Probabilistic representations of solutions to the heat equation

B RAJEEV and S THANGAVELU
Indian Statistical Institute, R.V. College Post, Bangalore 560 059, India
E-mail: brajeev@isibang.ac.in; veluma@isibang.ac.in

MS received 16 November 2002

Abstract

In this paper we provide a new (probabilistic) proof of a classical result in partial differential equations, viz. if ϕ is a tempered distribution, then the solution of the heat equation for the Laplacian, with initial condition ϕ, is given by the convolution of ϕ with the heat kernel (Gaussian density). Our results also extend the probabilistic representation of solutions of the heat equation to initial conditions that are arbitrary tempered distributions.

Keywords. Brownian motion; heat equation; translation operators; infinite dimensional stochastic differential equations.

1. Introduction

Let $\left(X_{t}\right)_{t \geq 0}$ be a d-dimensional Brownian motion, with $X_{0} \equiv 0$. Let $\varphi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$, the space of tempered distributions. Let φ_{t} represent the unique solution to the heat equation with initial value φ, viz.

$$
\partial_{t} \varphi_{t}=\frac{1}{2} \Delta \varphi_{t} \quad 0 \leq t \leq T ; \quad \varphi_{0}=\varphi .
$$

It is well-known that $\varphi_{t}=\varphi * p_{t}$, where $p_{t}(x)=\frac{1}{(2 \pi t)^{d / 2}} \mathrm{e}^{-\left(|x|^{2} / 2 t\right)}$ and ' $*$ ' denotes convolution. When φ is smooth, say $\varphi \in \mathcal{S}$, the space of rapidly decreasing smooth functions, then the probabilisitc representation of the solution is given by the equality $\varphi(t, x)=E \varphi\left(X_{t}+x\right)$ and is obtained by taking expectations in the Ito formula

$$
\varphi\left(X_{t}+x\right)=\varphi(x)+\int_{0}^{t} \nabla \varphi\left(X_{s}+x\right) \cdot \mathrm{d} X_{s}+\frac{1}{2} \int_{0}^{t} \Delta \varphi\left(X_{s}+x\right) \mathrm{d} s
$$

Such representations are well-known (see [1-4]) and extend to a large class of initial value problems, with the Laplacian Δ replaced by a suitable (elliptic) differential operator L and (X_{t}) being replaced by the diffusion generated by L. A basic problem here is to extend the representation to situations where φ is not smooth.

The main contribution of this paper is to give a probabilistic representation of solutions to the initial value problem for the Laplacian with an arbitrary initial value $\varphi \in \mathcal{S}^{\prime}$. This representation follows from the Ito formula developed in [9], for the \mathcal{S}^{\prime}-valued process ($\tau_{X_{t}} \varphi$), where $\tau_{x} \varphi$ is the translation of φ by $x \in \mathbb{R}^{d}$. Our representation (Theorem 2.4) then reads, $\varphi_{t}=E \tau_{X_{t}} \varphi$ where of course φ_{t} is the solution of the initial value problem for the Laplacian, with initial value $\varphi \in \mathcal{S}^{\prime}$. In particular, the fundamental solution $p_{t}(x-\cdot)$
has the representation, $p_{t}(x-\cdot)=E \tau_{X_{t}} \delta_{x}$. However, the results of [9] only show that if $\varphi \in \mathcal{S}_{p}^{\prime}$, then there exists $q>p$ such that the process $\left(\tau_{X_{t}} \varphi\right)$ takes values in \mathcal{S}_{q}^{\prime}. Here for each real p, the $\mathcal{S}_{p} \mathrm{~s}$ are the 'Sobolev spaces' associated with the spectral decomposition of the operator $|x|^{2}-\Delta$ or equivalently they are the Hilbert spaces defining the countable Hilbertian structure of \mathcal{S}^{\prime} (see [6]). \mathcal{S}_{p}^{\prime}, the dual of \mathcal{S}_{p}, is the same as \mathcal{S}_{-p}. Clearly it would be desirable to have the process $\left(\tau_{X_{t}} \varphi\right)$ take values in \mathcal{S}_{p}^{\prime}, whenever $\varphi \in \mathcal{S}_{p}^{\prime}$. Such a result also has implications for the semi-martingale structure of the process $\left(\tau_{X_{t}}\right)$ - it is a semimartingale in $\mathcal{S}_{p+1}^{\prime}\left(\right.$ Corollary 2.2) and fails to have this property in \mathcal{S}_{q}^{\prime} for $q<p+1$ (see Remark 5.2 of [5]).

Given the above remarks and the results of [9], the properties of the translation operators become significant. We show in Theorem 2.1 that the operators $\tau_{x}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ for $x \in \mathbb{R}^{d}$, are indeed bounded operators, for any real p, with the operator norms being bounded above by a polynomial in $|x|$. The proof uses interpolation techniques well-known to analysts. Theorem 2.4 then gives a comprehensive treatment of the initial value problem for the Laplacian from a probabilistic point of view.

2. Statements of the main results

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, P\right)$ be a filtered probability space with a filtration $\left(\mathcal{F}_{t}\right)$ satisfying usual conditions: $\mathcal{F}_{t}=\bigcap_{s>t} \mathcal{F}_{s}$ and \mathcal{F}_{0} contains all P-null sets. Let $\left(X_{t}\right)_{t \geq 0}$ be a d-dimensional, $\left(\mathcal{F}_{t}\right)$-Brownian motion with $X_{0} \equiv 0$.
\mathcal{S} denotes the space of rapidly decreasing smooth functions on \mathbb{R}^{d} (real valued) and \mathcal{S}^{\prime} its dual, the space of tempered distributions. We refer to [11] for formal definitions. For $x \in \mathbb{R}^{d}, \delta_{x} \in \mathcal{S}^{\prime}$ will denote the Dirac distribution at x. Let $\left\{\tau_{x}: x \in \mathbb{R}^{d}\right\}$ denote the translation operators defined on functions by the formula $\tau_{x} f(y)=f(y-x)$ and let $\tau_{x}: \mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime}$ act on distributions by

$$
\left\langle\tau_{x} \varphi, f\right\rangle=\left\langle\varphi, \tau_{-x} f\right\rangle
$$

