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SUMMABILITY OF HERMITE EXPANSIONS. I

S. THANGAVELU

Abstract. We study the summability of one-dimensional Hermite expansions.

We prove that the critical index for the Riesz summability is 1 /6 . We also prove

analogues of the Fejer-Lebesgue theorem and Riemann's localisation principle.

1. Introduction

In 1965 Askey and Wainger [3] studied the mean convergence of Laguerre

and Hermite expansions in LP(R). In their work it was proved that the series

converges to the function if and only if 4/3 < p < 4. Later in [17] Muck-

enhoupt enlarged the range of convergence by admitting more general weight

functions. Since the series fails to converge for p lying outside the interval

(4/3,4) it is necessary to consider suitable summability methods. In 1965 it-

self Freud and Knapowski [9] had solved the (C ,a) summability problem for

p = oo and a = 1. Here (C ,a) stands for the Cesàro means of order a. The

(C, 1) summability for 1 < p < oo was established by E. L. Poiani in 1972 [21]

and independently by Freud [7], also [8]. Both Freud and Poiani considered

more general weight functions. For 0 < a < 1, the problem remained unsolved

for some time.

In the 1980s the (C, a) summability for 0 < a < 1 was taken up by C. Mar-

kett in a series of papers [14-16]. He obtained norm estimates from above and

below for the (C ,a) means of Hermite and Laguerre expansions and proved

that they converge in the mean for 1 < p < oo provided a is bigger than 1/2.

In the case of Laguerre series the problem was completely solved but it was not

so in the Hermite case. The upper and lower bounds he obtained for the Her-

mite case match when a = 0 but for 0 < a < 1/2 there is a gap between them.

Let acr denote the critical index, i.e. the largest a > 0 with the property that

the expansion is not (C ,a) summable for at least one f in L (R). Markett

proved that acr = 1/2 for the Laguerre expansions. But in the case of Hermite

expansions he could only say that 1/6 < acr < 1/2. It was noted that there is

an essential difference between the two expansions.

Let p0 be the largest p in [1 , 2] such that a given orthogonal expansion

diverges for at least one / in LPo and let y be determined by \\Sn\\x « ny as
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120 S. THANGAVELU

n tends to oo where Sn are the partial sums operators. Thus for the Hermite

series we have p0 = 4/3 , 7 = 1/6 and 1/6 < acr < 1/2 and for the Laguerre

series p0 = 4/3, y = 1/2 and c*cr = 1/2. In [13] Lorch conjectured that one

should have y = acr in both cases. This is certainly true for the Laguerre case

and will be true for the Hermite case also if we have acr = 1/6. At this point let

us mention another principle noted by Askey in [1]. In several known cases it

was noted that the line in the (l/p,a) plane connecting the points (1,<* ) and

( 1 /p0,0) always meets the point (1/2,-1/2). This principle of Askey applies

to the Laguerre case but would apply to the Hermite case only if acr =1/2.

Thus it appears that either Lorch's conjecture or Askey's principle fails in the

Hermite case.

In this paper we consider the Riesz summability of the Hermite series for

0 < q < 1/2. The critical index turns out to be 1/6 in accordance with the

conjecture of Lorch. Thus Askey's principle fails in the Hermite case. We can

summarize the main results of this paper as follows.

(i) Convergence in the norm. The Riesz means SR(a) are uniformly bounded

on Lp, 1 < p < 00, provided a > 1/6. As R tends to infinity SR(a)f

converges to / in the norm for all / in Lp .

(ii) Boundedness of the maximal operator. The maximal operator M asso-

ciated with SR(a) is bounded on Lp, for 1 < p < 00, and is weak type (1,

1) whenever a > 1/6. Consequently, the Riesz means SR(a)f converges to f

a.e.

(Hi) Analogue of the Fejér-Lebesgue theorem. If both x and -x areLebesgue

points of the function /, then SR(a)f(x) converges to f(x) as R tends to

infinity provided a > 1/6 .

(iv) Analogue of Riemann's localisation theorem. If / vanishes near the

points x and — x, then SR(a)f(x) converges to 0 as R tends to infinity

under the condition that a > 1/6 .

(v) Summability below the critical index. Assume that 0 < a < 1/6 and

/ belongs to Lp . Then SR(a)f converges to / in the norm if and only if

4/(6a + 3)<p<4/(l-6a).

All these results are proved in §5 as easy consequences of the estimates we

get for the kernel of the Riesz means in §4. In the next section we begin with

the preliminaries and obtain a good integral representation for the kernel of the

Riesz means. In §4 we will study certain oscillatory integrals obtaining good

estimates of them.

This paper represents a part of my Princeton University thesis written under

the guidance of Professor E. M. Stein. I take this opportunity to express my

gratitude towards my advisor for the constant encouragement and many useful

suggestions I got from him during the course of this work. Some of my original

proofs were simplified with great help from my advisor.



SUMMABILITY OF HERMITE EXPANSIONS. I 121

2. Preliminaries

The following notations will be used. The Hermite polynomials Hn(x) are

defined by the equation Hn(x) = (-1)" exp(x2)(d/dx)"{exp(-x2)} . The nor-

malised Hermite functions <pn(x) are then defined by

<pn(x) = (2nsíün\)-XI2exp(-x2l2)Hn(x).

The functions {tpn(x)} form a complete orthonormal system in L (-00,00).

Since tpn(x) belongs to all Lp spaces, we can talk about the generalised Fourier

coefficients of any / in Lp for any p. The coefficients fA(n) are defined by

/A(") - / f(x)tpn(x)dx. Thus to each function / we have an associated

expansion f(x) = £„>n f \n)^'„(x) ■ It is clear that the series converges to /
1 1

in the L norm if / is in L . However, in general, for p different from 2 the

series fails to converge in the Lp norm unless a suitable summation method is

applied. Indeed, as proved by Askey and Wainger in [3] the series converges

only if 4/3 < p < 4. Thus we are led to consider the Riesz and Cesàro means

of the Hermite expansion.

The Hermite functions are the eigenfunctions of the elliptic operator (-dx +

x ). So in accordance with the general theory of the eigenfunction expansions

associated with elliptic operators, we define the Riesz means for the Hermite

series as follows. Let a and R be two positive numbers. The Riesz means of

order a, denoted by SR(a)f is defined by

SR(a)f(x) = £ (1 - N/Rff\n)<pn(x)
N<R

where N = (2n+1). The following formula connecting Riesz means of different

order is useful. If a and ß are positive, then we have the formula

s^+^'WTwml7'-')'"s-Mdr
From this equation it follows that the convergence of SR(a)f implies the con-

vergence of SR(ß)f for any ß > a. To introduce the Cesàro means let us

define Ak(a) by the formula Ak(a) = T(k + a + l)/{T(k + l)r(a + 1)} for a

greater than -1. The «th Cesàro means of order a is defined by

Cn(a)f(x) = (An(a))-Xy£An_k(a)f\k)<pk(x).
k<n

There is a formula connecting two Cesàro means of different orders. When

a > -1 and ß > -1

Cn(a + ß)f(x) = (An(a + ß))~X £ An_k(ß)Ak(a)Ck(a)f(x).
k<n

Another interesting result is the following theorem of Gergen [10] which ex-

presses the Cesàro means in terms of the Riesz means and vice versa.
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Theorem (Gergen). Leí k be the integral part of a. There exists two functions

U(x) and V(x), U(x) = 0(x~2), as x - oo, U(x) = 0(xk~a+x), as x -> 0;

V(x) = 0(x~2), as x -* oo, V(x) = 0(xa), as x —> 0 such that we have:

SR(a) = n~a £,<„ V(n - k)Ak(a)Ck(a) and

Cn(a) = (An(a))   '/     U(n + l-t)fSt(a)dt.
Jo

From this theorem it is clear that the convergence of one means implies the

convergence of the other. For technical reasons we consider the Riesz means

rather than the Cesàro means. Before proceeding to consider the Riesz means

let us pause for a moment to see why 1/6 is a possible candidate for the critical

index.

