large-amplitude limit cycle 2

0

for R1 = 1373.3 Ω is seen at the highest point (A) of the bifurcation diagram.
The dynamical behavior shown by the phase portrait in figure 5 (upper row left)
first attains an imperfect homoclinicity to the middle saddle, in the sense of the
discussion in previous section, before losing stability. The instability started just
beyond this point with further decrease in R1 until at R1 = 1363.7 Ω when it stops
with the re-appearance of the large-amplitude limit cycle (20) shown in figure 5 (plot
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Figure 5. Phase portraits of VC1(t) vs. VC2(t). Upper row: Large-amplitude
limit cycles for R1 = 1373.3 Ω (left) and for R1 = 1363.7 Ω (right). Lower
row: Unstable small-amplitude limit cycle glued to the stable large-amplitude
limit cycle via SN bifurcation for R1 = 1373.2 Ω (left) and for R1 = 1364 Ω
(right).

in upper row right) corresponding to the top (A+) of the left bifurcation diagram in
figure 4. The second large amplitude also attains imperfect homoclinicity to middle
saddle in a sense similar to the first large-amplitude limit cycle. The period in
left plot (figure 4) then decreases with R1. But the period increases again with
an intermediate minimum until another instability region appears at R1 = 1352.3
Ω. A stable limit cycle (period-2) appears again at R1 = 1339 Ω, which moves to
10 (period-1) limit cycle at R1 = 1337 Ω via reverse PD and finally loses stability
via sub-Hopf bifurcation for R1 < 1337 Ω. Each of the local maximum in the
period–parameter bifurcation indicates an approach to homoclinicity. However, it
is difficult to identify them in a single experiment due to their extreme sensitivity
to control parameter. We concentrated, in the first experiment on evidences of
homoclinicity related to MMO (2s) in the R1 interval of (1363.7 Ω, 1373.3 Ω). In
this parameter interval, R1 = (1363.7 Ω, 1373.3 Ω) several complex behaviors like
bursting and MMO and homoclinic chaos are observed. The large-amplitude limit
cycles (20) called as spiking at both the edges (A, A+) of the R1(1363.7 Ω, 1373.3
Ω) interval are shown in the upper row of figure 5. The time series of spiking
large-amplitude limit cycles at the edges are shown in figure 6. For small changes
in R1 = 1364 Ω (right : 2

p) and 1373.2 Ω (left : 2m) near these edges, two bursting
oscillations appear by the loss of stability in each of the large-amplitude limit cycle
as shown in the lower phase portraits in figure 5. The corresponding time series of
bursting oscillations are shown in figure 7. The bursting oscillations are seen here as
a train of periodic spiking with intermittent transition to small oscillations. During
bursting, the number of large spikes is also irregular between intermittent small-
amplitude oscillations. The unstable small-amplitude limit cycle (2m) appears in
figure 5 as glued (lower row left) to the stable large-amplitude limit cycle via SN
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Figure 6. Time series of VC1(t) for large

amplitude limit cycles. For R1 = 1373.3 Ω,

1363.7 Ω in the upper and lower plots re-

spectively at the edges of the instability

interval.

Figure 7. Time series of bursting oscil-

lations for R1 = 1364 Ω (2p) in the upper

plot and for R1 = 1373.2 Ω (2m) in the

lower plot.

bifurcation while it is inside the large limit cycle for 2p. We also observed a sequence
of MMOs interspersed by chaotic states in the parameter interval of R1 = (1363.7
Ω, 1373.3 Ω) as a route to homoclinic chaos (2s) for R1 = 1370.1 Ω already shown in
figures 2 and 3. However, it becomes very difficult to identify the periodic MMOs,
in this experiment, due to their extremely narrow interval in the selected parameter
space.
In a second experiment, by appropriate choice of system parameters and control

of the asymmetry parameter, we observed a sequence of transitions 10 → ∞1 →
11 → 1m → 1s → 1p → 11 →∞1 → 10. The large-amplitude limit cycle is period-1
(10) here. We observed the sequence of transitions as large-amplitude limit cycle
(10), bursting (1m), homoclinic chaos (1s), and then again bursting (1p), large-
amplitude limit cycle (10) with changes in R1 as shown in figure 8. The phase
portraits of the five different states are shown in figure 9.