The nuclear space structure of \mathcal{S}^{\prime} is given by the family of Hilbert spaces $\mathcal{S}_{p}, p \in \mathbb{R}$, obtained as the completion of \mathcal{S} under the Hilbertian norms $\left\{\|\cdot\|_{p}\right\}_{p \in \mathbb{R}}$ defined by

$$
\|\varphi\|_{p}^{2}=\sum_{k}(2|k|+d)^{2 p}\left\langle\varphi, h_{k}\right\rangle^{2}
$$

where $\varphi \in \mathcal{S}$, and the sum is taken over $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}_{+}^{d},|k|=\left(k_{1}+\cdots+\right.$ $\left.k_{d}\right),\left\langle\varphi, h_{k}\right\rangle$ denotes the inner product in $L^{2}\left(\mathbb{R}^{d}\right)$ and $\left\{h_{k}, k \in \mathbb{Z}_{+}^{d}\right\}$ is the ONB in $L^{2}\left(\mathbb{R}^{d}\right)$, constructed as follows: for $x=\left(x_{1}, \ldots, x_{d}\right), h_{k}(x)=h_{k_{1}}\left(x_{1}\right) \ldots h_{k_{d}}\left(x_{d}\right)$. The onedimensional Hermite functions are given by $h_{\ell}(s)=\frac{1}{\left(\sqrt{\pi} 2^{\ell} \ell!\right)^{1 / 2}} \mathrm{e}^{-\left(s^{2} / 2\right)} H_{\ell}(s)$, where $H_{\ell}(s)=(-1)^{\ell} \mathrm{e}^{s^{2}} \frac{\mathrm{~d}^{\ell}}{\mathrm{d} s^{\ell}} \mathrm{e}^{-s^{2}}$ are the Hermite polynomials. While we mainly deal with real valued functions, at times we need to use complex valued functions. In such cases, the spaces \mathcal{S}_{p} are defined in a similar fashion as above, i.e. as the completion of \mathcal{S} with respect to $\|\cdot\|_{p}$. However, in the definition of $\|\varphi\|_{p}^{2}$ above we need to replace the real L^{2} inner product $\left\langle\varphi, h_{k}\right\rangle$ by the one for complex valued functions, viz. $\langle\varphi, \psi\rangle=\int_{\mathbb{R}^{d}} \varphi(x) \bar{\psi}(x) \mathrm{d} x$ and $\left\langle\varphi, h_{k}\right\rangle^{2}$ is replaced by $\left|\left\langle\varphi, h_{k}\right\rangle\right|^{2}$. It is well-known (see [6, 7]) that $\mathcal{S}=\bigcap_{p} \mathcal{S}_{p}, \mathcal{S}^{\prime}=$ $\bigcup_{p} \mathcal{S}_{p}$ and $\mathcal{S}_{p}^{\prime}=$: dual of $\mathcal{S}_{p}=\mathcal{S}_{-p}$. We will denote by $\langle\cdot, \cdot\rangle_{p}$, the inner product corresponding to the norm $\|\cdot\|_{p}$.

Let $\left(Y_{t}\right)_{t \geq 0}$ be an \mathcal{S}_{p}-valued, locally bounded, previsible process, for some $p \in \mathbb{R}$. Let $\partial_{i}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p-1 / 2}$ be the partial derivatives, $1 \leq i \leq d$, in the sense of distributions. Then since $\partial_{i}, 1 \leq i \leq d$ are bounded linear operators it follows that $\left(\partial_{i} Y_{t}\right)_{t \geq 0}$ is an $\mathcal{S}_{p-1 / 2^{-}}$ valued, locally bounded, previsible process. From the theory of stochastic integration in Hilbert spaces [8], it follows that the processes

$$
\left(\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}^{i}\right)_{t \geq 0},\left(\int_{0}^{t} \partial_{i} Y_{s} \mathrm{~d} X_{s}^{i}\right)_{t \geq 0}
$$

are continuous \mathcal{F}_{t} local martingales for $1 \leq i \leq d$, with values in \mathcal{S}_{p} and $\mathcal{S}_{p-1 / 2}$ respectively. If $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$ is a continuous \mathbb{R}^{d}-valued, \mathcal{F}_{t}-semi-martingale, it follows from the general theory that the above processes too are continuous \mathcal{F}_{t}-semi-martingales with values in \mathcal{S}_{p} and $\mathcal{S}_{p-1 / 2}$ respectively.

Theorem 2.1. Let $p \in \mathbb{R}$. There exists a polynomial $P_{k}(\cdot)$ of degree $k=2([|p|]+1)$ such that the following holds: For $x \in \mathbb{R}^{d}, \tau_{x}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ is a bounded linear map and we have

$$
\left\|\tau_{x} \varphi\right\|_{p} \leq P_{k}(|x|)\|\varphi\|_{p}
$$

for all $\varphi \in \mathcal{S}_{p}$.
In ([9], Theorem 2.3) we showed that if $\left(X_{t}\right)_{t \geq 0}$ is a continuous, d-dimensional, $\mathcal{F}_{t^{-}}$ semi-martingale and $\varphi \in \mathcal{S}_{p} \subset \mathcal{S}^{\prime}$, then the process $\left(\tau_{X_{t}} \varphi\right)_{t \geq 0}$ is an \mathcal{S}_{q}-valued continuous semi-martingale for some $q<p$. Corollary 2.2 below says that we can take $q=p-1$.

