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A NOTE ON A TRANSPLANTATION THEOREM OF KANJIN
AND MULTIPLE LAGUERRE EXPANSIONS

S. THANGAVELU

(Communicated by J. Marshall Ash)

Abstract. By applying a transplantation theorem of Kanjin, a multiplier the-

orem and a Cesaro summability result are proved for multiple Laguerre ex-

pansions. In the one-dimensional case an improved version of the multiplier

theorem is obtained.

1

Consider the normalised Laguerre functions <Sfka , a > -1, on R+ = (0, oo)

defined by

<u> ^«=(f#^T))"2^<*-"2'",!

where L^(t) are the Laguerre polynomials of type a. The functions {-2^*}

form a complete orthonormal system for L2(R+). Recently, in [4] Kanjin stud-

ied the mapping properties of the operator Ti , which is defined as

OO

(1-2) rf/=E(/,-2f)-2r
k=0

where (/, g) stands for the inner product in L2(R+). For the operator Ti he

has proved the following result.

Theorem 1.1 (Kanjin). Let a, fi > -1 and y = min{a, /?} . If y > 0 then

(1-3) \\T£f\\P<C\\f\\p   forl<p<oo.

If -1 < y < 0 then (1.3) is valid for p in the interval (1 + y/2)~x < p < -2/y.

The above theorem is called a transplantation theorem for the following rea-

son. Given a bounded sequence X(k) we can define an operator Mf_ by setting

oo

(i.4) A/f/=Ew(/,-sr)-%Q
k=o
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whenever / has the Laguerre expansion
00

(i.5) /=E(/..sr)-s£\
fc=0

From the theorem, we can deduce the norm inequality

(1.6) \\Maxf\\p<C\\f\\P

for any a if we know (1.6) for a particular ao . This follows from the identity

(1.7) TlM$Tif = Mlf.
As an application Kanjin proves the following result concerning M" .

Theorem 1.2 (Kanjin). Let X(t) be a four times differentiable function on (0,oo)

and satisfy

(1.8) sup\tkX^(t)\<ck
t>0

for k = 0, 1,2,3,4.   Then (1.6) is true for 1 < p < oo if a > 0 and for

(I+q/2)-1 <p <-2/a if -1 <a<0.

Theorem 1.2 is deduced by applying the transplantation theorem to the par-

ticular case a = 0, which is proved by Dlugosz in [1]. Now the aim of this

note is to prove an improved version of the above multiplier theorem and also

to give applications to higher-dimensional Laguerre expansions.

2

Let Rl = {x £ Rn: Xj > 0 for all j} , and consider for every aelj and a

multi-index m = (mx, m2, ... , mn), the normalised Laguerre functions =2^"

on K£ defined by

(2.1) 5%(x) = f[&°;(Xj).
7=1

They form a complete orthonormal system for L2(R"), and the Laguerre ex-

pansion of a function / in LP(RD can be written as

oo

(2.2) /=E(/>-2>««
m=0

where the sum is extended over all the multi-indices. Expansions of the above

type have been studied by Dlugosz [1] when a is a multi-index.

For the above series (2.2) we define the Cesaro means asN of order 8 by the

equation

(2-3) 4/ = X E A%_k E (/. ̂ )^
N k=0 \m\=k

where Ask = Y(k+S+l)/Y(k+l) are the binomial coefficients. Given a function

X on (0, oo) we also define the multiplier operator M" as

oo

(2.4) Maxf=Ym + n) E (/>-2£«-
A:=0 \m\=k

For the operators (2.3) and (2.4) we prove the following two theorems.
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Theorem 2.1. Let 8 > \ . Then the uniform estimates

(2.5) \\odNf\\p<C\\f\\p

are valid iff 4n/(2n + 1 + 2S) <p < 4n/(2n -1-2S).

Theorem 2.2. Assume that the function X satisfies the conditions

(2.6) sup\tkX^(t)\<ck

for k = 0, 1,2,..., v where v = n + 1 if n is odd and v = n + 2 if n is
even. Then for 1 < p < oo we have

(2.7) \\MZf\\p<C\\f\\p.