Suppose the Cesàro means Cn(a)f of an Lp function converges to / in the

norm. Then Cn(a) considered as operators acting on Lp would be uniformly

bounded. Since the partial sums Sn are Cesàro means of order 0, we can

express them in terms of Cn(a) as follows [2]:

VW = y£Ak{a)An_k(-a-l)Ck(a)f{x).
k<n

From this relation it follows that

l/A(«)l IWIp < C E \Ma)An-k(-<* - 1)111/11, •
k<n

If we use the fact that Ak(a) = 0(ka), we obtain immediately |/A(«)| \\fpn\\p <

CN" 11/11  . Let q be the exponent conjugate to p . By choosing an / such that

\If(x)<p„(x)dx\ > iwfWMnK weset IWI„IWI, £CN°■ Now[tiseasyto
get a lower bound for HpJJpJI, -

Lemma 2.1. There is a constant C such that for large n the following estimates

hold:

\\9n\\p>CN-XIX2N-XI6p;        \WX>CN-X/4NX¡2".

Proof. To prove the first inequality we use the following asymptotic prop-

erty of tpn(x) which is proved in [26]. Let x = (Nx/2 - 2~1/23~1/V1/<r)

where t is bounded and let Ai(r) denote the Airy function. We have q>n(x) =

31/321/47rV1/I2(Ai(/)+0(«~2/3)). Wecanfindan g > o suchthat |Ai(f)| > c
_1/12

for |i| < e for some constant c. Therefore, for |f| < e |çz„(a:)| > cxn -

c2n~2/3. From the above by choosing n large we obtain for A1' - SN~X' <

x < Nx/2 + SN~X'6, \fn{x)\ > CN~X/X2. Integrating over the interval Al/2 -

SN~X/6 <x< Nx/2 + ÔN~X/6 we get \\tpn\\p > CN~x/x2N~y6p. This proves

the first estimate. To prove the other estimate we use the following result of

Muckenhoupt.

Let w(x) be a measurable function and 1 < p < oo. Let E be the interval

[|y1/2»>'1/2 - 1] and I   be the set of all integers n such that y < 2n + I <
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y + yx/3. Then there exists y0 and C > 0 depending only on p such that for

y>y0

U \<P„(x)w(x)\pdx\     >C[IE \w(x)/(y-x2)x/4\"dx\

for at least 3/5 of the integers n in I .

Taking w = 1 in the above result we immediately obtain the following esti-

mate:

' dx) "' > C ( j (y - x2yp/4 dx) "' > Cy-x,4yx/2p .

Since y is comparable with A we obtain ||ç»J| > cN~ A q. Hence the

lemma.

Theorem 2.1. If the operators C (a) are uniformly bounded on Lp for a p < 4

then we necessarily have p > 4/(6a + 3). In particular Cn(a)f cannot converge

in the norm for all f in Lx unless a is greater than 1/6.

Proof. As observed above the uniform boundedness of Cn(a)  implies that

||ç»„|L||ç»„|L < 2CAQ . In view of Lemma 2.1 we have

llf„U'Jf * CfN~x/2+2/3p

and therefore, we need to have A_1/ + ' p < CNa which will be true for large

A only if a > -1/2 -I- 2/3/z or p > 4/(6a + 3). For p = 1 this implies

a> 1/6.

3. Riesz kernel for the Hermite series

The aim of this section is to get a good expression for the kernel of the

Riesz means of the Hermite series. Before describing how we go about this,

let us briefly indicate the methods employed by the previous authors. The

Christoffel-Darboux formula came in handy to study the kernel of the partial

sums operators. This formula, together with an ingenious device of Pollard [22]

gives a good expression for the kernel of SR(0). Then, using the asymptotic

estimates for the Hermite and Laguerre polynomials obtained by Erdelyi and

Skovgaard [5], Askey and Wainger obtained good estimates for the kernel of

SR(0). The other tools they used were Hardy's inequality and the theory of

Hubert transform.

An idea of Campbell was used by Poiani in the study of the Cesàro means

of order 1 of the Hermite and Laguerre series. An exact expression for the

Cesàro kernel of the Laguerre series was obtained by Campbell in [4] and was

given in terms of a differential operator. This technique was already used by

Ernst in 1969 to study the Lp convergence of (C, 1) means of Laguerre series.

Poiani used this technique together with the asymptotic estimates to get good
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estimates for the Cesàro kernel. To study the Cesàro kernels of fractional order

Markett used the product formulas of the Laguerre polynomials as the starting

point. He defined certain operators called the Laguerre translation operators and

expressed the kernels in terms of these operators. He obtained good estimates

when q > 1/2 but his method failed to yield good estimates when 0 < q < 1/2.

Our investigations of the Hermite series are based on Mehler's formula. For

technical reasons we consider the Riesz means instead of the usually considered

Cesàro means. In view of the theorem of Gergen both means converge or diverge

together. We obtain an expression for the kernel of the Riesz means in terms

of certain oscillatory integrals. This point of view had already been taken by

E. Kogbetliantz [ 12] who treated the pointwise convergence of the Laguerre and

Hermite series at length around 1935. He used the method of steepest descent

to study the kernel. But unfortunately, as pointed out by Poiani in [21], his

investigations were based on an erroneous estimate. We use the method of

stationary phase to estimate the oscillatory integrals and we do not need any

asymptotic estimates of the Hermite polynomials.

Let us start with the Mehler kernel. For |r| < 1, the Mehler kernel Mr(x,y)

is defined by

(3.1) Mr(x,y) = J2>-n<Pn(x)<Pn(y)-
n>0

As proved in [26] this series can be summed to give the following formula:

(3.2) Mr(x,y) = tT1/2(1 - r2f 1/2exp(i?r(x,y))

where Br(x,y) = -\(x2 +y2){(l + r2)/(l -r2)} + 2rxy/(l - r2). Let us define

a related kernel Gr(t,x,y) in the following way. For 0 < r < 1, this kernel is

defined by the series

(3.3) Gr(t,x,y) = Y,e~(2n+mrn<Pn(x)<Pn(y).

«>o

In terms of the Mehler kernel, Gr(t,x,y) = e~"M (x,y) where p = re~¿" .

Let G(t,x,y) be the limit of Gr(t,x,y) as r tends to 1 which exists whenever

sin2? is different from zero. A simple calculation shows that G(t,x,y) =

c0(sin2í)-1' e       where c0 is a constant and q> is given by

tp(t) = -xycosec2t+ \(x  +y)cot2t.

We will now prove the following lemma which gives an integral representation

of the Riesz kernel in terms of G(t,x,y).