COROLLARY 2.2

Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous d-dimensional, \mathcal{F}_{t}-semi-martingale. Let $\varphi \in \mathcal{S}_{p}, p \in \mathbb{R}$. Then $\left(\tau_{X_{t}} \varphi\right)_{t \geq 0}$ is an \mathcal{S}_{p}-valued, continuous adapted process. Moreover it is an \mathcal{S}_{p-1}-valued, continuous \mathcal{F}_{t}-semi-martingale and the following Ito formula holds in $\mathcal{S}_{p-1}:$ a.s., $\forall t \geq 0$,

$$
\begin{align*}
\tau_{X_{t}} \varphi= & \tau_{X_{0}} \varphi-\sum_{i=1}^{d} \int_{0}^{t} \partial_{i}\left(\tau_{X_{s}} \varphi\right) \mathrm{d} X_{s}^{i} \\
& +\frac{1}{2} \sum_{i, j=1}^{d} \int_{0}^{t} \partial_{i j}^{2}\left(\tau_{X_{s}} \varphi\right) \mathrm{d}\left\langle X^{i}, X^{j}\right\rangle_{s} \tag{2.1}
\end{align*}
$$

where $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$ and $\left(\left\langle X^{i}, X^{j}\right\rangle_{t}\right)$ is the quadratic variation process between $\left(X_{t}^{i}\right)$ and $\left(X_{t}^{j}\right), 1 \leq i, j \leq d$.

Proof. From Theorem 2.1, it follows that $\left(\tau_{X_{t}} \varphi\right)$ is an \mathcal{S}_{p}-valued continuous adapted process. By Theorem 2.3 of [9], $\exists q<p$, such that $\left(\tau_{X_{t}} \varphi\right.$) is an \mathcal{S}_{q} semi-martingale and the above equation holds in \mathcal{S}_{q}. Clearly each of the terms in the above equation is in \mathcal{S}_{p-1} and the result follows.

The next corollary pertains to the case when $\left(X_{t}\right)=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$ is a d-dimensional Brownian motion, $X_{0} \equiv 0$. In ([5], Definition 3.1), we introduced the notion of an $\mathcal{S}_{p}^{\prime}(=$ $\mathcal{S}_{-p}, p>0$)-valued strong solution of the SDE

$$
\begin{align*}
& \mathrm{d} Y_{t}=\frac{1}{2} \Delta\left(Y_{t}\right) \mathrm{d} t+\nabla Y_{t} \cdot \mathrm{~d} X_{t} \\
& Y_{0}=\varphi \tag{2.2}
\end{align*}
$$

where $\nabla=\left(\partial_{1}, \ldots, \partial_{d}\right)$ and $\Delta=\sum_{i=1}^{d} \partial_{i}^{2}$. There we showed that if $\varphi \in \mathcal{S}_{p}^{\prime}$, then the above equation has a unique \mathcal{S}_{q}^{\prime}-valued strong solution, $q \geq p+2$. Theorem 2.1 implies that we indeed have an (unique) \mathcal{S}_{p}^{\prime}-valued strong solution.

COROLLARY 2.3
Let $\varphi \in \mathcal{S}_{p}^{\prime}$. Then, eq. (2.2) has a unique \mathcal{S}_{p}^{\prime}-valued strong solution on $0 \leq t \leq T$.
Proof. By Corollary 2.2, the process $\left(\tau_{X_{t}} \varphi\right)$, where $\left(X_{t}\right)$ is a d-dimensional Brownian motion, $X_{0} \equiv 0$, satisfies eq. (2.1). Further,

$$
E \int_{0}^{T}\left\|\tau_{X_{t}} \varphi\right\|_{-p}^{2} \mathrm{~d} t=\int_{0}^{T} \int_{\mathbb{R}^{d}}\left\|\tau_{x} \varphi\right\|_{-p}^{2} \frac{\mathrm{e}^{-\left(|x|^{2} / 2 t\right)}}{(2 \pi t)^{d / 2}} \mathrm{~d} x \mathrm{~d} t<\infty
$$

Uniqueness follows as in Theorem 3.3 of [5].
We now consider the heat equation for the Laplacian with initial condition $\varphi \in \mathcal{S}_{p}$, for some $p \in \mathbb{R}$.

$$
\begin{align*}
& \partial_{t} \varphi_{t}=\frac{1}{2} \Delta \varphi_{t} \quad 0<t \leq T \\
& \varphi_{0}=\varphi \tag{2.3}
\end{align*}
$$

By an \mathcal{S}_{p}-valued solution of (2.3), we mean a continuous map $t \rightarrow \varphi_{t}:[0, T] \rightarrow S_{p}$ such that the following equation holds in \mathcal{S}_{p-1} :

$$
\begin{equation*}
\varphi_{t}=\varphi+\int_{0}^{t} \frac{1}{2} \Delta \varphi_{s} \mathrm{~d} s \tag{2.4}
\end{equation*}
$$

Let $\left\{h_{k}^{p-1}\right\}$ be the ONB in \mathcal{S}_{p-1} given by $h_{k}^{p-1}=(2|k|+d)^{-(p-1)} h_{k}$. We then have for $p<0$ and $t \leq T$:

$$
\begin{aligned}
\left\|\varphi_{t}\right\|_{p-1}^{2} & =\sum_{|k|=0}^{\infty}\left\langle\varphi_{t}, h_{k}^{p-1}\right\rangle_{p-1}^{2} \\
& =\sum_{|k|=0}^{\infty}\left\{\left\langle\varphi, h_{k}^{p-1}\right\rangle_{p-1}^{2}+2 \int_{0}^{t}\left\langle\varphi_{s}, h_{k}^{p-1}\right\rangle_{p-1} \mathrm{~d}\left\langle\varphi_{s}, h_{k}^{p-1}\right\rangle_{p-1}\right\} \\
& =\|\varphi\|_{p-1}^{2}+\sum_{|k|=0}^{\infty} 2 \int_{0}^{t}\left\langle\varphi_{s}, h_{k}^{p-1}\right\rangle_{p-1}\left\langle\frac{1}{2} \Delta \varphi_{s}, h_{k}^{p-1}\right\rangle_{p-1} \mathrm{~d} s \\
& =\|\varphi\|_{p-1}^{2}+2 \int_{0}^{t}\left\langle\frac{1}{2} \Delta \varphi_{s}, \varphi_{s}\right\rangle_{p-1} \mathrm{~d} s
\end{aligned}
$$