In the case n = 1  we can take v = 1  in the hypothesis and (2.7) is valid for

l<p<4.
A slightly weaker form of Theorem 2.2 is proved in [1] when a is a multi-

index. In that version one has v = n + 3 for all n. Theorem 2.1 is known

when n = 1 and is due to Gorlich and Markett [3, 5].

For the Laguerre series (2.2) we also define the Riesz transforms Rj, j =

1,2, ... , n ,by the formula
oo

(2.8) Rjf = E(2m, + l)(2|m| + n)~x(f, J?°)J7*.

Riesz transforms for the Hermite and special Hermite expansions have been

studied by the author in [9, 12]. For the above Riesz transforms (2.8) we prove

Theorem 2.3. For 1 < p < oo all the Riesz transforms Rj are bounded on

Lp(Rl).
All three theorems will be proved by appealing to the n-dimensional version

of Kanjin's transplantation Theorem 1.1. For a,j8 in 1^ we define Ti by

oo

(2.9) Tif=Y(f>^)^-
m=0

Then, for / in C0°°(R£) and 1 < p < oo ,

(2.10) \\Tif\\p<C\\f\\p.

This follows from Theorem 1.1 by iteration.
In view of (2.10) Theorems 2.1, 2.2, and 2.3 will follow once we show that

they are true in the particular case a = 0. It will be shown in the next section

that the case a = 0 follows from known results on special Hermite expansions

as a special case. The one-dimensional case of Theorem 2.2 when a = \ will

be deduced from the corresponding result on the Hermite expansions. This will

be done in the last section.

3

Consider the functions y/m(z) on C" defined by

(3.1) Wm(z) = f[Lm^\zj\2)e-^2'4
7 = 1
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where Lk(t) are the Laguerre polynomials of type 0. The functions \pm(z) are

called special Hermite functions since they are related to the Hermite function

<bm(x) on R" . This terminology is due to Strichartz [6]. In fact, one has

(3.2) ipm(z) = j^ elx^m (£ + y-) <Dm (£ - y-) di

where z = x + iy, x, y £ R" (see [2]). Given / on C" we have the special

Hermite expansion

oo

(3.3) /(z) = (27r)-"E/x^(z)
m=0

where the twisted convolution / x g of two functions is defined by

(3.4) fXg(z)= f f(z-w)g(w)e{'Mlmz'wdw.
Jc

We can also write (3.3) in the form

oo

(3.5) f(z) = (2n)-»Yf*<P"k~l(z)
k=0

where tpnk~\z) = Lnk~x(l]\z\2)e-W2'* . For all these facts we refer to [11].

For the special Hermite expansion let Cf, be the Cesaro means defined by

(3.6) cfff=4rT,AN-k E(/x^)-
N k=0 \m\=k

Given a function X on (0, oo) we also define a multiplier transform Tx by

oo

(3.7) 7i/ = EA(2fc + /i) E(/x<pm).
Ar=0 \m\=k

In [11] we proved

Theorem 3.1. Let 8>\. Then for f in LP(C")

\\CsNf\\p<C\\f\\p

holds if and only if 4n/(2n +l+2S)<p< 4n/(2n -1-2S).

Regarding Tx we have proved the following multiplier theorem in [10].

Theorem 3.2. Let X satisfy the hypothesis of Theorem 2.2. Then for 1 < p < oo

one has \\Txf\\p < C||/||p.

The case a = 0 of Theorems 2.1 and 2.2 will be deduced from the above

theorems in the following way. When / is a radial function the twisted convo-

lution f y. tpnk~x becomes

(3.8) fx ,«-'(*) = ff^-l)! QT7(rK" W-' dr) tp"k~x(z)
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where fpk~x(r) = <pk~x(z) with |z| = r. If / is a polyradial function, i.e.,

f(zx, ... , zn) = f(r{, ... ,rn), rj = \zj\, then in view of (3.8) and (3.1) one

has

(3.9) f*Vm = \j  f{ri,... , r„) Ifl&mM'j) \n-rndrx-drn\ ¥m.