Lemma 3.1. The kernel SR(x,y) = SR(a;x,y) of the Riesz means SR(a) is

given by the integral

SR(x,y) = cRReU    g(Rt)G(t ,x ,y)dt\
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where g is the inverse Fourier transform of the function h defined to be (1 — |r|)a

when \t\ < 1 and 0 otherwise and c is a constant.

Proof. We start with the following observation. With A = 2« + 1 and h

defined as above the kernel of Riesz means of order a is given by the sum

SR(x,y) = T,h(N/R)tpn(x)tpn(y). We write this as a limit

SR(x,y) = LimY,h(N/R)rntpn(x)cpn(y).

We will now get an integral expression for the right-hand side. Since the func-

tions h and g are both in L (we will see shortly why this is so with g ), by

Fourier inversion we can write h(k/R) = Rf g(Rt)e~' ' dt. Now, multiplying

(3.3) by Rg(Rt) on both sides we get

(3.4) Rg(Rt)Gr(t,x,y) = £^(2n+,)"'Rg(Rt)r"<pn(x)tpn(y).

n>0

Since the Hermite functions are uniformly in L°° the above series converges

absolutely and uniformly in x and y. Therefore, term by term integration

is possible. Integrating both sides and noting the inversion formula for h we

obtain

(3.5) JRg(Rt)Gr(t,x,y)dt = J2h(^yn<Pn(x)tpn(y).

Thus SR(x,y) = lim^, /Rg(Rt)Gr(t,x,y)dt.  We will presently show that

we can pass to the limit under the integral sign.

Defining

Br(t) = -{(x2 + y2){(l + r2e'4U)/(l - rV4")} + 2re-2i'xy/(l - rV4")

and Ar(t) = (e2" - r2e~2it)~Xß we can write

Gr(t,x,y) = n-x/2Ar(t)exp(Br(t)).

We claim that whenever sin 2/ is different from zero |^r(í)l < C(sin2z')~1/2 and

|expi?r(i)| < C, for 1/2 < r < 1 . An easy calculation shows that \Ar(t)\~4 =
2  2 2 2

(1 - r ) + 4r sin 2t from which follows the estimate for Ar(t). Another

calculation shows that

(3.6) Re(l +rV4/')/(l -/V4") = \Ar(t)\\l - r4),

(3.7) Rere~2il/( 1 - rV4") = |^r(/)|4z-( 1 - r2) cos 2t.

The claim about Br(t) will follow if we show that

-i(l - r2){(x2 + y2)(l + r2) - 4xyrcos2t} < 0.

When xy cos 2t is negative there is nothing to prove. So with xy cos 2t > 0,

we consider the function f(r) = (x2 + y2)(l + r2) - 4xyrcos2t. The first

derivative vanishes at the point r = 2xycos2t(x2 + y2)~x  where f(r) takes
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the minimum.   A calculation shows that the minimum value is (x2 + y2) -

4x y cos 2t(x  +y )~   which is clearly positive. Hence the claim.

Therefore, by the dominated convergence theorem we can pass to the limit

in (3.5) getting SR(x,y) = jRg(Rt)G(t,x,y)dt. Since the function h is real

and even g is also real and even and so

SR(x,y) = cRReM°° g(Rt)G(t,x,y)dt\ .

Thus we get an expression for the kernel in terms of an oscillatory integral.

Hence the lemma.

For studying the oscillatory integral appearing in the lemma we need to know

how the function g behaves at infinity. An explicit calculation of g is possible.

Assume that 0 < a < 1. Since h is an even function g is real and is given by

g(t)= f (l-s)aeilsds+ f (l-s)ae~ilsds.
Jo Jo

By making a change of variable we have

/.s — it   I a   its j it   f a   —its j
g(t) = e     /        se   ds + e se     ds.

Jo<t<\ Jo<t<\

After an integration by parts we are left with

(3.8) g(t) = iat~x \elt l        sa~xe~"s ds - e" sa~Xe"sds\.

I       Jo<t<\ Jo<t<\ J

Consider the first integral. We write this as

— it    f        Q-l    —Us j -it    i        a-\    its  j
e s     e     ds - e s     e   ds.

Jt>o Jt>\

For the first part we have the formula (see [19, p. 98])

L
oo

a—1    i/i j — ,    .    inall-
s     e    ds = r(a)t?       t

One more integration by parts shows that e" ft>xsa~ e"s ds = 0(t~ ). The

derivative of this last integral also is seen to have the same growth property.

Thus, we have proved

Lemma 3.2. Assume that 0 < a < 1. Then g is a bounded function and for

t > 1 we have

(3.9) g(t) = cxra-le" + c2ra-xe-" + c.C2g0(t)

where g0(t) is bounded together with its derivative. In particular the function g

is integrable.

Thus to get an estimate for the Riesz kernel we have to study certain oscil-

latory integrals. Certain reductions in the expression of the kernel is possible.

Since the phase function <p(t) is periodic with period it it is enough to con-

sider the integrals Rf0<i<ng{R(t + kn)}G(t,x ,y)dt. Among these integrals
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the most difficult one to estimate is the integral corresponding to k = 0. In fact,

we will estimate only this, since the estimation of other integrals are similar.

4. Estimation of the Riesz kernel

As indicated in the previous section, we need to estimate

R f       g(Rt)G(t,x,y)dt.
Jo<t<n

Further reduction of this integral is possible. By making a change of variable,

we can reduce everything to the estimation of the following two integrals:

(4.1) I = R¡ g(Rt)(sin2tyx/2emt)dt,
Jo<t<7t/4

(4.2) J = R¡ g{R(t + k7t)}(sin2t)~x/2ei9'{t)dt,
Jo<t<n/A

where tp*(t) = xycosec2t + j(x2 + y )cot2/ and k is different from zero.

Again we will only estimate I. The estimation of / is similar. In fact, it is a

lot easier than the estimation of I. In what follows C will denote a generic

constant which varies from one place to another. Also we are assuming that

1/6 <a< 1/2.
Let 6 be a smooth function which vanishes for t < 1/2 and is identically

one for t > 1. We split I into two parts, viz. I = A0 + A where

(4.3) A = R j 6(Rt)g(Rt)(sin2t)~xl2ei,f(t)dt,

(4.4) A0 = R ({I - d(Rt)}g(Rt)(sin2t)~X/2eimdt,

both integrals being extended from 0 to it/4. The estimation of A0 is easy.

A mere integration by parts gives a good estimate.

For that purpose we need an estimate on the first derivative of <p. Since we
/ 2 2 2

have — <p (t) sin 2t = 4xy sin 2t + \x — y\    we get the estimate

(4.5) V(/)sin22/>i|;c-y|2,    for0<<<7r/4.

Another estimate we need is the following one which bounds the second deriva-

tive of <p in terms of its first derivative. We claim that

(4.6) |r/'(7)sin2i|<4|/(/)|,    for0<i<;r/4.

To prove the claim we have //'(/) sin 2t = 4{-4xysin4r + (x - y)2cos2/}.

Therefore, when xy > 0 it is clear that \ç"(t)sin3 2r| < 4|/(i)sin2 2t\. When

xy < 0 we need to check if

(4.7) -4xy sin t + (x - y) cos 2t < 4xy sin t + (x -y) .