It follows from the results of [5] (the monotonicity condition) that for $p<0$,

$$
2\left\langle\frac{1}{2} \Delta \varphi, \varphi\right\rangle_{p-1}+\sum_{i=1}^{d}\left\|\partial_{i} \varphi\right\|_{p-1}^{2} \leq C\|\varphi\|_{p-1}^{2}
$$

for some constant $C>0$ for all $\varphi \in \mathcal{S}_{p}$. We then get

$$
\left\|\varphi_{t}\right\|_{p-1}^{2} \leq\|\varphi\|_{p-1}^{2}+C \int_{0}^{t}\left\|\varphi_{s}\right\|_{p-1}^{2} \mathrm{~d} s
$$

Hence for the case $p<0$, uniqueness follows from the Gronwall lemma. Uniqueness for the case $p \geq 0$, follows from uniqueness for the case $p<0$ and the inclusion $\mathcal{S}_{p} \subset \mathcal{S}_{q}$ for $q<p$. It is well-known that the solutions of the initial value problem (2.3) in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ are given by convolution of φ and $p_{t}(x)$, the heat kernel. That these coincide (as they should) with the \mathcal{S}_{p}-valued solutions follows from the 'probabilistic representation' given by Theorem 2.4 below. Define the Brownian semi-group $\left(T_{t}\right)_{t \geq 0}$ on \mathcal{S} in the usual manner:

$$
T_{t} \varphi(x)=\varphi * p_{t}(x) t>0, \quad T_{0} \varphi=\varphi
$$

where $p_{t}(x)=\frac{1}{(2 \pi t)^{d / 2}} \mathrm{e}^{\left(-|x|^{2} / 2 t\right)}, t>0$ and ' $*$ ' denotes convolution: $f * g(x)=$ $\int_{\mathbb{R}^{d}} f(y) g(x-y) \mathrm{d} y$. In the next theorem we consider standard Brownian motion $\left(X_{t}\right)$.

Theorem 2.4. (a) Let $\varphi \in \mathcal{S}_{p}$. Then for $t \geq 0$, the \mathcal{S}_{p}-valued random variable $\tau_{X_{t}} \varphi$ is Bochner integrable and we have

$$
E \tau_{X_{t}} \varphi=\varphi * p_{t}=T_{t} \varphi
$$

In particular, for every $p \in \mathbb{R}$, and $T>0, \sup _{t \leq T}\left\|T_{t}\right\|<\infty$ where $\left\|T_{t}\right\|$ is the operator norm of $T_{t}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$.
(b) For $\varphi \in \mathcal{S}_{p}$, the initial value problem (2.3) has a unique \mathcal{S}_{p}-valued solution φ_{t} given by

$$
\varphi_{t}=E \tau_{X_{t}} \varphi
$$

Further $\varphi_{t} \rightarrow \varphi$ strongly in \mathcal{S}_{p} as $t \rightarrow 0$.

3. Proofs of Theorems 2.1 and 2.4

The spaces \mathcal{S}_{p} can be described in terms of the spectral properties of the operator H defined as follows:

$$
H f=\left(|x|^{2}-\Delta\right) f, \quad f \in \mathcal{S}
$$

If $\left\{h_{k}\right\}$ is the ONB in $L^{2}\left(\mathbb{R}^{d}\right)$ consisting of Hermite functions (defined in $\S 2$), then it is well-known (see [10]) that

$$
H h_{k}=(2|k|+d) h_{k}
$$

For $f \in \mathcal{S}$, define the operator H^{p} as follows:

$$
H^{p} f=\sum_{k}(2|k|+d)^{p}\left\langle f, h_{k}\right\rangle h_{k}
$$

Here p is any real number. For $f \in \mathcal{S}$ and $z=x+i y \in \mathbb{C}$ define $H^{z} f=\sum_{k}(2|k|+$ $d)^{z}\left\langle f, h_{k}\right\rangle h_{k}$ and note that, $H^{z} f=H^{x}\left(H^{i y} f\right)=H^{i y}\left(H^{x} f\right)$ and $H^{i y}: L^{2} \rightarrow L^{2}$ is an isometry. Further,

$$
\begin{aligned}
\left\|H^{z} f\right\|_{0}^{2} & =\sum_{k}(2|k|+d)^{2 x}\left\langle f, h_{k}\right\rangle^{2} \\
& =\|f\|_{x}^{2}
\end{aligned}
$$

The following propositions (3.1, 3.2 and 3.3) may be well-known. We include the proofs for completeness.

PROPOSITION 3.1

For any p and $q,\left\|H^{p} \varphi\right\|_{q-p}=\|\varphi\|_{q}$ for $\varphi \in \mathcal{S}$. Consequently, $H^{p}: \mathcal{S}_{q} \rightarrow \mathcal{S}_{q-p}$ extends as a linear isometry. Moreover, this isometry is onto.

Proof. Let $h_{k}^{p}=(2|k|+d)^{-p} h_{k}$. Then from the relation $\left\langle\varphi, h_{k}\right\rangle_{p}=(2|k|+d)^{2 p}\left\langle\varphi, h_{k}\right\rangle$ it follows that $\left\{h_{k}^{p}\right\}$ is an ONB for \mathcal{S}_{p}. Let $\varphi \in \mathcal{S}$. Since

$$
\begin{aligned}
H^{p} \varphi & =\sum_{k}\left\langle\varphi, h_{k}\right\rangle(2|k|+d)^{p} h_{k} \\
& =\sum_{k}\left\langle\varphi, h_{k}\right\rangle(2|k|+d)^{q} h_{k}^{q-p},
\end{aligned}
$$

we get $\left\|H^{p} \varphi\right\|_{q-p}^{2}=\|\varphi\|_{q}^{2}$.
To show that H^{p} is onto, consider $\psi \in \mathcal{S}_{q-p}$,

$$
\psi=\sum_{k}\left\langle\psi, h_{k}^{q-p}\right\rangle_{q-p} h_{k}^{q-p} .
$$

Defining $\varphi=: \sum_{k}\left\langle\psi, h_{k}^{q-p}\right\rangle_{q-p} h_{k}^{q}$, we see that $\varphi \in \mathcal{S}_{q}$. Also,

$$
H^{p} \varphi=\sum_{k}\left\langle\varphi, h_{k}^{q}\right\rangle_{q} h_{k}^{q-p}=\sum_{k}\left\langle\psi, h_{k}^{q-p}\right\rangle_{q-p} h_{k}^{q-p}=\psi .
$$

