

A multiplier theorem for the sublaplacian on the Heisenberg group

S THANGAVELU

TIFR Centre, Indian Institute of Science Campus, Bangalore 560 012, India

MS received 24 January 1990

Abstract. A multiplier theorem for the sublaplacian on the Heisenberg group is proved using Littlewood–Paley–Stein theory of g -functions.

Keywords. Multiplier theorem; sublaplacian; Heisenberg group; Littlewood–Paley–Stein theory; g -functions.

1. Introduction

Consider the Heisenberg group H_n and the sublaplacian \mathcal{L} on H_n . \mathcal{L} is a formally non-negative hypoelliptic differential operator which has a unique self-adjoint extension to $L^2(H_n)$. If φ is a function defined on \mathbb{R} then using spectral theorem one can define the operator $\varphi(\mathcal{L})$. If φ is a bounded function, then $\varphi(\mathcal{L})$ will be bounded on $L^2(H_n)$. In the same spirit one likes to find sufficient conditions on φ so that the operator $\varphi(\mathcal{L})$ will be bounded on $L^p(H_n)$.

This problem was studied by Mauceri [4] and the following result was proved.

If the function φ is $n+3$ times differentiable and satisfies the estimate $|\varphi^{(k)}(t)| \leq C(1+|t|)^{-k}$, $k = 0, 1, \dots, (n+3)$, then $\varphi(\mathcal{L})$ is bounded operator on $L^p(H_n)$ for all $1 < p < \infty$.

This result was proved using the theory of singular integrals on homogeneous spaces developed by Coifman and Weiss [1]. Later Mauceri improved the above result replacing the smoothness condition on φ by a fractional order condition of the order $s > n+2$ (see [5]). Here we propose to give a different proof of the multiplier theorem. We prove:

Theorem. *Let φ be v times differentiable and satisfies $|\varphi^{(k)}(t)| \leq C(1+|t|)^{-k}$ for $k = 0, 1, \dots, v$ where $v = n+2$ if n is even and $v = n+3$ if n is odd. Then $\varphi(\mathcal{L})$ is a bounded operator on $L^p(H_n)$, $1 < p < \infty$.*

Our proof of this theorem is based on Littlewood–Paley–Stein theory of g_k and g_k^* functions. We adapt this method which was originally employed by Stein [6] to prove the Hormander–Mihlin multiplier theorem for the Fourier transform, to the present case. The same technique was successfully employed by Strichartz [7] and by the author [9], [10] to prove some multiplier theorems. One good thing about this approach is that the proof is simple and also we get a sharper result when n is even.

2. Preliminaries

The main reference for this section is [3]. See also [4]. The $(2n+1)$ -dimensional Heisenberg group H_n is the nil potent Lie group whose underlying manifold is $\mathbb{C}^n \times \mathbb{R}$. The group structure is given by

$$(z, t)(\xi, s) = (z + \xi, t + s + 2 \operatorname{Im} z \cdot \bar{\xi}) \quad (1)$$

where $t, s \in \mathbb{R}$ and $z, \xi \in \mathbb{C}^n$. The Haar measure on H_n is simply the Lebesgue measure $dzds$ on $\mathbb{C}^n \times \mathbb{R}$. For $w = (z, s)$ the homogeneous norm $|w|$ is defined by $|w|^4 = |z|^4 + s^2$.

We next recall the definition of the Fourier transform on H_n . The infinite dimensional representations of H_n are parametrized by $\mathbb{R} \setminus \{0\}$. If $\lambda \neq 0$, then all the representations π_λ can be realized on the same Hilbert space $L^2(\mathbb{R}^n)$. For $(z, s) \in H_n$, $\pi_\lambda(z, s)$ is the operator acting on $L^2(\mathbb{R}^n)$ by the prescription

$$\pi_\lambda(z, s)\varphi(\xi) = \exp(i\lambda s) \exp[i2\lambda(2\xi - x) \cdot y] \varphi(\xi - x), \quad (2)$$

where $z = x + iy$ and $\xi \in \mathbb{R}^n$.