If this is not so we will have for some /0, -4xy sin t0 + (x - y) cos2i0 >

4xy sin2 f0 + (x - y)2 or -4xysin2t0{l + sin2i0} > 2(x - y)2sin2i0 which

implies -2xy sin4 tQ > x2 + y2 . Since this is not true the claim is proved. We

can now prove the following proposition.
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/2e-meimdt.

Proposition 4.1. There exists a constant C independent of x,y and R such

that

(4.8) \A0\ < CRX/2(l + RX/2\x - y\)~a~5,e.

Proof. Actually we can prove a better estimate. Since g(t) is bounded, we get

the obvious estimate |^0| < CR ' . Integrating by parts and using estimates

(4.5) and (4.6) we obtain \AQ\-< Ci?~1/2|;c-yP2. Combining the two estimates
1/2 2  _1

we have \A0\ < CR (I + R\x - y\ ) . This proves the proposition since

i?1/2(l+i?|x-y|2r' is dominated by i?1/2(l +i?1/2|x -y|)~Q~5/6.

To estimate A we use the fact that g contains three terms as given in Lemma

3.2. We estimate only the first two integrals coming from the terms t~a~ e"

and t~a~ e~' . The estimation of the integral involving f~ g0(t) is easy and

will not be considered. Thus, we have to estimate the following two oscillatory

integrals:

(4.9) K = R~a j d(Rt)Ca-x(sin2t)~" Wf W dt,

(4.10) L = R~a f 6(Rt)t~a~X (sin2t)~'

Our aim is to prove the following proposition which gives a good estimate for

the term A.

Proposition 4.2. There is a constant C independent of x,y and R such that

(4.11) |^|<Ci?1/2(l+i?1/2|x-y|ra_5/6.

For L we can actually prove the estimate Rx/2(l + Rx,2\x - y\)~3/2. This

estimate of L follows from an integration by parts. By letting cr(r) = —Rt+tp(t)

we calculate the first derivative of a. We have -o'(t)sin2 2t = Rsin22t +

4xy sin t + (x - y)  . Since sin2i > ct for 0 < t < n/4 we get

(4.12) \o'(t) sin2 2i| > C{Rt2 + (x - y)2}.

Since <p"(t) = o"(t), in view of (4.6), we get another estimate

(4.13) |fj"(r)sin2i| = |/'(f)sin2i| < 4\tp'(t)\ < 4\o'(t)\.

Integrating L by parts, the boundary term is seen to be bounded by

i?i/2(i+i?i/2ix-^ir-5/6.

In view of estimates (4.12) and (4.13), it is easily seen that the differentiated

terms are bounded by the integral R~a SXiR<t<ni4(Rt +(x-y) V t~a~ ' dt.

This last integral is bounded by R~a~x ¡l/R<t<„/4 t~a~5/2 dt < CRX/2 . It is also

bounded by

(4.14) R-a~x/4\x - yf3/2 [ ra-xdt<CR-X/4\x-y\-y2,
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which in turn is bounded by i? \x - y\ when \x — y\ > R

as   1/6 < q < 1/2.   Combining Rx'2  and irQ/2+1/12|x - y|~"~5/6  we get

|L|<Ci?1/2(l+i?1/2|x-y|p_5/6.

To study K let us replace x and y by Rx' x and R ' y in (4.9) for the

sake of convenience and consider the integral

(4.15) K* = R-a Jd(Rt)ra-X(sin2t)-X/2eiRleiRmdt.

Putting y/(t) = t + tp(t), we are looking at integrals of the form

/

...   iR<t>(t) j.
co(t)e        dt.

Assume that \y/    (t)\ is bounded away from 0. When k = 1 we further assume

We are interested in the asymptotic behavior of this integral as R tends to

infinity. If the derivative y/' never vanishes on the support of to, then it

follows that I = 0(R~ ) for all k. The method of stationary phase asserts

that the main contribution of the integral comes from the points where the first

derivative of y/ is zero. The following lemma of Van der Corput is the main

tool which we use to study the oscillatory integral K*. The proof of this lemma

is given in Stein [24].

Lemma 4.1. Suppose  y/  is a real valued smooth function defined on  [a,b].

Assume that \y/    (t)\ is bounded away fi

that y/'(t) is monotonie. Then we have

(4.16) 1/     to(t)eiRy/(,)dt <CkR~x/ki\to(b)\+ [     \co'(t)\dt
\J[a,b] I J[a,b] i

To apply this lemma to our integral we have to treat several cases. When

there are no stationary points we apply the lemma with k = 1 and when there

are two distinct stationary points we apply the lemma with k = 2. We also

have to consider the case when the two stationary points are close to each other.

In that case we apply the lemma with k = 3. An easily obtained estimate

is \K*\ < CR1' . This follows by a simple integration. If we combine this

estimate with |AT*| < CR~a~x,3\x - y\~a~5/6 to be proved for \x-y\> 2R~X

we will get the estimate |A"*| < CR1/2(1 + R\x -y|)"Q_5/6 which will at once

prove the proposition.

Getting the estimate |A"*| < CR~a~ \x -y\~a~ is easy when \x - y\ is

large. We get a lower bound for the third derivative of y/ and apply Lemma

4.1. We claim that \y/'"(t)\ > 4(x - y)2 for 0 < / < n/4. Putting cos2/ = X,

xy = b and x  + y  = a   we easily calculate y'" . We have that

\y/'"(t) sin4 2/| = %(2a2X2 - bl3 - 5bX + a2).

To prove the claim it is therefore enough to check if 2(2a2X2 - bl3 - 5bk + a2) >

(a - 2b). When b is negative there is nothing to check. When b is positive

we will show that (2a2A2 - bX3 - 5bX + a2) > (a2 - 2b). Since a1 > 2b it is
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enough to check if G(X) = 4A2 - X3 - 5X + 2 > 0 for 0 < X < 1 which is true as

G(X) attains a minimum of 0 at X = 1. This proves the claim. We are now

ready to prove the following lemma.

Lemma 4.2. When \x - y\ > 20, we have the estimate

\K*\<CR-a-xl3\x-y\-a-5l(>.

Proof. Before applying Lemma 4.1 we have to do an integration by parts:

(4.17)

K* = iRTa-x i6(Rt)ra-x(sin2i)3/2(4xysin2t + (x-y)2)- V'*'d(e,mt)).

The boundary term is bounded by a constant times ic_a_1|x - y|-2.

Since 1/6 < a < 1/2 and |x - y| is bigger than 2r5 this is bounded by

R~a~ \x - y|-a • When differentiation falls on the integrand all but one

term give the same bound as above. The only one term to be estimated is given

by

(4.18)   K'*=R~a jd(Rt)ra~X(sin2t)3l2(4xysint + (x-y)2)~xeiR¥{t)dt.

Applying Lemma 4.1 to K** we get

ir*|<ciTa-1/3|x-yf2/3-2h ra-x/2dtHlt>l/R )

Since a < 1/2 and |x - y| > 20 we have the estimate

|0<Ci?-a-1/3|x-yfa-5/6.

Hence the lemma.