Let $A_{j}=x_{j}+\partial_{j}$ and $A_{j}^{+}=x_{j}-\partial_{j}, 1 \leq j \leq d$. Then it is easy to see that

$$
H=\frac{1}{2} \sum_{j=1}^{d}\left(A_{j} A_{j}^{+}+A_{j}^{+} A_{j}\right) .
$$

For multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right)$ we define

$$
A^{\alpha}=: A_{1}^{\alpha_{1}} \ldots A_{d}^{\alpha_{d}}, \quad\left(A^{+}\right)^{\beta}=:\left(A_{1}^{+}\right)^{\beta_{1}} \ldots\left(A_{d}^{+}\right)^{\beta_{d}} .
$$

For an integer $\ell \geq 0$ and $x \in \mathbb{R}$, recall that

$$
h_{\ell}(x)=\frac{1}{\left(\sqrt{\pi} 2^{\ell} \ell!\right)^{1 / 2}} \mathrm{e}^{-\left(x^{2} / 2\right)} H_{\ell}(x)
$$

where H_{ℓ} is the Hermite polynomial defined by

$$
H_{\ell}(x)=(-1)^{\ell} \mathrm{e}^{x^{2}} \frac{\mathrm{~d}^{\ell}}{\mathrm{d} x^{\ell}} \mathrm{e}^{-x^{2}} .
$$

It is easily verified that

$$
\begin{aligned}
& \left(x+\frac{\mathrm{d}}{\mathrm{dx}}\right)\left(\mathrm{e}^{-\left(x^{2} / 2\right)} H_{\ell}(x)\right)=2 \ell\left(\mathrm{e}^{-\left(x^{2} / 2\right)} H_{\ell-1}(x)\right), \\
& \left(x-\frac{\mathrm{d}}{\mathrm{dx}}\right)\left(\mathrm{e}^{-\left(x^{2} / 2\right)} H_{\ell}(x)\right)=\mathrm{e}^{-\left(x^{2} / 2\right)} H_{\ell+1}(x) .
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
A_{j}^{+} h_{k_{j}}\left(x_{j}\right) & =\sqrt{2\left(k_{j}+1\right)} h_{k_{j}+1}\left(x_{j}\right), \\
A_{j} h_{k_{j}}\left(x_{j}\right) & =\sqrt{2 k_{j}} h_{k_{j}-1}\left(x_{j}\right) .
\end{aligned}
$$

Iterating these two formulas we get the following:

PROPOSITION 3.2

Let k, β and α be multi-indices such that $k_{j} \geq \alpha_{j}, j=1, \ldots, d$. Then

$$
\begin{aligned}
& \left(A^{+}\right)^{\beta} h_{k}(x)=2^{|\beta| / 2}\left(\frac{(k+\beta)!}{k!}\right)^{1 / 2} h_{k+\beta}(x) \\
& A^{\alpha} h_{k}(x)=2^{|\alpha| / 2}\left(\frac{k!}{(k-\alpha)!}\right)^{1 / 2} h_{k-\alpha}(x)
\end{aligned}
$$

where $k!=k_{1}!\ldots k_{d}!$.

PROPOSITION 3.3

For all $m \geq 0, \exists$ constants $C_{1}=C_{1}(m)$ and $C_{2}=C_{2}(m)$ such that the following hold: (a) For all $f \in \mathcal{S}$,

$$
\|f\|_{m} \leq C_{1} \sum_{|\alpha|+|\beta| \leq 2 m}\left\|A^{\alpha}\left(A^{+}\right)^{\beta} f\right\|_{0} \leq C_{2}\|f\|_{m}
$$

(b) For all $f \in \mathcal{S}$,

$$
\|f\|_{m} \leq C_{1} \sum_{|\alpha|+|\beta| \leq 2 m}\left\|x^{\alpha} \partial^{\beta} f\right\|_{0} \leq C_{2}\|f\|_{m}
$$

Proof. (a) We can write

$$
H^{m}=\sum_{|\alpha|+|\beta| \leq 2 m} C_{\alpha \beta} A^{\alpha}\left(A^{+}\right)^{\beta}
$$

where $C_{\alpha \beta}$ are constants. Since $\|f\|_{m}=\left\|H^{m} f\right\|_{0}$, the first part of the inequality follows. To show the second half of the inequality it is sufficient to show that for $f \in \mathcal{S}$ and $|\alpha|+|\beta| \leq 2 m,\left\|A^{\alpha}\left(A^{+}\right)^{\beta} H^{-m} f\right\|_{0} \leq C_{\alpha \beta}\|f\|_{0}$. Now,

$$
\begin{aligned}
\left\|A^{\alpha}\left(A^{+}\right)^{\beta} H^{-m} f\right\|_{0}^{2} & =\sum_{\ell}\left\langle A^{\alpha}\left(A^{+}\right)^{\beta} H^{-m} f, h_{\ell}\right\rangle^{2} \\
& =\sum_{\ell}\left[\sum_{k}(2|k|+d)^{-m}\left\langle f, h_{k}\right\rangle\left\langle A^{\alpha}\left(A^{+}\right)^{\beta} h_{k}, h_{\ell}\right\rangle\right]^{2} \\
& =\sum_{\ell}\left[\sum_{k}(2|k|+d)^{-m}\left\langle f, h_{k}\right\rangle C_{k, \beta, \alpha}\left\langle h_{k+\beta-\alpha}, h_{\ell}\right\rangle\right]^{2} \\
& =\sum_{\ell}(2|\ell+\alpha-\beta|+d)^{-2 m} C_{\ell+\alpha-\beta, \beta, \alpha}^{2}\left\langle f, h_{\ell+\alpha-\beta}\right\rangle^{2},
\end{aligned}
$$

where the sum is taken over $\ell=\left(\ell_{1}, \ldots, \ell_{d}\right)$ such that $\ell_{j}+\alpha_{j}-\beta_{j} \geq 0$ for $1 \leq j \leq d$ and where we have used Proposition 3.2 in the last but one equality above. From the same proposition, it follows that