The Fourier transform \hat{f} of an L^1 function f on H_n is then the operator valued function

$$\hat{f}(\lambda) = \int_{H_n} f(w) \pi_\lambda(w) dw. \quad (3)$$

Then we have the following Plancherel formula:

$$\|f\|_2^2 = \frac{2^{n-1}}{\pi^{n+1}} \int |\lambda|^n \|\hat{f}(\lambda)\|_{HS}^2 d\lambda, \quad (4)$$

where $\|\cdot\|_{HS}$ is the Hilbert-Schmidt norm. We also have an inversion formula

$$f(w) = \int \operatorname{tr}(\pi_\lambda(w)^* \hat{f}(\lambda)) |\lambda|^n d\lambda, \quad (5)$$

where tr is the canonical semifinite trace.

For each $\lambda \neq 0$ we can select an orthonormal basis for $L^2(\mathbb{R}^n)$. Let $\Phi_\alpha^\lambda(x) = (2|\lambda|^{1/2})^{n/2} \Phi_\alpha((2|\lambda|^{1/2}x))$ where Φ_α are the Hermite functions on \mathbb{R}^n . Then $\{\Phi_\alpha^\lambda\}$ is an orthonormal basis for $L^2(\mathbb{R}^n)$. Let $P_N(\lambda)$ denote the projection of $L^2(\mathbb{R}^n)$ onto the eigenspace spanned by $\{\Phi_\alpha^\lambda : |\alpha| = N\}$. Using these operators $P_N(\lambda)$ we can write the Fourier transform of a zonal function in a simple way.

Let $f(z, s) = f(|z|, s)$ be a zonal function and $\tilde{f}(z, \lambda)$ be the Fourier transform in the s -variable.

$$\tilde{f}(z, \lambda) = \int \exp(i\lambda s) f(z, s) ds. \quad (6)$$

Define $R_N(\lambda, f)$ by the formula

$$R_N(\lambda, f) = C_N \frac{N!}{(N+n-1)!} \int_0^\infty \tilde{f}(r, \lambda) L_N^{n-1}(2|\lambda|r^2) \exp(-|\lambda|r^2) r^{2n-1} dr, \quad (7)$$

where L_N^{n-1} are the Laguerre polynomials of type $(n-1)$. Then one has

$$\hat{f}(\lambda) = \sum_{N=0}^{\infty} R_N(\lambda, f) P_N(\lambda). \quad (8)$$

And the Plancherel formula takes the form

$$\|f\|_2^2 = \frac{2^{n-1}}{\pi^{n+1}} \int \sum_{N=0}^{\infty} |R_N(\lambda, f)|^2 \frac{(N+n-1)!}{N!} |\lambda|^n d\lambda. \quad (9)$$

On H_n consider the following left invariant vector fields.

$$Z_j = \frac{\partial}{\partial z_j} + i\bar{z}_j \frac{\partial}{\partial t}, \quad \bar{Z}_j = \frac{\partial}{\partial \bar{z}_j} - iz_j \frac{\partial}{\partial t}. \quad (10)$$

The sublaplacian \mathcal{L} is then defined by

$$\mathcal{L} = -\frac{1}{2} \sum_{j=1}^n (Z_j \bar{Z}_j + \bar{Z}_j Z_j). \quad (11)$$

Each representation π_λ determines a Lie algebra representation $d\pi_\lambda$. It can be shown that $d\pi_\lambda(\mathcal{L})$ is a closable operator. Its closure is denoted by $H(\lambda)$ and it has the following spectral decomposition:

$$H(\lambda) = \sum_{N=0}^{\infty} (2N+n)|\lambda| P_N(\lambda). \quad (12)$$

For any reasonable function φ on \mathbb{R} , using spectral theorem, one can define the operator $\varphi(\mathcal{L})$. It can be shown that $\varphi(\mathcal{L})$ is a convolution operator with kernel k i.e. $\varphi(\mathcal{L})f = k * f$. The Fourier transform of k is given by

$$\hat{k}(\lambda) = \sum_{N=0}^{\infty} \varphi((2N+n)|\lambda|) P_N(\lambda). \quad (14)$$

All these things will be made use of in the following sections.