Having estimated K* for |x-y| > 20, we now turn our attention to estimate

that for the region 2i?_1 <\x -y\<2S . By putting (x - y)2 = 4ß2 we want

to estimate K* for the region R~ < ß < ô . We split the integral K* into two

parts by writing K* = BQ + B where

B0 = R~a i"'2d(Rt)t-a-X(sin2t)-X/2eimt)dt,
Jo

B = R~a r"6(Rt)t-a-x(sin2t)-XI2eiRv(t)dt.

Jß/2

Estimation of the first integral is easy since the first derivative of y/ is bounded

away from 0 in the interval of integration. Indeed, since 0 < t < ß/2 for the
f t «2

first integral and the first derivative of y/ is given by - y/ (t) sin 2t = - sin 2t+

4xy sin21 + (x - y)2 we have | - y/'(t) sin2 2r| > ß2. We also have the estimate

|^"(r)| = \(p"(t)\ < 4|/(i)|cosec2r < 4cosec2i + 4|i/(z:)|cosec2r. Integrating

by parts and using the above estimates, we get the bound R~a~    \x -y\~c ~

for B0.
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Next we consider the term B for the region R~ < ß < Ô. Now, we have

to determine the stationary points of the phase function yi. Putting cos 2t =

X, we see that the first derivative of y/ satisfies the equation -y/'(t)sin22t =
2 2

(X - 2bX + a  - 1). First consider the case when b < 0. Since the function
2 2 2

f(X) = (X - 2bX + a — 1) is increasing it vanishes only if a < 1. If we

choose S to be smaller than 1/4, then for the region |x - y| < 2r5, we have

a2 < |x-y|2 < 1/4 and hence there is only one stationary point. This stationary

point is given by cos2i, = b + m where m2 = (1 - x2)(l - y2). Observe that

m2> 1/4 as a2 < 1/2.
2 2

When b > 0, the function f(X) = (X - 2bX + a - 1) decreases as long as

0 < X < b, reaches a minimum at b and then increases. When a > 2 f does

not vanish at all. There are two neighbouring stationary points tx and t2 when

1/2 < a < 2 and b < 1. These are given by the equations cos2/j = b + m

and cos 2t2 = b - m. Observe that these two stationary points coincide when

either x = 1 or y = 1. Finally, when a < 1/2, there is only one stationary

point, namely tx. Thus, we have to treat several cases in order to estimate the

integral B.

Let us start with the case when there is only one stationary point. This

comprises the cases when b < 0 and b > 0 but a < 1/2. We need to calculate

the second derivative of y/ at the stationary point. A simple calculation shows

that
// 3 2 2

y/ (í) = 4cosec 2t{a cos2r-¿zcos 2t - b}

and y/"(tx) = 4mcosec2z:1. Since m > 1/2, we get the lower bound y/"(tx) >

2 ««60 2^ . Having made all these preliminary observations, we can now prove

the following lemma.

Lemma 4.3. Assume that b < 0 or b > 0 and a2 < 1/2. Then for the region

\x -y\< 20 we have the estimate \B\ < CiTa_1/3|x -y|"a_5/6 provided ô is

smaller than 1/4.

Proof. First we consider the case when b is negative. In that case it is easily

seen that y/"(t) is a decreasing function of t in the interval ß/2 < t < tx. This

implies, for ß/2 < t < r,, the lower bound \y/"(t)\ > y/"(tx) > 2cosec2r,. If

we apply Lemma 4.1 to the integral

R~a /"' e(Rt)ra-x(sin2t)-x/2eiRmdt

Jß/2

we get the estimate CR~a~x/2{t~a~x + ß~a~3/2(sin2tx)x/2} . Now, another cal-

culation shows that sin22r, =a2-2bcos2tx so that ^|x-y|2 < a2 <sin22i, <

|x - y| . In view of this, we get the estimate Ci?-a-1/2|x - y\~a~x which is

bounded by CR~a~x,3\x - y\-a~5/6.
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It remains to consider the integral

R~a j7""6(Rt)ra-x(sin2tyx,2em{t)dt.

Jt\

Let e = jq sin2i, . We claim that we have the following estimates:

(4.19) y"(t)>y'(tx),    for tx<t<tx+e,

(4.20) /(f) > 1/10,    fortx+e<t<n/4.

Postponing the proof of the claim for a moment let us see how we complete the

proof of the lemma in the present case. We split the integral into two parts, one

from tx to tx+e and the other from tx+e to it/4. Applying Lemma 4.1 with

k = 2 and k = 1 and using estimates (4.19) and (4.20) we get the estimates

we wanted. Let us return to the proof of the claim now.

If e is small enough it is clear that in an e neighborhood of /, we can have

v"(t) > \y/"(tx) and outside the £ neighborhood y/'(t) could be bounded away

from zero. Our task is to find a suitable £. To do that we use Taylor's theorem

with the integral form of remainder. Since y/'(tx) = 0 Taylor's theorem applied

to the function y/'(t) gives

y/'(t) = (t-tx)y,"(tx)+ f(t-s)y/'"(s)ds = (t-tx)y,"(t)+ f (s-tx)(-y/'"(s))ds.
Jt, Jt,

Since

y/   (s) = -24cosec 2scot2s{a cos 25 — b cos 2s - b}
2 2

-8cosec 2s{a  -2bcos2t}

is negative

(4.21) y/'(t)>(t-tx)y/"(t),    for tx < t < n/4.

Also \y'"(t)\ = 6cot2ty/"(t) + 8cosec 2t{a -2bcos2t} is decreasing for tx <

t < n/4 and so we have \y/"(t) - y"(tx)\ < \y/'"(tx)\(t - tx). Since y/"(tx) =

4zncosec2/, > 2cosec2i, we see that \y'"(tx)\ < 10cosec2/,t//"(i1) so that

\y/" (t) - y/" (t x)\ < 10cosec2i[ y/"(tx)(t- tx ). Now if we take e= ¿sin2i, then

for tx < t < tx + e we get

(4.22) Y{tx)-v"{t)<\v\tx)   or   y,"(t) > \y/"(tx).

Hence from (4.21), for tx < t < tx + e, we get the lower bound y/'(t) >

j(t - tx)y/"(tx). From this, since y/'(t) is increasing in the interval tx + e <

t < it/4, we have y/'(t) > y/'(tx + e) > ^ey/"(tx) which proves the claim by the

choice of £.
This takes care of the case when xy < 0. Next consider the case when

xy > 0. In this case the second derivative of y/ vanishes at the point t0

defined by cos 2!^ = x/y (resp.  y/x) when x < y (resp.  y < x). As before
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2
the stationary point is at tx where cos2ij = b + m and m > 1/2 as a < 1/2.

There are three integrals to consider. First we estimate

R-a f ^ 6(Rt)ra-X(sin2t)-X/2eiRv/{t) dt.
Jta

From the expression -y/'"(t)sin 2t = S(2a X - bX - 5bX + a ) it is easily

seen that y/'"(t) is negative. Hence y/'(t) attains a maximum at t0 and then

decreases in the interval tx < t < n/4.