$$
(2|\alpha+\ell-\beta|+d)^{-2 m} C_{\ell+\alpha-\beta, \beta, \alpha}^{2}
$$

are uniformly bounded in ℓ for $|\alpha|+|\beta| \leq 2 m$ and the second inequality in (a) follows.
(b) Since $\|f\|_{m}=\left\|H^{m} f\right\|_{0}$ and clearly $H^{m}=\sum_{|\alpha|+|\beta| \leq 2 m} C_{\alpha \beta} x^{\alpha} \partial^{\beta}$, the first inequality follows. To prove the second inequality, note that

$$
x_{j}=\frac{1}{2}\left(A_{j}+A_{j}^{+}\right), \quad \partial_{j}=\frac{1}{2}\left(A_{j}-A_{j}^{+}\right)
$$

Hence, using $\left[A_{j}, A_{k}^{+}\right]=\delta_{j k} I$,

$$
x^{\alpha} \partial^{\beta}=\sum_{|k|+|\ell| \leq|\alpha|+|\beta|} C_{k, \ell} A^{k}\left(A^{+}\right)^{\ell}
$$

and hence by part (a) we get

$$
\sum_{|\alpha|+|\beta| \leq 2 m}\left\|x^{\alpha} \partial^{\beta} f\right\|_{0} \leq C_{1} \sum_{|k|+|\ell| \leq 2 m}\left\|A^{k}\left(A^{+}\right)^{\ell} f\right\|_{0} \leq C_{2}\left\|H^{m} f\right\|_{0}
$$

Proof of Theorem 2.1. We first show that for an integer $m \geq 0$,

$$
\left\|\tau_{x} \varphi\right\|_{m} \leq P_{2 m}(|x|)\|\varphi\|_{m}
$$

where $P_{2 m}(t)$ is a polynomial in $t \in \mathbb{R}$ of degree $2 m$ with non-negative coefficients. This follows from Proposition 3.3:

$$
\begin{aligned}
\left\|\tau_{x} f\right\|_{m} & \leq C_{1} \sum_{|\alpha|+|\beta| \leq 2 m}\left\|y^{\alpha} \partial^{\beta} \tau_{x} f\right\|_{0} \\
& \leq C_{1} \sum_{|\alpha|+|\beta| \leq 2 m}\left\|(y+x)^{\alpha} \partial^{\beta} f\right\|_{0}
\end{aligned}
$$

The last sum is clearly dominated by $P_{2 m}(|x|)\|f\|_{m}$ for some polynomial $P_{2 m}$. If $m<$ $p<m+1$, where $m \geq 0$ is an integer, we prove the result using the 3-line lemma: for $f, g \in \mathcal{S}$, let

$$
F(z)=\left\langle H^{\bar{z}} \tau_{x} H^{-z} f, g\right\rangle_{0}
$$

Then from the expansion in L^{2} for the RHS it is verified that $F(z)$ is analytic in $m<$ $\operatorname{Re} z<m+1$ and continuous in $m \leq \operatorname{Re} z \leq m+1$. We will show that

$$
\begin{align*}
& |F(m+i y)| \leq P_{2 m}(|x|)\|f\|_{0}\|g\|_{0}, \\
& |F(m+1+i y)| \leq P_{2(m+1)}(|x|)\|f\|_{0}\|g\|_{0} \tag{3.1}
\end{align*}
$$

for $-\infty<y<\infty$. Hence from the 3-line lemma [12], it follows that

$$
\begin{aligned}
|F(p+i y)| & \leq\left(P_{2 m}(|x|)\|f\|_{0}\|g\|_{0}\right)^{m+1-p}\left(P_{2(m+1)}(|x|)\|f\|_{0}\|g\|_{0}\right)^{p-m} \\
& \leq P_{k}(|x|)\|f\|_{0}\|g\|_{0}
\end{aligned}
$$

where $P_{k}(t)$ is a polynomial in t of degree $k=2([p]+1)$. It follows that

$$
\left\|\tau_{x} f\right\|_{p} \leq P_{k}(|x|)\|f\|_{p}
$$

Using the fact that $\mathcal{S}_{-p}=\mathcal{S}_{p}^{\prime}$ we get $\left\|\tau_{x} f\right\|_{-p} \leq P_{k}(|x|)\|f\|_{-p}$ for $m \leq p \leq m+1$. The following chain of inequalities establish the inequalities (3.1):

$$
\begin{aligned}
|F(m+i y)| & \leq\left\|H^{m-i y} \tau_{x} H^{-(m+i y)} f\right\|_{0}\|g\|_{0} \\
& \leq\left\|H^{m} \tau_{x} H^{-(m+i y)} f\right\|_{0}\|g\|_{0} \\
& =\left\|\tau_{x} H^{-(m+i y)} f\right\|_{m}\|g\|_{0} \\
& \leq P_{2 m}(|x|)\left\|H^{-(m+i y)} f\right\|_{m}\|g\|_{0} \\
& =P_{2 m}(|x|)\left\|H^{-i y} f\right\|_{0}\|g\|_{0} \\
& =P_{2 m}(|x|)\|f\|_{0}\|g\|_{0}
\end{aligned}
$$

This completes the proof of Theorem 2.1.
Proof of Theorem 2.4. (a) Let $\varphi \in \mathcal{S}_{p}, p \in \mathbb{R}$. From Theorem 2.1 we have

$$
\left\|\tau_{X_{t}} \varphi\right\|_{p} \leq P_{k}\left(\left|X_{t}\right|\right)\|\varphi\|_{p}
$$

where P_{k} is a polynomial. Since $E P_{k}\left(\left|X_{t}\right|\right)<\infty$, Bochner integrability follows. For $\psi \in \mathcal{S}, \varphi \in \mathcal{S}$,

$$
\begin{aligned}
\left\langle\psi, \int \tau_{x} \varphi p_{t}(x) \mathrm{d} x\right\rangle & =\int\left\langle\psi, \tau_{x} \varphi\right\rangle p_{t}(x) \mathrm{d} x \\
& =\int p_{t}(x) \mathrm{d} x \int \psi(y) \varphi(y-x) \mathrm{d} y \\
& =\int \psi(y) \mathrm{d} y \int \varphi(y-x) p_{t}(x) \mathrm{d} x \\
& =\int \psi(y) \varphi * p_{t}(y) \mathrm{d} y \\
& =\left\langle\psi, \varphi * p_{t}\right\rangle
\end{aligned}
$$

