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A NOTE ON A TRANSPLANTATION THEOREM OF KANJIN
AND MULTIPLE LAGUERRE EXPANSIONS

S. THANGAVELU

(Communicated by J. Marshall Ash)

ABSTRACT. By applying a transplantation theorem of Kanjin, a multiplier the-
orem and a Cesaro summability result are proved for multiple Laguerre ex-
pansions. In the one-dimensional case an improved version of the multiplier
theorem is obtained.

1

Consider the normalised Laguerre functions 5’7{" , a>—1,on R, =(0, oo)
defined by

1/2
(1.1) Ze@) = (%) L (t)e™"/2e/?

where Lg(t) are the Laguerre polynomials of type «. The functions {.Z*}
form a complete orthonormal system for L2(R,). Recently, in [4] Kanjin stud-
ied the mapping properties of the operator TS , which is defined as

(1.2) =3 (f, ZH&e
k=0

where (f, g) stands for the inner product in L?(R,). For the operator TS he
has proved the following result.

Theorem 1.1 (Kanjin). Let o, f > —1 and y = min{a, B}. If y > 0 then
(1.3) ITEfllp < Cllf Nl for 1 < p < co.
If =1 <y <0 then (1.3) is valid for p in the interval (1+7/2)"' <p < -=2/y.

The above theorem is called a transplantation theorem for the following rea-
son. Given a bounded sequence A(k) we can define an operator M7 by setting

(1.4) Mf =" Ak)(f, LHZe
k=0
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1136 S. THANGAVELU

whenever f has the Laguerre expansion

(L5) [=>(f,ZH&e.
k=0
From the theorem, we can deduce the norm inequality
(1.6) Ml < CUSlp
for any o if we know (1.6) for a particular . This follows from the identity
(1.7) TeMTEf =M f.

As an application Kanjin proves the following result concerning M} .

Theorem 1.2 (Kanjin). Let A(t) be a four times differentiable function on (0, oo)
and satisfy
(1.8) sup |[t“A5)(¢)| < ¢k

>0
for k =0,1,2,3,4. Then (1.6) is true for 1 < p < oo if a > 0 and for
(I+a/2)'<p<=2/aif -1<a<0.

Theorem 1.2 is deduced by applying the transplantation theorem to the par-
ticuiar case « = 0, which is proved by Dlugosz in [1]. Now the aim of this
note is to prove an improved version of the above multiplier theorem and also
to give applications to higher-dimensional Laguerre expansions.

2
Let R? = {x € R": x; > 0 for all j}, and consider for every a € R? and a
multi-index m = (m;, my, ..., m,), the normalised Laguerre functions %2
on R’ defined by
n
(2.1) Ze(x) = [[Zn (x)).

j=1
They form a complete orthonormal system for L?(R%), and the Laguerre ex-
pansion of a function f in LP(R%) can be written as

oo
(22) =3z
m=0
where the sum is extended over all the multi-indices. Expansions of the above
type have been studied by Dlugosz [1] when o is a multi-index.
For the above series (2.2) we define the Cesaro means g9 of order § by the
equation

N
(2.3) o} f = A% XA 2L g
N k=0

|m|=k

where 47 =T'(k+d+1)/T'(k+1) are the binomial coefficients. Given a function
4 on (0, co) we also define the multiplier operator M{ as

(2.4) Mpf=Y AQ2k+n) Y (f, ZHZe.
k=0 |m|=k

For the operators (2.3) and (2.4) we prove the following two theorems.
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Theorem 2.1. Let § > % Then the uniform estimates

(2.5) logfllp < CIlf

are valid iff 4n/(2n+1+20) <p <4n/(2n—1-29).
Theorem 2.2. Assume that the function A satisfies the conditions
(2.6) sup |t“ AR (8)| < ¢k

>0
for k=0,1,2,...,v where v=n+1ifnisoddand v=n+2 if nis
even. Then for 1 < p < oo we have

(2.7) 1M S Nlp < CULS -

In the case n = 1 we can take v = 1 in the hypothesis and (2.7) is valid for
1<p<a.
3

A slightly weaker form of Theorem 2.2 is proved in [1] when o is a multi-
index. In that version one has v = n + 3 for all n. Theorem 2.1 is known
when n =1 and is due to Gorlich and Markett [3, 5].

For the Laguerre series (2.2) we also define the Riesz transforms R;, j =
1,2,...,n, by the formula

(2.8) Rif =Y (2m;+ )2m|+n)"(f, £,

m=0
Riesz transforms for the Hermite and special Hermite expansions have been
studied by the author in [9, 12]. For the above Riesz transforms (2.8) we prove
Theorem 2.3. For 1 < p < oo all the Riesz transforms R; are bounded on
LP(RY).