We therefore have the estimate \y/'(t)\ > |<//(7t/4)sin 7i/2| = (I - a ) >

1/2. Applying Lemma 4.1 with k = 1 we immediately get the estimate. The

estimation of the other two integrals is similar to the previous case, namely the

case when xy is negative. For example, consider the integral

R-a /"' f9(i?ora-1(sin20"1/V^(')^.
Jß/2

Applying Taylor's theorem to y/'(t) we can show that \y/'(t)\ > (tx - t)y/"(tx)

for ß/2 < t < tx . If we set £ = \ sin 2tx so that £ < \tx then for tx-t > e, i.e.

for t < tx - £, \y/'(t)\ > 2£cosec2/j > \ . Also since y/"(t) is decreasing in the

interval ß/2 <t<tx, \y/"(t)\ > w"(tx) > 2cosec2i1 . Split the integral into two
2 2 2

parts and apply Lemma 4.1 as before. Since sin 2tx =a -2bcos2tx >a -2b

we get the estimate CR~a~x/ \x - y\~a~5/ . Finally, the estimation of the

integral

R~a i'° 9(Rt)ra-X(sm2t)-X,2e'Rv/{t)dt

Jt,
is similarly done. Proceeding as above, we can show that the choice e =

^ sin 2tx works. Thus we have taken care of the case with one stationary point.

Next we consider the case x +y > 1/2. In this case there are two stationary

points for the function y/ and when either x = 1 or y = 1 they coincide with

one another. Somehow, the method of stationary phase applied as such to the

integral B fails to give a good estimate. So, a more careful analysis of the

integral is needed. Let ô be chosen so small that when |x - y| < 2r5 , we have

\ß < \ß and xy > t for some t. We split the integral B into two parts,

viz.  B = FQ + F with

F0 = R'n T/4 e(Rt)t—X(sin2trX/2eiRy/[,)dt,
J pßVi

rPß3'5

F = R—X /        d(Rt)rn-X(sin2t)-XI2e,Rv{,)dt.

Jß/2

Here we take p = 1 or 1/3. An application of Lemma 4.1 will give a good

estimate for F0 . To estimate F we first rewrite the phase function in a different

form and then apply the method of stationary phase. The next lemma gives the

required estimate for FQ . Recall that we are considering the case xy > 0 and

x2 + y2> 1/2.
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Lemma 4.4. For the region 2R~X < \x - y\ < 20, where ô is small, we have the

estimate

(4.23) \F0\ < CR~a~X/3\x - yfa-5/6 .

Proof. We are going to apply Lemma 4.1 with k = 3. So, we need a lower

bound for the third derivative of y/. With cos 2t = X we have the following

expression for the third derivative:

(4.24) |/"(r)| = S(2a2X2 - bX3 - 5bX + a2)(l - X2)~2.

We claim that for 0 < t < n/4, \y/'"(t)\ > xy. To prove the claim, since

a2 > 2b, it is enough to check if 8(4A2 - X3 - 5X + 2) > (1 - X2)2. But

(4X2-X3-5X+2) = (2-a)(1-A)2 so that we have to check if 8(2-/1) > (l+X)2

which is clearly true for 0 < X < 1. Thus, |y/'"(t)\ > xy > t for 0 < t < n/4.

Applying Lemma 4.1 with k = 3 we immediately obtain the following estimate:

(4.25) |F0| < CiTa~1/3|x - yf3«'5-9'10.

Since |x - y| < 20 and 1/6 < a < 1/2, this gives the estimate |.F0| <

Ci?-a-'/3|x-yrQ-5/6.

To estimate F we have to consider two cases. First assume that 1/2 <

x +y <4. We rewrite the function y/ as follows. As y/(t) = t-bcosec2t +

\a2cot2t we have

(4.26) y/(t) = t + i(x - y)2 cosec 2t - ¿(x2 + y2) tan t.

The functions tan ¿ and cosec 2t can be expanded in powers of t. We then

have

(4.27) tañí = t + b(t),

(4.28) cosec 2i= ¿r_1 + \t + a(t),

where a(t) = 0(t3) and b(t) = 0(t3) for 0 < t < n/4. Then we have y/(t) =

Vx(t) + V2(t) with

(4.29) ¥x(i) = {1 + ¿(x -y)2 - \(x2 +y2)}t + \t~x(x -y)2,

(4.30) y/2(t) = l(x -yfa(t) - l(x2 + y2)b(t).

Since by definition (x-y)2 = 4ß2, we have y/x(t) = (1 -\a2)t + ß2Cx + \ß2t.

Also, if we put w(t) = 6(Rt)(2t/sin2t)x/2, then we have |tiz(r)| < C for |r| <

n/4. Having made all these preliminary simplifications we consider the integral

F = R'a r    w(t)ra~3/2expiR{(l - \a2)t + ß2t~x + \ß2t}exp{iRy/2(t)}dt.
Jß/2
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2 2 _1
Lemma 4.5. Assume that xy > 0, 1/2 < x +y  < 4, and 2R     < \x — y\ < 23
where ô is small. Then

(4.31) |F|<CiTa-1/3|x-yfa-5/6.

Proof. First assume that X = (1 - \a +\ß ) is positive. We make a change

of variable in the integral F. Changing t into Rß t we see that the integral

becomes R-2a-i/2ß-2a-lj where the integral I is given by

(4.32) I = f ra~3/2w(Rß2t)exp{i(R2ß2X2t + t~x)}exp{iRy/2(Rß2t)}dt,
Je

where E is the interval \R~Xß~x < t < R~xß~ '5. Since the above integral

taken from 1 to infinity is bounded we can assume without loss of generality
that R~xß~ys < 1.

We have to consider two cases. First assume that X>2ß'5. Putting y/x (t) =
2     2   ? _1 _1

R ß X t + t the stationary point of y/x is given by t0 = (RßX) . Since

X2 > 4ß4/s, we see that 2t0 < R~xß~1/5. We write I as the sum of the

following three integrals:

(4.33) i, = Í t~a~3/2w(Rß2t)exp{i(R2ß2X2t + t~x)}exp{iRy/2(Rß2t)}dt,

(4.34) i2= f ra~3/2w(Rß2t)exp{i(R2ß2X2t + t~X)}exp{iRy/2(Rß2t)}dt,
Jm

(4.35) i3= f ra~3/2w(Rß2t)exp{i(R2ß2X2t + rX)}exp{iRy/2(Rß2t)}dt,
Jn

where L,M and A are the intervals jR~ ß~ < t < jt0, \tQ<t< 2t0, and

2t0 < t < R~xß~lß, respectively.By setting y/(t) = R2ß2X2t + t~x + Ry/2(Rß2t)

we want to show that the integral

(4.36) Ix=f ra-3,2w(Rß2t)eiw{l) dt

is bounded independent of x, y and R. This is done by applying the method

of stationary phase. For that purpose we need to get some bounds for the first

and second derivatives of y/.

A simple calculation shows that -y/'(t)t2 = 1 -R2ß2X2t2 -R2ß2t2y/'2(Rß2t).

Since t < \to and t0 = {(RßX)~x we have R2ß2X2t2 < 1/4 for t in L. Also

since y/'2(t) = 0(t2), we see that R2ß2t2\y/'2(Rß2t)\ < Cß2X~4 and as X > 2ß2/5

we have iî2yî2/2|/(iî^2i)| < Cß2/5 which is less than 1/2 for \x - y\ < 20

provided ô is small enough. Thus, we have the estimate -y/'(t)t > 1/4 for

t in L. We need one more bound for the second derivative of y/. Another

calculation shows that t3y/"(t) = 2 + R3ß4t3y/"(Rß2t). Since y/"(t) = O(0 the

above gives \t3y/"(t)\ <2 + Cß2'5 <C for t in L. Also we have uz'(0 = O(0

since t <R~X on the support of d'(Rt).
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Having made all these observations we integrate i, by parts. We have

(4.37) i, = -if Ca+xl2w(Rß2t)(t2y,'(t))-X d{eim}.