The result for $\varphi \in \mathcal{S}_{p}$ follows by a continuity argument: Let $\varphi_{n} \in \mathcal{S}, \varphi_{n} \rightarrow \varphi$ in \mathcal{S}_{p}. Hence $\varphi_{n} * p_{t} \rightarrow \varphi * p_{t}$ weakly in \mathcal{S}^{\prime}. Hence,

$$
\begin{aligned}
\left\langle\psi, \varphi * p_{t}\right\rangle & =\lim _{n \rightarrow \infty}\left\langle\psi, \varphi_{n} * p_{t}\right\rangle \\
& =\lim _{n \rightarrow \infty} \int \psi(y) \varphi_{n} * p_{t}(y) \mathrm{d} y \\
& =\lim _{n \rightarrow \infty} \int\left\langle\psi, \tau_{x} \varphi_{n}\right\rangle p_{t}(x) \mathrm{d} x \\
& =\int\left\langle\psi, \tau_{x} \varphi\right\rangle p_{t}(x) \mathrm{d} x \\
& =\left\langle\psi, \int \tau_{x} \varphi p_{t}(x) \mathrm{d} x\right\rangle
\end{aligned}
$$

where we have used DCT in the last but one equality. That $T_{t}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ is a (uniformly) bounded operator follows:

$$
\begin{aligned}
\left\|T_{t} \varphi\right\|_{p} & =\left\|\varphi * p_{t}\right\|_{p}=\left\|E \tau_{X_{t}} \varphi\right\|_{p} \\
& =\left\|\int \tau_{x} \varphi p_{t}(x) \mathrm{d} x\right\|_{p} \leq \int\left\|\tau_{x} \varphi\right\|_{p} p_{t}(x) \mathrm{d} x \\
& \leq\|\varphi\|_{p} \int P_{k}(|x|) p_{t}(x) \mathrm{d} x \leq C\|\varphi\|_{p}
\end{aligned}
$$

where $C=\sup _{s \leq T} \int P_{k}(|x|) p_{s}(x) \mathrm{d} x<\infty$.
(b) Let $\left(X_{t}\right)$ be the standard Brownian motion so that $\left\langle X^{i}, X^{j}\right\rangle \equiv 0$ for $i \neq j$. Equation (2.1) then reads, for $\varphi \in \mathcal{S}_{p}, p \in \mathbb{R}$,

$$
\begin{equation*}
\tau_{X_{t}} \varphi=\varphi-\int_{0}^{t} \nabla\left(\tau_{X_{s}} \varphi\right) \cdot \mathrm{d} X_{s}+\frac{1}{2} \int_{0}^{t} \Delta\left(\tau_{X_{s}} \varphi\right) \mathrm{d} s \tag{3.2}
\end{equation*}
$$

The stochastic integral is a martingale in \mathcal{S}_{p-1} :

$$
\begin{aligned}
E\left\|\int_{0}^{t} \partial_{i}\left(\tau_{X_{s}} \varphi\right) \mathrm{d} X_{s}^{i}\right\|_{p-1}^{2} & \leq C_{1} E \int_{0}^{t}\left\|\partial_{i}\left(\tau_{X_{s}} \varphi\right)\right\|_{p-1}^{2} \mathrm{~d} s \\
& =C_{1} \int_{0}^{t}\left(\int\left\|\partial_{i}\left(\tau_{x} \varphi\right)\right\|_{p-1}^{2} p_{s}(x) \mathrm{d} x\right) \mathrm{d} s \\
& \leq C_{2} \int_{0}^{t}\left(\int\left\|\tau_{x} \varphi\right\|_{p}^{2} p_{s}(x) \mathrm{d} x\right) \mathrm{d} s \\
& \leq C_{3}\|\varphi\|_{p} \int_{0}^{t}\left(\int P_{k}(|x|) p_{s}(x) \mathrm{d} x\right) \mathrm{d} s \\
& <\infty
\end{aligned}
$$

Let $\varphi_{t}=E \tau_{X_{t}} \varphi$. Taking expected values in (3.2) we get eq. (2.4). Hence φ_{t} is the solution to the heat equation with initial value $\varphi \in \mathcal{S}_{p}$. The uniqueness of the solution is well-known and also follows from the remarks preceeding the statement of Theorem 2.4.

To complete the proof of the theorem, we need to show that $\varphi_{t} \rightarrow \varphi$ in \mathcal{S}_{p} as $t \downarrow 0$. Let \mathcal{F} denote the Fourier transform, i.e. $\mathcal{F} f(\xi)=\int \mathrm{e}^{-i(x \cdot \xi)} f(x) \mathrm{d} x$ for $f \in \mathcal{S}$. Then \mathcal{F} extends to \mathcal{S}^{\prime} by duality, where we consider \mathcal{S}^{\prime} as a complex vector space. Since $\mathcal{F}\left(h_{n}\right)=$ $(-\sqrt{-1})^{n} h_{n}\left([10]\right.$, p. 5, Lemma 1.1.3), \mathcal{F} acts as a bounded operator from \mathcal{S}_{p} to \mathcal{S}_{p}, for all p. Let $\varphi \in \mathcal{S}_{p}$.

$$
\varphi_{t}-\varphi=T_{t} \varphi-\varphi=\mathcal{F}^{-1}\left(S_{t}(\mathcal{F} \varphi)\right)
$$

where

$$
S_{t} \varphi(x)=\mathcal{F}\left(T_{t}-I\right) \mathcal{F}^{-1} \varphi(x)=\left(\mathrm{e}^{-(t / 2)|x|^{2}}-1\right) \varphi(x)
$$

Clearly, $S_{t}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ is a bounded operator and

$$
\left\|\varphi_{t}-\varphi\right\|_{p}=\left\|S_{t}(\mathcal{F} \varphi)\right\|_{p}
$$

The following proposition completes the proof of the theorem.