All three theorems will be proved by appealing to the n-dimensional version
of Kanjin’s transplantation Theorem 1.1. For «, f in R} we define T by

(2.9) TEf=> (f, L=
m=0

Then, for f in Cg°(R}) and 1 <p < oo,

(2.10) IT2 fllp < ClILSf Mlp-

This follows from Theorem 1.1 by iteration.

In view of (2.10) Theorems 2.1, 2.2, and 2.3 will follow once we show that
they are true in the particular case o = 0. It will be shown in the next section
that the case a = 0 follows from known results on special Hermite expansions
as a special case. The one-dimensional case of Theorem 2.2 when a = % will
be deduced from the corresponding result on the Hermite expansions. This will
be done in the last section.

3
Consider the functions y,,(z) on C" defined by

(3.) HLm 3lzj17)e 1ol /4
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where L;(t) are the Laguerre polynomials of type 0. The functions y,,(z) are
called special Hermite functions since they are related to the Hermite function
®,,(x) on R". This terminology is due to Strichartz [6]. In fact, one has

(32) unlz) = [ e, (¢ +3) On (¢~ 3) ¢

where z = x + iy, x,y € R" (see [2]). Given f on C" we have the special
Hermite expansion

e ]

(3.3) £(2)= Q0" £ % Ym(2)

m=0

where the twisted convolution f x g of two functions is defined by
(3.4) Ixa@)= [ fiz=w)gw)et’ T du,

We can also write (3.3) in the form
(3.5) Zf x i~ 1(2)

where ¢7~!(z) = LI!(1|z|*)e~12F/4 . For all these facts we refer to [11].
For the special Hermite expansion let C" be the Cesaro means defined by

(3.6) Z e S x ).

|m|=k
Given a function 4 on (0, co) we also define a multiplier transform 7, by
(3.7) Tf =) 42k +n) 3 (f % ym).
k=0 Im|=k
In [11] we proved

Theorem 3.1. Let 6 > 1. Then for f in LP(C")

ICHfNlp < CIIS llp
holds if and only if 4n/(2n+1+28)<p <4n/(2n—-1-26).
Regarding T; we have proved the following multiplier theorem in [10].

Theorem 3.2. Let A satisfy the hypothesis of Theorem 2.2. Then for 1 < p < oo
one has | T, f ], < ClIf I,

The case a = 0 of Theorems 2.1 and 2.2 will be deduced from the above
theorems in the following way. When f is a radial function the twisted convo-
lution f x p7~' becomes

68 rxe @) = gt ([T roe o ar) o)
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where ¢7~'(r) = ¢}~!(z) with |z| = r. If f is a polyradial function, i.e.,

f(zi, ..., zn) = f(r1, ..., ), rj =|zj|, then in view of (3.8) and (3.1) one
has

(3.9) fXV/m":{ flris oo (H %12) "rndrl"‘drn}'//m

Therefore, one sees that

(3.10) X Um(V22) = (g, Ln)Zn(r)
where g(r1,..., 1) = f(V2r1, ..., V2r,). Therefore, C3f becomes o4 g

and T,f becomes Mfg; hence, the case a = 0 of Theorems 2.1 and 2.2
follow.

The case a = 0 of Theorem 3.3 follows from the fact (see [12]) that the
Riesz transforms

(3.11) Sif= Z(zm, DR2Im|+n)""f X ¥,
=0

for the special Hermite expansions are bounded on LP(C"), 1 < p < .

4

Consider the normalised Hermite functions 4;(x) on R. We also consider
the Laguerre function ¢f of another type defined by, for o real,

(4.1) p2(x) = Z2(x2)(2x)1?,  x €R;.

Then the Hermite functions 4, and ¢f are related by (see [7])

(42)  hy(x) = <1>"l 07 (%), hzk+,(x>=<—1>"i2¢,i’2(x).

Consider a multiplier transform M for the Hermite series defined by
(4.3) Mf(x) =" Ak)(Sf, hi)hic(x).

k=0
In [8] we proved

Theorem 4.1. Assume that A is bounded and satisfies |tA'(t)| < C forall t > 0.
Then M is bounded on LP(R), 1 <p < oo.