3. Littlewood–Paley–Stein theory on H_n

In [2] Folland has shown that the sublaplacian \mathcal{L} generates a contraction semigroup T^t which satisfies all the conditions required to develop a Littlewood–Paley–Stein theory (see [6]). As in Stein [6] we define, for each positive integer k , the following functions

$$(g_k(f, w))^2 = \int_0^\infty t^{2k-1} |\partial_t^k T^t f(w)|^2 dt \quad (15)$$

$$(g_k^*(f, w))^2 = \int_{H_n} \int_0^\infty t^{-n} (1 + t^{-2}|v|^4)^{-k} |\partial_t^k T^t f(v^{-1}w)|^2 dt dv. \quad (16)$$

For these functions we will prove the following theorem.

Theorem 3.1. (i) For $k \geq 1$, $\|g_k(f)\|_2 = 2^{-k} \|f\|_2$.
(ii) For $1 < p < \infty$, $C_1 \|f\|_p \leq \|g_k(f)\|_p \leq C_2 \|f\|_p$.
(iii) If $k > (n+1)/2$ and $p > 2$, then $\|g_k^*(f)\|_p \leq C \|f\|_p$.

Proof. The inequality $\|g_k(f)\|_p \leq C_2 \|f\|_p$ follows from the general theory. The reverse inequality can be easily deduced once we have (i). When $k > (n+1)/2$, the function $(1+|v|^4)^{-k}$ is integrable and hence one can prove (iii) using (i). This is routine and well known. So, it remains to prove (i).

We prove (i) when $k = 1$. The case $k > 1$ is similar. From the definition it follows that

$$\|g_1(f)\|_2^2 = \int_0^\infty \int_{H_n} t |\partial_t T^t f(w)|^2 dw dt. \quad (17)$$

In view of the Plancherel formula (4) the integral becomes

$$\int_{H_n} |\partial_t T^t f(w)|^2 dw = \frac{2^{n-1}}{\pi^{n-1}} \int |\lambda|^n \|(\partial_t T^t f)^*(\lambda)\|_{HS}^2 d\lambda. \quad (18)$$

Since $T^t f = \exp(-t\mathcal{L})f$, we see that

$$(\partial_t T^t f)^*(\lambda) = -H(\lambda) \exp(-tH(\lambda)) \hat{f}(\lambda) \quad (19)$$

and hence its squared Hilbert-Schmidt norm is given by the expression

$$\sum_\alpha ((2|\alpha| + n)|\lambda|)^2 \exp(-2t(2|\alpha| + n)|\lambda|) (\Phi_\alpha^\lambda, \hat{f}(\lambda)^* \hat{f}(\lambda) \Phi_\alpha^\lambda). \quad (20)$$

If we use this in (18) and integrate with respect to $t dt$, we will get

$$\|g_1(f)\|_2^2 = 2^{-2} \frac{2^{n-1}}{\pi^{n+1}} \int |\lambda|^n \|\hat{f}(\lambda)\|_{HS}^2 d\lambda.$$

And this proves that $\|g_1(f)\|_2 = 2^{-1} \|f\|_2$.

4. The multiplier theorem

Let us set $Mf = \varphi(\mathcal{L})f$. To prove the multiplier theorem what we need is the following pointwise inequality.

$$g_{k+1}(Mf) \leq C g_k^*(f) \quad (21)$$

for some integer $k > (n+1)/2$. For then the multiplier theorem for $p > 2$ will follow immediately from Theorem 3.1. For $p < 2$ one can use duality to conclude that M is bounded on $L^p(H_n)$.