Therefore, one sees that

(3.10) f x ipm(V2z) = (g, J?m)J?m(r)

where g(rx, ... ,rn) = f(^/2Fx, ... , \f2r~n). Therefore, CsNf becomes osNg

and Txf becomes Mfg; hence, the case a = 0 of Theorems 2.1 and 2.2

follow.
The case a = 0 of Theorem 3.3 follows from the fact (see [12]) that the

Riesz transforms

oo

(3.11) Sjf=Y(^J + ^)(2\m\ + n)-xfxipm
m=0

for the special Hermite expansions are bounded on LP(C"), 1 < p < oo.

4

Consider the normalised Hermite functions hk(x) on R. We also consider

the Laguerre function tpk of another type defined by, for a real,

(4.1) tpak(x)=S?ka(x2)(2x)xl2,        X£R+.

Then the Hermite functions hk and tpk are related by (see [7])

(4.2)     h2k(X) = (-\fX<p-v\x),    h2k+i{x) = (-i)kX 9y\x),

Consider a multiplier transform M for the Hermite series defined by

CX)

(4.3) Mf(x) = YKk)(f,h)hk(x).
k=0

In [8] we proved

Theorem 4.1. Assume that X is bounded and satisfies \tX'(t)\ < C for all t > 0.

Then M is bounded on LP(R),  1 < p < oo.

Since h2k is even and h2k+i is odd, by considering / to be odd we see that

oo

(4.4) Mf(x) = E^(2fc + 1)(/, <plk/2)<plk/2(x),

it=0

1/2
and this is related to Mx' in the following way. An easy calculation shows

that

(4-5) (f,<plk/2) = -j=(g,J7ki/2)
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where f(y/x)x~x/4 = g(x). Therefore,

oo

(4.6) A7/(v^)*-1/4 = 2E*(2£+ l)(g,5fkl/2)5"kl/2(x).

k=0

If we know that for | < p < 4

/»oo /.OO

(4.7) /    \Mf(x)\px-pl2+xdx<C       \f(x)\px~pl2+xdx
Jo Jo

then it follows that
yOO /»oo

(4.8) /    \M{l2g(x)\pdx<C       \g(x)\pdx;
Jo Jo

hence, the case n = 1, a = j of Theorem 2.2 follows. We claim that (4.7) is
true.

To prove the claim we recall the proof of Theorem 4.1.   Let  T'  be the

semigroup on LP(R) defined by

oo

(4.9) Ttf=Y,e-(2k+l)t(f,hk)hk.
k=0

For this semigroup we defined the g and g* functions in the following way:

yoo

(4.10) (g(f,x))2= /    t\d,T'f(x)\2dt,
Jo

/oo     /»oo

/    ^(l + r^lx-yir^dtT'Aytfdydt.
-oo JO

For the g and g* functions we proved that

(4.12) C1||/||p<||g(/)||p<C2||/||p,        l<p<oo,

(4.13) ||S*CnilP<C||/||p,        p>2.

Under the assumption that \tX'(t)\ is bounded we verified that

(4.14) g(Mf,x)<Cg*(f,x),

and in view of (4.12) and (4.13) this proved Theorem 4.1.
Therefore, in order to prove the weighted version we need to check that

(4.12)' CiUWp.w < \\g(f)\\P,w < C2\\f\\p,w,        l<p<4,

(4.13)' \\g*(f)\\P,w<C\\f\\p,w,        2<p<4,

where ||/||p,u, stands for the norm

aoo \1/P
\f(x)\p\x\-p/2+x dxj     .

