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Abstract. A multiplier theorem for the sublaplacian on the Heisenberg group is proved using
Littlewood—Paley-Stein theory of g-functions.
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1. Introduction

Consider the Heisenberg group H, and the sublaplacian &% on H,. % is a formally
non-negative hypoelliptic differential operator which has a unique self-adjoint
extension to L*(H,). If ¢ is a function defined on R then using spectral theorem one
can define the operator ¢(%). If ¢ is a bounded function, then (%) will be bounded
on L*(H,). In the same spirit one likes to find sufficient conditions on ¢ so that the

. operator ¢ (%) will be bounded on L?(H,).

This problem was studied by Mauceri [4] and the following result was proved.

If the function ¢ is n+3 times differentiable and -satisfies the estimate
lp®@) | < C(+1t)) 7" k=0,1,...(n+ 3), then ¢(&¥) is bounded operator on L?(H,)
forall 1 < p < o0. ;

This result was proved using the theory of singular integrals on homogeneous
spaces developed by Coifman and Weiss [1]. Later Mauceri improved the above
result replacing the smoothness condition on ¢ by a fractional order condition of
the order s > n + 2 (see [5]). Here we propose to give a different proof of the multiplier
theorem. We prove: ’ ‘ '

Theorem. Let ¢ be v times differentiable and satisfies |p®(t)] < C(1+[t))™* for
k=0,1,...v where v=n+2 if n is even and v=n+3 if nis odd. Then ¢(Z) is a
bounded operator on L?(H,), I <p< 0. '

Our proof of this theorem is based on Littlewood—Paley—Stein theory of g, and
g¥ functions. We adapt this method which was eriginally employed by Stein [6] to
prove the Hormander—Mihlin multiplier theorem for the Fourier transform, to the
present case. The same technique was successfully employed by Strichart?‘ [7] and
by the author [9], [10] to prove some multiplier theorems. One good thing about

this approach is that the proof is simple and also we get a sharper result when n is even.
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2. Preliminaries

The main reference for this section is [3]. See also [4]. The (2n + 1)-dimensional
Heisenberg group H, is the nil potent Lie group whose underlymg manifold is C" x R.
The group structure is given by

(z,0)(&5)=(z+ &t +5+2Imz &) (1)

where t,seR and z, £eC". The Haar measure on H, is simply the Lebesgue measure
dzds on C" x R. For w = (z, s) the homogeneous norm |w| is defined by |w|* = |z|* + 5%

We next recall the definition of the Fourier transform on H,. The infinite
dimensional representations of H, are parametrized by R\{0}. If 1#0, then all
the representations n; can be realized on the same Hilbert space L*(R"). For
(z,s)eH,, m,(z,5) is the operator acting on L?(R") by the prescription

m,(2,5) @ (&) = exp(iAs) exp [i24(2€ — x) y1 (& — x), @

X . \

where z = x +iy and {eR". \

The Fourier transform fof an L' function f on H, is then the operator valued
function

foy= J f(w)m;(w)dw. : 3)
Hy .
Then we have the following Plancherel formula:
2n =1 '
1713 = J A" [ 7)1 s A, @)
where ||-||gs is the Hilbert-Schmidt norm. We also have an inversion formula
fw = Jtr(nx(W)*ﬂl))Ml"dl, )

where tr is the canonical semifinite trace.

For each 1#0 we can select an orthonormal basis for LZ(R") Let
@} (x) = (2| AlY"? @,((2]Alx)) where @, are the Hermite functions on R".Then {®2} is
an orthonormal basis for L?{R"). Let Py(2) denote the projection of L*(R") onto the
eigenspace spanned by {®}:|¢| = N}. Using these operators Py(4) we can write the
Fourier transform of a zonal function in a 51mp1e way.

Let f(z,5) = f(lz], 5) be a zonal function and f(z, A) be the Fourier transform in the
s-variable.

flz,))= J‘exp(ils) f(z,5)ds. o (6)

Define Ry(4,f) by the formula

N! ° S *
RN(l’ﬂ_—-CNmL S ALY 2147 exp(— |Alr*)r?" = dr, (7)
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where L} ™! are the Laguerre polynomials of type (n — 1). Then one has

D= 3 RyG.NPY) ®)

And the Plancherel formula takes the form

2(N+n )

I3 = n+1f Z IRy (4,11 A" dA. ©)

On H, consider the following left invariant vector fields.

d —+ iZ; 0 Z,= 0 2 10
T o, e ST 5z, 2

J

Z =
The sublaplacian % is then defined by

!IM::

1
2;
Each representation =, determines a Lie algebra representation dr;. It can be shown
that dn,(%) is a closable operator. Its closure is denoted by H(A) and it has the
following spectral decomposition:

H(Q)= Z (2N + n)|4| Py(4). | \ (12)

For any reasonable function ¢ on R, using spectral theorem, one can define the
operator @(%). It can be shown that ¢(¥) is a convolution operator with kernel k
ie. (&) f=kxf. The Fourier transform of k is given by

kD= 3. o(@N +n)l)Py(d) (14)

All these things will be made use of in the following sections.