So, we proceed to prove the inequality (21). Let us set $u_t = T^t f$, $U_t = T^t(Mf)$. Then it is easy to see that

$$U_{t+s}(w) = (G_t * u_s)(w) \quad (22)$$

where the Fourier transform of G_t is given by

$$\hat{G}_t(\lambda) = \sum_{N=0}^{\infty} \exp(-(2N+n)|\lambda|t) \varphi((2N+n)|\lambda|) P_N(\lambda). \quad (23)$$

Differentiating (22) k times with respect to t and once with respect to s and putting $=s$ we obtain

$$\partial_t^{k+1} T^{2t}(Mf) = F_t * \partial_t T^t f, \quad (24)$$

where the Fourier transform of F_t is given by

$$\hat{F}_t(\lambda) = (-1)^k \sum_{N=0}^{\infty} \exp(-(2N+n)|\lambda|t) (2N+n)^k |\lambda|^k \varphi((2N+n)|\lambda|) P_N(\lambda). \quad (25)$$

Therefore, we have

$$|\partial_t^{k+1} T^{2t}(Mf)(w)| \leq \int |F_t(v)| |\partial_t T^t f(v^{-1}w)| dv.$$

Applying Cauchy-Schwartz inequality

$$|\partial_t^{k+1} T^{2t}(Mf)(w)|^2 \leq A_t \cdot B_t(w), \quad (26)$$

where we have written

$$\begin{aligned} A_t &= \int |F_t(v)|^2 (1 + t^{-2}|v|^4)^k dv \\ B_t(w) &= \int (1 + t^{-2}|v|^4)^{-k} |\partial_t T^t(v^{-1}w)|^2 dv. \end{aligned} \quad (27)$$

Now to complete the proof we need the estimate of the following Lemma.

Lemma. Under the hypothesis of the theorem the estimate $A_t \leq C t^{-n-2k-1}$ is valid when k is the smallest integer greater than $(n+1)/2$.

Assuming the lemma for a moment it is easy to establish inequality (21). Indeed, from (26) we have

$$|\partial_t^{k+1} T^{2t}(Mf)(w)|^2 \leq C t^{-n-2k-1} B_t(w).$$

Integrating this against t^{2k+1} we get

$$g_{k+1}(Mf, w) \leq C g_k^*(f, w).$$

This completes the proof of the multiplier theorem modulo the above lemma.

5. Proof of the Lemma

To prove the Lemma let us write

$$I = \int_{|w| \leq \sqrt{t}} |F_t(w)|^2 (1 + t^{-2}|w|^4)^k dw \quad (28)$$

$$J = \int_{|w| > \sqrt{t}} |F_t(w)|^2 (1 + t^{-2}|w|^4)^k dw. \quad (29)$$

Estimating the integral I is easy. We note that since $|w| \leq \sqrt{t}$

$$I \leq C \int |F_t(w)|^2 dw$$

and hence in view of Plancherel formula

$$\begin{aligned} I &\leq C \int |\lambda|^n \left(\sum_{N=0}^{\infty} (2N+n)^{2k} |\lambda|^{2k} \exp[-2|\lambda|(2N+n)t] \frac{(N+n-1)!}{N!} \right) d\lambda \\ &\leq Ct^{-n-2k-1} (\sum (2N+n)^{-2}) \leq Ct^{-n-2k-1}. \end{aligned}$$

This proves the estimate for the integral I .

Next consider J . Let us write $w = (z, s)$. We observe that

$$\begin{aligned} J &\leq Ct^{-2k} \iint (s^2 + |z|^4)^k |F_t(z, s)|^2 dz ds \\ &= Ct^{-2k} \iint (is - |z|^2)^k |F_t(z, s)|^2 dz ds. \end{aligned} \quad (30)$$

If we can show that the integral in (30) is bounded by t^{-n-1} then we are done. If we write the Fourier transform of $G = (is - r^2)^k F_t(z, s)$ in the form

$$\hat{G}(\lambda) = \sum_{N=0}^{\infty} R_N(\lambda, (is - |z|^2)^k F_t) P_N(\lambda)$$

then we need to show that

$$\int \sum_{N=0}^{\infty} |R_N(\lambda, (is - r^2)^k F_t)|^2 \frac{(N+n-1)!}{N!} |\lambda|^n d\lambda \leq Ct^{-n-1} \quad (31)$$

where we have set $|z|^2 = r^2$.