Since hy is even and hy,,; is odd, by considering f to be odd we see that
(4.4) 21 2k +1)(f, 9,0, (x),
k=0

and this is related to M;/ 2 in the following way. An easy calculation shows
that

(4.5) 2 0 = Lg, 2

V2
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where f(v/X)x~!/* = g(x). Therefore,

46 MAVRXT =2 A0k + (g, ZE )

k=0
If we know that for $ <p <4
(4.7) /:o |M f(x)Px~PIH dx < C/Ooo | f(x)Px—P/** 1 dx
then it follows that
(48) [ eopdx < c [Tlewopdr;

hence, the case n =1, a = % of Theorem 2.2 follows. We claim that (4.7) is

true.
To prove the claim we recall the proof of Theorem 4.1. Let T! be the
semigroup on L?(R) defined by

(4.9) T'f = ie‘(z"“)'(f, i) .

k=0

For this semigroup we defined the g and g* functions in the following way:
(4.10) (&t 00 = [ ook,

@iy (g7 07 = [ ” /0 T O 4 7 2~ y) 20, TH () dy d.

For the g and g* functions we proved that

(4.12) Glfll <NgDllp < Cllf N, 1<p<o0,
(4.13) Ig* (Ol <ClSfllp,  p>2.

Under the assumption that |tA’(¢)| is bounded we verified that
(4.14) gMf,x)<Cg*(f, x),

and in view of (4.12) and (4.13) this proved Theorem 4.1.
Therefore, in order to prove the weighted version we need to check that

(4.12) Cillf lp.w < Ig)lp,w < Collf lpw,  F<P<4,
(4.13) lg*Mpw CISfllpws,  2<p<4,

where || f||,,» stands for the norm

1= ([ 1ot ax)

—00

Thus we need weighted norm inequalities for the g and g* functions.
In [8] we proved the L? boundedness of g by applying singular integral
theory. We identified g with a singular integral operator whose kernel takes
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values in the Hilbert space L?(R,, tdt¢). When the weight function w is in
the Muckenhoupt class 4, (see [13]) then we also have

(4.15) / T e Pwx)dx < C / 1 Pw(x) dx.

—0o0

When % < p < 4, w(x) = |x|77/?*! is in 4,; hence, the right-hand side
inequality of (4.12)" is valid. We will now show that the reverse inequality is
also valid.

From [8] we recall that we have the partial isometry

(4.16) lg(Hll2= 30112

from this, by polarisation, we obtain

(4.17) ’/ fi(x)Fy(x)dx| =

This gives the inequality

[ heTawax| <4 [ eh e, 2dx
Let us now take h(x) = fo(x)|x|~1/2+1/P 5o that

/ 0T (x) dx

/ / 10, f; (X)W T 5 (x) dt dx.

(4.18)

(4.19) oo
<4 / gUfi, X)X 212 gk, x)|x| /314 dx

where ¢ is the index conjugate to p. An application of Holder’s inequality
gives
(4.20)

o0

/ gUfi, X)Ix|~2+ P g (h, x)|x|~!/2+ 9 dx
—0o0

o0 1/p o) 1/q
< ([ 1sth, wpiwreretan) ([ gth e ax)

—00

Applying the direct inequality (4.12)" to the second factor we get

/ 180k, X))~/ dx < C / )| x| a/2alp+1-a72
(421) ~oo
<cC / ()1 dx.

In view of (4.20) and (4.21) the inequality (4.19) becomes

(4.22) [ A2 o3 dx| < Cle )l ull il

Taking the supremum over all f with ||f;||; <1 we obtain

(4.23) [ I dx < Cle ()l

This completes the proof of (4.12).
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To establish the inequality (4.13)’ we observe that

(4.24) / T (& (f, x))2h(x) dx < / (g, x))2AR(x) dx

—00
for every nonnegative function 4 where Ah is the Hardy-Littlewood maximal
function. If 2< p <4,let r =p/2 and s be the conjugate index of r. Setting
hi(x) = h(x)|x|~"*1/r we have

/_ (& () )R h(x) dx

@25 SC [ (g 0PI oA (1) dx

<C (/_oo(g(f, X))P|x| 7P/ dx)Z/p (/_O:O |x|(Ahy (x))* ds)l/s

by an application of Holder’s inequality. Since s > 2, |x| € 4;; hence,

/ |x|(Ahi(x))*ds < C/ x) x| 7SI+ dx

<C / x)*dx.
Thus we have the inequality

/ (& (2 ) A (x) dx

(4.26)

(4.27) - 2p
sc(/ lf(X)l"IxI"’/z“dx) Al

—00

Taking the supremum over all # with ||A||; < 1 we obtain

@) [ @ operdrsc [ iswpie s,

—00

This proves the inequality (4.13)’.
Therefore, in view of (4.12)', (4.13)’, and (4.14) we obtain the weighted
inequality

(4.29) / |M f(x)P|x|~P/** dx < C/ x)[P|x| 7P/ dx

for % < p < 4, and this proves the multiplier theorem for a = % . By applying

the transplantation theorem we complete the proof of Theorem 2.2 when n = 1.
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