3. Littlewood—Paley—Stein theory on H,

In [2] Folland has shown that the sublaplacian .# generates a contraction semigroup
T' which satisfies all the conditions required to develop a Littlewood—Paley—Stein
theory (see [6]). As in Stein [6] we define, for each positive integer k, the following
functions

Glfy W) = j " 13 T ) 2 s (15)
(4] »
G W) = f j 4 AT e e, (19

For these functions we will prove the following theorem.
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Theorem 3.1. (i) For k> 1, | gi(/) 2 =27 112

(i) For 1 <p< o0, C | fll, < lgelNlp < C2llf lp-
(iti) If k> (n+1)/2 and p > 2, then NgEO1,<CUfI,-

Proof. Theinequality || g (/) <C2 I fl, follows from the general theory. The reverse
inequality can be easily deduced once we have (i). When k> (n + 1)/2, the function
(1 + |v|*)"* is integrable and hence one can prove (iii) using (i)- This is routine and
well known. So, it remains to prove (i).

We prove (i) when k = 1. The case k > 1 is similar. From the definition it follows that

lg: (N3 = J J t|o, T'f(w)|*dwdt. 17
0 n
In view of the Plancherel formula (4) the integral becomes
' 2n -1 . ) ‘ ‘
J 0, T*f(w)|*dw = eI jlll" 18, T'f) (Dl frsdA. (18)
Hn

Since T'f = exp(—t%#)f, we see that

@ T'fY () = — HR)exp(— tH(D)] (2) (19)
and hence its squared Hilbert-Schmidt norm is given by the expression

Y (@] + m)|A1)? exp(— 262la] + m)| )@, F (A* () 3) (20)

If we use this in (18) and integrate with respect to tdt, we will get

2n—1 .
1 Jlll" 1f ()l EsdA.

lg:(NIF=277

nn

And this proves that [[g: (/). =2"11f]..

4. The multiplier theorem

Let us set Mf= @(¥&) f. To prove the multiplier theorem what we need is the following
pointwise inequality.

Ger1 (M) < Cg (f) R | (21)

for some integer k> (n+ 1)/2. For then the multiplier theorem for p > 2 will follow

immediately from Theorem 3.1. For p < 2 one can use duality to conclude that M is
bounded on L?(H,).

So, we proceed to prove the inequality (21). Let us set u,= T'f, U= T"(Mf). Then
it is easy to see that ' ‘
U, +5(W) = (G,xug)(w) o (22)
where the Fourier transform of G, is given by '

G- Zo'exp(—-<2N+n)|A|t)¢((2N'+n‘)m)PN('z)f“ | o

N=
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differentiating (22) k times with respect to ¢t and once with respect to s and putting
= § we obtain

- T*(Mf)=Fx0, T'f, (24)

/here the Fourier transform of F, is given by

CEQ)=(=1) NiOGXP(—f@N +n)|Al)@2N + n|AF@((2N + n)|A]) Py(4).

(25)

Cherefore, we have

|8+t TH(Mf)W)] < j.le(v)llaz T'f (™ w)|dv.
Applying Cauchy—-Schwartz inequality

|86 TH(MS )W) < 4, B,(w), (26)
where we have written

A= le,(v)lz(l +t72|v]*)edv
B,(w) = J‘(l +t72|v|*) 749, T‘(v;lw)lzd‘v. 27

Now to complete the proof we need the estimate of the following Lemma.

Lemma. Under the hypothesis of the theorem the estimate A, <C t~"" 21 s palid
when k is the smallest integer greater than (n+ 1)/2.
Assuming the lemma for a moment it is easy to establish inequality (21). Indeed,

from (26) we have
|9k +1 T2(Mf)(W)|> < Ct ™"~ 271 B(w).
Integrating this against t2*** we get

G+ 1 (Mf,w) < Cat(f,w)

This completes the proof of the multiplier theorem modulo the above lemma.

5. Proof of the Lemma

To prove the Lemma let us write

I= J F, W) 21+ £ 2 |w]*)dw | (28)
vl < /1

J= J |F (w)2(1 + ¢~ 2|w|*) dw. (29)
TN/ ,
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Estimating the integral I is easy. We note that since |w| < \/E
I<C j]F,(w)Pdw
and hence in view of Plancherel formula

) — 1!
Iscfw( Y (2N+n)2"|/1|2"exp[-—2|A|(2N+n)t](it]:;'—1—);)dl
N=0 H

S Ct "% YT 2N +n)"2) g Ct7 721,

This proves the estimate for the integral I.
Next consider J. Let us write w = (z,5). We observe that

J< Ct_Zij(Sz + |z|*)*| F,(z,5)|?dzds

= Ct"”‘Jfl(is—lzlz)"F,(z,s)Izdzds. (30)

If we can show that the integral in (30) is bounded by t ™"~ then we are done. If we
~write the Fourier transform of G = (is —r?)*F,(z, s) in the form

G@)= 3. Rali(is— |z F)Pu(®)

" then we need to show that

|2M~lu|"da<a n-1 (31)

J Z |Ry(% (is — r* ) F,)
where we have set |z|]2 =r2.
Let us write
Y(N,2) =(—1D*2N +n)*|Aexp[— (2N + n)|A|]p((2N + n)|A])
so that Ry(4,F,)=y(N,1). We define y,(N,1) to be Ry(4,(is —r?)‘F,). Then the

following estimate is valid.