Since a < 1/2 and R~ ß~ ' < 1 , in view of the above bounds we see that

17, | < C as desired. The estimation of the integral

73= f t—3/2w(Rß2t)e'v(,)dt
Jn

is similar. To estimate the remaining integral I2 we are going to apply Lemma

4.1.

Let us get a bound for y/" when / is in M. We have y/"(t) = 2t~ +

R3ß4y/"(Rß2t) which gives for jtQ < t < 2t0 the lower bound \y/"(t)\ >

c(t0)~ . Applying Lemma 4.1 and using the fact that w'(t) = 0(t) we imme-

diately obtain the estimate |i2| < C(RßX)" . Therefore, we get

R~2"~X/2ß~2a~X\I2\ < CR~"~l/2ß~"~X .

This takes care of the lemma when X>2ß'  .

Next we consider the same integral 7 in the case X < 2ß ' but now the

integral is taken over the interval E defined by jR~xß~x < t < ^R~xß~ 5.

Since now R~ ß~ X~   > jR~ ß~      there is no stationary point for the func-
2 2—1

tion y/x(t) = X t + ß t . Calculating the first derivative of y/(t) we see

that -y/'(t)t2 = 1 -R2ß2X2t2 -R2ß2t2y/'2{Rß2t). Since X < 2ß2ß and t <

\R~xß~lß we have R2ß2X2t2 < ±R2 ß2 ß4ß R~2 ß~X4ß < 4/9. Also if S

is chosen sufficiently small we can make \R ß t y'2(Rß 01 < 2/9. Thus,

I - v'(t)t | > 1/3 for t in E. As in the previous case we can also get bounds

for the second derivative of y/ . Then an integration by parts gives the required

estimate.

Thus we have estimated F under the assumption that X = (1 — ¿a +\ß )

is positive. Next assume that -X = (1 - ¿a2 + \ß2) is negative. As before by

changing the variable we consider R~ "~    ß~""~ I where

/= f ra~3/2w{Rß2t)exp{i(-Rß2X2t + t~x)}exp{iRy/2(Rß2t)}dt.

We want to show that the integral is bounded independent of x, y and R . We

can easily see that for t in E, \y/'(t)t2\> 1/3 where y/(t) = -Rß2X2t + t~x +

Ry/2(Rß t). Also we can obtain bounds for the second derivative. Integration

by parts gives the required estimate as before.

It remains to consider the case x2 + y2 > 4. But this case is very easy. We

look at the first derivative of yi. Let tQ be the point where y/"(t) vanishes.

Since y/'" is negative y/'(t) attains maximum at t0 . A calculation shows that

y/'(t) = (I -x2) when cos2i0 = y/x and y/'(t) = (l-y ) when cos2/0 = x/y.
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Therefore, as x + y > 4, \y/'(t)\ > 1 . An integration by parts gives the

estimate \F\ < CiTa_1/3|x-yp_5/6.

Now it is time to put all the loose ends together. Combining Propositions 4.1

and 4.2, we have a good estimate for the integral 7 mentioned in the beginning

of this section. In estimating the term A we omitted the contribution from

the part C gQ(t) of g(t) • But the estimation of this contribution is easy and

it gives a similar estimate. The final estimate of the kernel is stated in the

following theorem.

Theorem 4.1. Assume that 1/6 <a< 1/2. Then with a C independent of x, y

and R we have

(4.38) \SR(x,y)\ < Ci?1/2(l+i?1/2|x-y|)-a"5/6 + iî1/2(l+iî1/2|x+y|)-a-5/6.

In the above estimate the contribution Rx/ (l+Rx/ |x+y|)~a_5/6 comes from

the integral J mentioned in the beginning. Note that J is defined in terms

of tp*. Since tp* is obtained from tp by replacing y by -y, the estimation

of J does not pose any new problem. If we replace y by -y in the estimate

obtained for 7, we get the estimate for J. R J g{R(t + kn)}G(t ,x ,y)dt the

integrals mentioned before are easy to estimate. Each of them gives an estimate

k-"~x times JR1/2(l+A1/2|x-y|)-"-5/6 + iî1/2(l+iî1/2|x + y|)-,,-5/6 and so

we can sum the series to get the final estimate.

5. Summability results for the Hermite expansions

In this section we prove all the results mentioned in the introduction con-

cerning the summability of the Hermite series. All the theorems of this section

are easy consequences of the main estimate proved in the last section. Recall

that we have

(5.1) \SR(x,y)\<C{ER(x-y) + ER(x + y)}

where ER(x) = Rx/2(l + i?1/2|x|)~""5/6. The Riesz means SR(a)f of an Lp

function / are given by SR(a)f(x) = J SR(x ,y)f(y)dy . Let us denote by /*

the function defined by f*(x) = f(-x) and by ERf(x) the convolution of /

with ER(x). Then we have

(5.2) \SR(a)f(x)\ < C{ER\f\(x) + ER\f*\(x)} .

We are now ready to prove the following theorem. In what follows we assume

that / is nonnegative without losing any generality.

Theorem 5.1. Assume that a > 1/6 and 1 < p < oo. The Riesz means of order

a are uniformly bounded on Lp , i.e. there is a constant C independent of f

and R such that \\SR(a)f\\p < C||/|| for all f in Lp. As R tends to infinity,

SR(a)f converges to f in the norm.

Proof. The proof is very simple. Since a > 1/6, ER(x) is an L function.

Therefore, it follows immediately that   ||iiÄ/||p  <  C||/||   .   This proves the
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uniform boundedness. For a C°° function with compact support it is clear

that SR(a)f converges to f in the norm. In view of the uniform boundedness

of SR(a), a density argument shows that SR(a)f converges to / in the norm.

Hence the theorem.

Let us now recall a few facts about the Hardy-Littlewood maximal function

defined as follows:

(5.3) Af(x) = sup (2h)~x f \f(x-y)\dy.
h>0 J-h<y<h

For 1 < p < oo, A is bounded on Lp . When p = 1, we have the following

weak type inequality:

(5.4) |{x:A/(x)>A}|<Ca-1||/||1.

Many maximal functions are dominated by the Hardy-Littlewood maximal

function. One such maximal function is given by the following. Given g in L1

and e > 0, we can consider the family {ge */} . Then we have sup£>0 \ge */(x)|

< CAf(x). In particular, this applied to ER(x) gives

(5.5) sup\ERf(x)\<CAf(x).
R>0

The following theorem will be used in the proof of the next theorem. See Stein

[23] for a proof.

Theorem. Let Te, e > 0, be a family of linear operators mapping Lp functions

into measurable functions. For each h in Lp define Mh(x) = supe>0\TEf(x)\.

Suppose there is a constant a > 0 and a q > 1 such that \{x : Mh(x) > l}\ <

(aX~ ll/L)9 • If there is a dense subset D of Lp suchthat lim Teg(x) exists

and is finite a.e. whenever g is in D, then for each f in Lp lim Tef(x) exists

and is finite almost everywhere.