Thus we need weighted norm inequalities for the g and g* functions.
In [8] we proved the If boundedness of g by applying singular integral

theory.  We identified g with a singular integral operator whose kernel takes
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values in the Hilbert space L2(R+ , tdt). When the weight function w is in

the Muckenhoupt class Ap (see [13]) then we also have

/oo ,00|*(/)|'t0(*) dx<C        \f(x)\pw(x) dx.
-oo J—oo

When | < p < 4, w(x) = \x\~p/2+x is in Ap; hence, the right-hand side

inequality of (4.12)' is valid. We will now show that the reverse inequality is

also valid.
From [8] we recall that we have the partial isometry

(4.16) Il*(/)ll2 = ill/ll2;
from this, by polarisation, we obtain

/oo /*oo      /»oo _

fx(x)f2(x)dx\ = 4 /    td,T'fx(x)dtT'f2(x)dtdx.
-oo J—oo JO

This gives the inequality

/OO /-OO/, (x)f2(x) dx < 4 /     g(f , x)g(f2, x) dx.
-oo J — oo

Let us now take h(x) = f2(x)\x\-xl2+xlp so that

/OO

f1(x)\x\-l'2+l",f2(x)dx

v«.i*; '   "°°       ,co

< 4 /     g(f , x)\x\-x'2+xlpg(h, jc)|x|-1/2+1/? dx
J — oo

where q is the index conjugate to p. An application of Holder's inequality

gives

(4.20)

/OO

g(fi, x)\x\~xl2+x'pg(h, x)\x\-x'2+x'« dx
-oo

aoo \ 1/P   /   /-oo \ 1/9
\g(f, x)\»\x\-»'2+x dx)      [^J     \g(h,x)\«\x\-«'2+xdx)     .

Applying the direct inequality (4.12)' to the second factor we get

/OO ("OO

\g(h, jc)Hjc|-«/2+1 dx<C        \f2(x)\q\x\-ql2+qlp+x-ql2 dx

i4.^i)     -°° 7~
<C        \f2(x)\"dx.

J — OO

In view of (4.20) and (4.21) the inequality (4.19) becomes

/oo fx(x)\x\-x'2+{lpf2(x)dx < CH^/OIIp^II^II,.
-oo

Taking the supremum over all / with \\fi\\q < 1 we obtain

/oo
\fx(x)\p\x\-pl2+x dx <C\\g(f)\\P,w.

-oo

This completes the proof of (4.12)'.



1142 S. THANGAVELU

To establish the inequality (4.13)' we observe that

/oo ,00
(g*(f, x))2h(x) dx < /    (g(f, x))2Ah(x) dx

-00 J — 00

for every nonnegative function h where An is the Hardy-Littlewood maximal

function. If 2 < p < 4, let r = p/2 and s be the conjugate index of r. Setting

hx(x) = h(x)\x\~x+xlr we have

/oo (g*(f,x))2\x\-x+x'rh(x)dx
-00

/•OO

(4.25) <C       (g(f,x))2\x\-x+xlr\x\xlsAhx(x)dx
Joe

a 00 \ 2/p   /   »oo \  l/s
(g(f, x))p\x\-p'2+1 dxj      (J     \x\(Ahx(x))sdsj

by an application of Holder's inequality. Since s > 2, \x\ £ As; hence,

/oo ,00
\x\(Ahx(x))sds <C        \h(x)\s\x\~s+s'r+x dx

<C/     \h(x)\sdx.
J — OO

Thus we have the inequality

/oo (g*(f,x))2\x\-x+x'rh(x)dx

(4-27) "°° 2/Dv       ; / r°° \2'p

<C(J     \f(x)\p\x\-p'2+x dx)     ||%.

Taking the supremum over all h with ||/?||5 < 1 we obtain

/oo /«oo

(£*(/, x)yM-p/2+1 dx<C        \f(x)\p\x\-pl2+x dx.
-oo J—oc

This proves the inequality (4.13)'.

Therefore, in view of (4.12)',  (4.13)', and (4.14) we obtain the weighted
inequality

/oo /"OO

\Mf(x)\p\x\-p'2+l dx<C        \f(x)\p\x\-pf2+x dx
-oo J—oo

for 5 < p < 4, and this proves the multiplier theorem for a = \ . By applying

the transplantation theorem we complete the proof of Theorem 2.2 when n = 1.
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