Lemma 5.1. Under the hypothesis of the theorem there is an ¢ > 0 such that
[N, 2)| < Cexp[— 82N +n)|A. (32)

If we use (32) in (29) then the estimate J <t™"~2¥~! js immediate. So we proceed
to prove Lemma 5.1.
Recall the definition of Ry(4, f) for a zonal function f.

Ry(,f)= C"(N——}_-]\r[z!?l‘)_! wa(r, ) L1 AIr2)exp(— |A|r2)r*n =t dr,

(33)
where f(r, ) is the Euclidean Fourier transform of f in the s variable. We will prove
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(32) when 4 > 0. The case A<0is completely similar.
Since (isf) (r, A) =(d/d4) f (r, ) we obtain
Ry(L isf)—i‘—R Af—C N wf(r A)
MBI g "N+n—11Js "’

X adI L YAr?)exp(— Ar?)}r#"~1dr.

Now

d n—1 2 2
a L1 2Ar%) exp(— Ar?)

= 2r2-§; L 1Qart)exp(— Ar?) —r? Ly 1 (2Ar?)exp(— Ar?).

Using the recursion formula (see [8])
d
ro L0 = NLyH0) = (N +n— 1) LEZ50) (34)
a simple calculation shows that

Ru(his) = Ryl f) = 3 (Rl f) = Ry 0o )+ Ry 7).

Thus we have obtained the formula

oy N

YiN ) =2 - N A = (N =1, ). (39)

Since Y(N, 1) = Y ((2N + n)A) we can write (35) in the form

| _indy Nf{oy
%(N’A)WEIE—]\T_FT(W_A >, (36)

where Ay (N, A) = ¥(N, ) — ¢ (N — 1, 4). Define the operators S, D and T by

sy=20, py=Zk—y Ty=NDy.

So, we have
YN, =171 (gs + T) U(N, 2). ﬁ (37)
From this formula we can conclude that
VN, H=2"% Y a8 T'S"Y(N, ). (38)
) i+j+m=k ’

Now we observe that S™y(N, A) = ¢™((2N +n)A)(22)" and by hypothesis of the
theorem S™ in essence brings a factor (2N +n)~™. We will show that T/ also does
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the same thing. Then each term in the sum (38) will behave like A~ "(ZN +n) " Y(N, J).
Recalling the deﬁmtlon of Y(N, 2) we see that

[V (N, )| < Cexp[— &e(2N + n)ir]

as desired.
For the operators T/ the following formula is valid.

Lemma 5.2.
T =3 CumN?DIA™Y)
where the sum is extended over all p,q,m satisfying the relation j+ p<2q+m<2j.

Proof. We prove: this lemma by induction. We first observe that from the definition
of T, the lemma is trivially valid for j= 1 Now assume the lemma true for some j
and consider T/*1y

TV 1y = 3 CoamND(N?DA(A")) o (39)

where j + p <2q +m < 2j. We need a formula for D(N?Dy).
We claim that

. ‘ p-1 L p-2 .
D(N*Dy)=NPD*}+ Y a;N'D(Ay)+ Y. b,N'Dy. (40)
i=0 =0
Assuming the claim for a moment we have

TJ'Hl// Z Cpqup+qu+1(Amlfl)+ Z Cpqm Z Ni+1Dq Am-i 14,)

pq,m p.q,m
T4 Y Com Z b;N'*1DIA™Y).
p,q.m i=0

From this formula it is clear that T/ !y is of the desired form.
To prove the claim we first observe that

Alp¥)(N) = Ap(N)W(N) + oV~ DAY - o)
In view of this formula
A(N?Dy)) = A(N?)Dy + (N — 1) D(Ay). @2)

We also have

W p_z .
AN?)=N? —(N— 1) =pNP~1 — Z b;N* (43)
i=0

(= 1D(AY) = N*D(aY) - T aND(AY) | 44)

0 ‘
,"EN—(N”DW =pN*P~ 1D\//+N”D(g}fl) | - (45)
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From (42)—(45) it follows that
' -1 -2
D(N"Dy)=N?D*y + Y a;N'D(AY)+ 5 bN'Dy. (46)
i=0 i=0

This proves the claim.
Finally we will show that the action of TY has the desired properties. We have

Tiy =3 CpgmN* D*(A™Y), (47)

where p +j < 2g + m < 2j. Now using Taylor’s formula with integral form of remainder
we can write

Dy(N)= J 1 0" (N — 1 +1,4)dt, (48)

o .

where the primes stand for the derivatives with respect to N. From (48) it is clear
that the action of D is to bring down the factor N ~2. An iteration will show that D?
will bring down the factor of N ~2¢ when applied to . Since A™y brings down N™"
the formula (47) shows that T/ acting on y brings down the factor

Y CpgmNPN™247m,

Since p +j < 2q + m, essentially T’ brings down a factor of N7/ as required.
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