PROPOSITION 3.4

Let $\varphi \in \mathcal{S}_{p}, p \in \mathbb{R}$. Then $\left\|S_{t} \varphi\right\|_{p} \rightarrow 0$ as $t \rightarrow 0$.

Proof. We prove the proposition by showing that (i) $S_{t}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ are uniformly bounded, $0<t \leq T$ and (ii) $\left\|S_{t} \varphi\right\|_{p} \rightarrow 0$ for every $\varphi \in \mathcal{S}$, as $t \rightarrow 0$. Let us assume these results for a moment and complete the proof.
Let $\epsilon>0$ be given. By (i), there is a constant $C>0$ such that

$$
\sup _{0 \leq t \leq T}\left\|S_{t} f\right\|_{p} \leq C\|f\|_{p}, f \in \mathcal{S}_{p}
$$

Choose $\varphi \in \mathcal{S}$, so that $\|f-\varphi\|_{p} \leq\left(\frac{\epsilon}{2 C}\right)$. Then,

$$
\begin{aligned}
\left\|S_{t} f\right\|_{p} & \leq\left\|S_{t}(f-\varphi)\right\|_{p}+\left\|S_{t} \varphi\right\|_{p} \\
& \leq \epsilon / 2+\left\|S_{t} \varphi\right\|_{p}
\end{aligned}
$$

Now choose $\delta>0$ such that $\left\|S_{t} \varphi\right\|_{p} \leq \epsilon / 2$ for all $0 \leq t<\delta$, to get $\left\|S_{t} f\right\|_{p}<\epsilon$ for all $0 \leq t<\delta$.

Since $S_{t}=\mathcal{F}\left(T_{t}-I\right) \mathcal{F}^{-1}$, (i) follows from the fact that $T_{t}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ are uniformly bounded (Theorem 2.4a) and $\mathcal{F}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ is a unitary operator. The proof of (ii) is by a direct calculation when $p=m$ is a non-negative integer.

$$
\left\|S_{t} \varphi\right\|_{m}=\left\|H^{m} S_{t} \varphi\right\|_{0} \leq C_{1} \sum_{|\alpha|+|\beta| \leq 2 m}\left\|x^{\alpha} \partial^{\beta} S_{t} \varphi\right\|_{0}
$$

Since $S_{t} \varphi(x)=\left(\mathrm{e}^{-(t / 2)|x|^{2}}-1\right) \varphi(x)$, by Leibniz rule

$$
\left\|x^{\alpha} \partial^{\beta} S_{t} \varphi\right\|_{0} \leq \sum_{|\mu|+|\gamma|=|\beta|} C_{\mu \gamma}\left\|x^{\alpha} \partial^{\mu}\left(\mathrm{e}^{-(t / 2)|x|^{2}}-1\right) \partial^{\gamma} \varphi\right\|_{0}
$$

When $\mu \neq 0$, we have

$$
\left\|x^{\alpha} \partial^{\mu}\left(\mathrm{e}^{-(t / 2)|x|^{2}}-1\right) \partial^{\gamma} \varphi\right\|_{0} \leq C_{2} t^{|\mu|}\|\varphi\|_{m}
$$

and when $\mu=0$, using the elementary inequality $\left|1-\mathrm{e}^{-u}\right| \leq C_{3} u, u>0$ we get

$$
\left\|x^{\alpha}\left(\mathrm{e}^{-(t / 2)|x|^{2}}-1\right) \partial^{\gamma} \varphi\right\|_{0} \leq C_{4} t\|\varphi\|_{m+1}
$$

Therefore, $\left\|S_{t} \varphi\right\|_{m} \leq C t\|\varphi\|_{m+1}$ for some constant C, which shows that $\left\|S_{t} \varphi\right\|_{m} \rightarrow 0$ as $t \rightarrow 0$. If p is real and m is a non-negative integer such that $p \leq m$, we have

$$
\left\|S_{t} \varphi\right\|_{p} \leq\left\|S_{t} \varphi\right\|_{m} \leq C t\|\varphi\|_{m+1}
$$

and so $\left\|S_{t} \varphi\right\|_{p} \rightarrow 0$ as $t \rightarrow 0$ in this case as well.

References

[1] Bass Richard F, Diffusions and elliptic operators (Springer) (1998)
[2] Freidlin M, Functional integration and partial differential equations, Ann. Math. Stud. (NJ: Princeton University Press, Princeton) (1985) no. 109
[3] Friedman A, Stochastic differential equations and applications (New York: Academic Press) (1975) vol. 1
[4] Friedman A, Stochastic differential equations and applications (New York: Academic Press) (1976) vol. 2
[5] Gawarecki L, Mandrekar V and Rajeev B, From finite to infinite dimensional stochastic differential equations (preprint)
[6] Ito K, Foundations of stochastic differential equations in infinite dimensional spaces, Proceedings of CBMS-NSF National Conference Series in Applied Mathematics, SIAM (1984)
[7] Kallianpur G and Xiong J, Stochastic differential equations in infinite dimensional spaces, Lecture Notes, Monogr. Series (Institute of Mathematical Statistics) (1995) vol. 26
[8] Métivier M, Semi-martingales - A course on stochastic processes (Walter de Gruyter) (1982)
[9] Rajeev B, From Tanaka's formula to Ito's formula: Distributions, tensor products and local times, Séminaire de Probabilite's XXXV, Lecture Notes in Math. 1755 (SpringerVerlag) (2001)
[10] Thangavelu S, Lectures on Hermite and Laguerre expansions, Math. Notes 42 (N.J: Princeton University Press, Princeton) (1993)
[11] Treves F, Topological vector spaces, distributions and kernels (New York: Academic Press) (1967)
[12] Stein E M and Weiss G, Introduction to Fourier analysis on Euclidean spaces (N.J.: Princeton University Press, Princeton) (1971)