4. Mixed mode oscillation

We chose a different set of parameters, Rx = 1858 Ω, Ry = 333 Ω, in a separate
experiment and find similar sequence of events as described above but with clear
evidences of periodic MMO. For selected RC = 47.14 kΩ, the parameter R1 =
1357 Ω is critically tuned to observe homoclinic chaos as shown in figure 10. We
observed the sequences of periodic MMOs with intermediate chaotic states when RC

is increased to 85 kΩ keeping other parameters unchanged. The period–parameter
bifurcation in figure 11 shows devil’s staircases with asymptotic increase in period
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Figure 8. Time series of transitional phases to homoclinic chaos (L = 1).
Top to bottom, R1 = 1334.1 Ω (10), 1334 Ω (1m), 1333.3 Ω (1s), 1332 Ω (1p),
1331.5 Ω (10), for Rx = 4.2 kΩ, Ry = 1.6 kΩ and RC = 80.2 kΩ.

while approaching homoclinicity with decease in RC . We are able to observe a
sequence of periodic MMOs (2s) with a maximum number of small oscillations
s = 10 for RC = 55 kΩ. The interval in RC parameter for the MMO becomes
narrower with increasing small oscillations (s) as reported earlier for other systems
[3,16–19]. The intervals between the line plots in figure 11 indicate the chaotic
windows. It is important to note that the time period of the largest (210) MMO is
nearly 5 ms for RC = 55 kΩ while the time series of homoclinic chaos in figure 10
for RC = 47.14 kΩ show fluctuations in the interspike intervals between 8 ms and
16 ms. It is clearly evident that as RC is slowly tuned from 55 kΩ (corresponding to
the largest MMO (s = 10)) to 47.14 kΩ, the interpsike intervals increase three-fold.
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Figure 9. Phase portraits of transitional phases of 10 limit cycle: (a)
R1 = 1334.1 Ω (10), (b) 1334 Ω (1m), (c) 1333.3 Ω (1s), (d) 1332 Ω (1p),
(e) 1331.5 Ω (10) for Rx = 4.2 kΩ, Ry = 1.6 kΩ and RC = 80.2 kΩ.

Thus, by fine tuning the asymmetry parameter, we are able to reach a close vicinity
of the homoclinic orbit with much larger (s À 10) number of small oscillations.
The time series of periodic MMOs are shown in figure 12. The y-scale is arbitrarily
chosen since different time series are either scaled up or down for visual clarity.

5. Conclusion

We find experimental evidences of homoclinic chaos in asymmetry-induced Chua’s
oscillator. The asymmetry plays a crucial role in homoclinic bifurcations in the
process of transition to homoclinic chaos and away from it, when we observed
spiking, bursting and MMO. When a system parameter is changed for selected
asymmetry, the large-amplitude limit cycle (n0: n = 1, 2) moves to MMO through
a bursting region (n1 → nm) via SN bifurcation. The system then moves to periodic
MMOs with increasing number of small oscillations interspersed by chaotic states.
Homoclinic chaos is observed, in this MMO regime, when the asymmetry parameter
is fine tuned. The system moves to another large-amplitude limit cycle with further
change in system parameter. During this later transition, another bursting region
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Figure 10. Homoclinic chaos. R1 = 1357

Ω, Rx = 1858 Ω, Ry = 333 Ω and RC =

47.14 kΩ.

Figure 11. Period parameter bifurca-

tion: R1 = 1357 Ω and Rx = 1858 Ω,

Ry = 333 Ω. Period of periodic mixed

mode oscillations are plotted, intervals are

noted as chaotic states.

Figure 12. Mixed mode oscillations. R1 = 1357 Ω and Rx = 1858 Ω,
Ry = 333 Ω. Mixed mode oscillations from top to bottom for L = 2 and
s = 4, 5, 6, 7, 8, 9, 10. RC values are 78.9 kΩ, 69.9 kΩ, 65 kΩ, 62 kΩ, 59 kΩ,
57 kΩ and 55 kΩ respectively.

(np → n1) is also observed. The existence of this second bursting regime on the
way back to large limit cycle from homoclinic chaos is overlooked in earlier works.
However, the emergence of MMO from large-amplitude limit cycle via a bursting
regime followed by the transition to homoclinicity has been reported earlier in
slow–fast system models.
To the best knowledge of the authors, homoclinic chaos is investigated, in this

paper, for the first time from the viewpoint of asymmetry, although gluing bifurca-
tion as a homoclinic bifurcation of codimension-2 has recently been studied [20] in
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the perspective of asymmetry. It is already known that the homoclinic bifurcation
is an important mechanism of spiking and bursting in neuron models. From this
viewpoint, the observed bursting regimes will be investigated with much rigor in
future.
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