Consider the family of operators {5Ä(a)}. Let M be the associated maximal

function, i.e. Mf(x) = supÄ>0 \SR(a)j7(x)\. For this maximal function we have

the following theorem.

Theorem 5.2. Assume that a > 1/6. There is a constant C > 0 such that the

following hold:

(5.6) ||M/||p < C\\f\\p,   for all f in Lp', Kp<œ,

(5.7) |{x : Mf(x) > X}\ < CA^H/H,,   for all f in Lx.

We also have a.e. convergence, for f in Lp, 1 < p < oo, SR(a)f converges to

f a.e. as R —► oo.

Proof. In view of the foregoing observations it is clear that

Mf(x)<C{Af(x) + Af(x)}.
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(5.6) and (5.7) follow from the boundedness properties of the Hardy-Littlewood

maximal function. The a.e. convergence follows from (5.6) and (5.7) by means

of the above theorem.

Next we proceed to prove the analogues of the Fejér-Lebesgue theorem and

Riemann's localisation principle. The following arguments are taken from

Peetre [20]. See Hormander [11] also. We will get an estimate for ERf(x)

when f(y) vanishes for |x - y| < r < 1.   By Holder's inequality we have

\ERf(x)\ < CRx/2(l + iî1/2r)_a~5/611/11,. We will first prove

Proposition 5.1. Assume that a > 1/6 and f belongs to Lp, 1 < p < oo. Then

we have

(5.8) \ERf(x)\ < C {U/H  + sup ( r~x f \f(y)\ dy) ) .
{        P      0<r<l  y,        J\x-y\<r J J

Proof. Let /0(y) = f(y) for |x-y| > 1 and 0 otherwise. For k > 1, we define

fk(y) by setting

(5.9) fk(y) = f(y)   for 2~k < y < 2~k+x and 0 otherwise.

Then in view of the above observations we have

(5.10) \ERf(x)\<J2\ERfk(x)\
k>0

< c j U/H, + r}'2 Ç(i + 2-V^r-^i/j, I.

If we set F = sup0<r<x(rx f¡x_yl<r\f(y)\dy) we obtain ||/tH, < CF2~k so

the sum can be estimated by CFJ2k>i 2~kRx/2(l + 2~kR^2)-a~5'6 . The sum

converges even when it is extended from -oo to oo, provided a > 1/6. It is

then a bounded function of R for it is clearly locally bounded and it remains

unchanged if R is replaced by 22*i?. Hence we obtain the estimate \ERf(x)\ <

C{\\f\\p + F}.

We recall one more definition. A point x is said to be a Lebesgue point of

an Lp function / if the following holds:

limr"1 / \f(x)-f(y)\dy = 0.
r—° J\x-y\<r

We can now state and prove

Theorem 5.3 (Fejér-Lebesgue). Assume that a > 1/6 and f belongs to Lp,

1 < p < oo. If x and -x are both Lebesgue points of f then SR(a)f(x)

converges to f(x) as R tends to infinity.

Proof. The theorem is clearly true for C°° functions with compact support.

Replacing, if necessary, f(y) by f(y)-f(x)g(y) - f(-x)g(-y) where g is a
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C°° function such that g(x) = 1 and g(-x) = 0 we can assume that f(x) = 0

and f(-x) = 0. Thus, we are given that

(i)       limr"1/ \f(y)\dy = 0,
r-*° J\x-y\<r

(ii)      limr"1/        \f(y)\dy = 0.
r-*° J\x+y\<r

Let B be the Banach space of measurable functions with the norm

II/IIb = 11/11, + sup (rx f \f(y)\ dy) + sup f r~x f \f(y)\ dy] .
0<r<\  \        J\x-y\<r J       0<r<\ \        J\x+y\<r J

Every / in Lp satisfying (i) and (ii) belongs to the closure of B n C0 and

SR(a)f(x) converges to f(x) for such functions. Therefore, we only have to

show that supÄ llS^x.y)^. < oo where \\g\\B. is the norm dual to || • ||Ä

which is given by \\g\\B. = sup | f g(y)f(y)dy\ where the sup is taken over

all / with ||/||Ä < 1 . But in view of Proposition 5.1 we immediately obtain

\fSR(x,y)f(y)dy\ < C\\f\\B . Hence the theorem.

We remark that in the classical Fejér-Lebesgue theorem for the Fourier series

it was only required that x is a Lebesgue point of /. A similar remark applies

to the following Riemann's localisation principle. As opposed to the case of the

Fourier series where the vanishing of / is assumed only near x , now we have

to assume that the function vanishes near -x as well.

Theorem 5.4 (Riemann's localisation principle). Assume that a > 1/6 and f is

in Lp, 1 <p < oo. If f vanishes near x and -x, then SR(a)f(x) converges

to 0 as R tends to infinity.

Proof. The proof is similar to that of Theorem 5.3. We consider the Banach

space E of measurable functions / which vanish for |x-y| < r and |x-r-y| <

r, r is a fixed number, with the norm defined by

\\f\\E=\l       \f(y)\dy) + (f      \f(y)\dy)
\J\x-y\>r j        \J\x+y\>r /

and proceed as in the previous theorem.

Finally we consider the summability below the critical index. The case a = 0

was settled by Askey and Wainger in [3]. They proved that the partial sum

operators S of the Hermite expansion are uniformly bounded on Lp if and

only if 4/3 < p < 4. To settle the case 0 < a < 1/6 we use the complex

interpolation methods of Stein.

Consider a family Tz of linear operators depending on a complex parameter

z. Assume that the following three conditions are satisfied: ( 1 ) for each z,

0 < Re z < 1 , Tz is a linear transformation of simple functions into measurable

functions, (2) when tp and y/ are simple functions then the function O(z) =

/ T^y/(x)tp(x)dx is analytic in 0 < Rez < 1 and continuous in 0 < Rez < 1 ,
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and (3) sup, ,<rsup0<JC<1 log|<P(x + z'y)| < Ae , a <n; A and a may depend

on tp and y/. For such a family Stein [25] proved the following result.

Theorem (Stein). Suppose that 1 < px,p2,qx,q2 < oo and that l/p =

(1 - t)/px + t/p2, l/q = (1 - t)/qx + t/q2 where 0 < t < 1. Assume that

whenever f is simple the following inequalities hold:

(5.11) \\Tiy(f)\\qi<A0(y)\\f\\p¡,

(5.12) \\Tl+iy(f)\\g2<Ax(y)\\f\\p2.

Suppose further that logv4;.(y) < Aea", a < n for i = 1,2.   Then we have

IIW>II,< 411/11,-
We can now prove the following theorem regarding the uniform boundedness

of SR(a) when a is smaller than 1/6.

Theorem 5.5. Assume that 0 < a < 1/6 and f belongs to Lp . Then SR(a) are

uniformly bounded on Lp if and only if 4/(6a + 3) < p < 4/(1 - 6a).

Proof. The only if part has been already proved in Theorem 2.1. To get the if

part we interpolate between the results a = 0 and for a > 1/6. Consider the

family of operators Tzf defined by Tzf = SR(a(z))f where a(z) = (l/6+e)z,

£ > 0. That this family satisfies the conditions of Stein's theorem can be verified

as in Hormander [11]. Applying Stein's theorem and then letting e tend to 0

we get the theorem.
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