Let us write

$$\psi(N, \lambda) = (-1)^k (2N+n)^k |\lambda|^k \exp[-(2N+n)|\lambda|t] \varphi((2N+n)|\lambda|)$$

so that $R_N(\lambda, F_t) = \psi(N, \lambda)$. We define $\psi_k(N, \lambda)$ to be $R_N(\lambda, (is - r^2)^k F_t)$. Then the following estimate is valid.

Lemma 5.1. *Under the hypothesis of the theorem there is an $\varepsilon > 0$ such that*

$$|\psi_k(N, \lambda)| \leq C \exp[-\varepsilon(2N+n)|\lambda|t]. \quad (32)$$

If we use (32) in (29) then the estimate $J \leq t^{-n-2k-1}$ is immediate. So we proceed to prove Lemma 5.1.

Recall the definition of $R_N(\lambda, f)$ for a zonal function f .

$$R_N(\lambda, f) = C_n \frac{N!}{(N+n-1)!} \int_0^\infty \tilde{f}(r, \lambda) L_N^{n-1}(2|\lambda|r^2) \exp(-|\lambda|r^2) r^{2n-1} dr, \quad (33)$$

where $\tilde{f}(r, \lambda)$ is the Euclidean Fourier transform of f in the s variable. We will prove

(32) when $\lambda > 0$. The case $\lambda < 0$ is completely similar.

Since $(isf)\tilde{f}(r, \lambda) = (\frac{d}{d\lambda})\tilde{f}(r, \lambda)$ we obtain

$$R_N(\lambda, isf) = \frac{d}{d\lambda} R_N(\lambda, f) - C_n \frac{N!}{(N+n-1)!} \int_0^\infty \tilde{f}(r, \lambda) \times \frac{d}{d\lambda} \{ L_N^{n-1}(2\lambda r^2) \exp(-\lambda r^2) \} r^{2n-1} dr.$$

Now

$$\begin{aligned} & \frac{d}{d\lambda} (L_N^{n-1}(2\lambda r^2) \exp(-\lambda r^2)) \\ &= 2r^2 \frac{d}{dr} L_N^{n-1}(2\lambda r^2) \exp(-\lambda r^2) - r^2 L_N^{n-1}(2\lambda r^2) \exp(-\lambda r^2). \end{aligned}$$

Using the recursion formula (see [8])

$$r \frac{d}{dr} L_N^{n-1}(r) = N L_N^{n-1}(r) - (N+n-1) L_{N-1}^{n-1}(r) \quad (34)$$

a simple calculation shows that

$$R_N(\lambda, isf) = \frac{d}{d\lambda} R_N(\lambda, f) - \frac{N}{\lambda} (R_N(\lambda, f) - R_{N-1}(\lambda, f)) + R_N(\lambda, r^2 f).$$

Thus we have obtained the formula

$$\psi_1(N, \lambda) = \frac{\partial \psi}{\partial \lambda} - \frac{N}{\lambda} (\psi(N, \lambda) - \psi(N-1, \lambda)). \quad (35)$$

Since $\psi(N, \lambda) = \psi((2N+n)\lambda)$ we can write (35) in the form

$$\psi_1(N, \lambda) = \frac{1}{2} \frac{n}{\lambda} \frac{\partial \psi}{\partial N} + \frac{N}{\lambda} \left(\frac{\partial \psi}{\partial N} - \Delta \psi \right), \quad (36)$$

where $\Delta \psi(N, \lambda) = \psi(N, \lambda) - \psi(N-1, \lambda)$. Define the operators S , D and T by

$$S\psi = \frac{\partial \psi}{\partial N}, \quad D\psi = \frac{\partial \psi}{\partial N} - \Delta \psi, \quad T\psi = ND\psi.$$

So, we have

$$\psi_1(N, \lambda) = \lambda^{-1} \left(\frac{n}{2} S + T \right) \psi(N, \lambda). \quad (37)$$

From this formula we can conclude that

$$\psi_k(N, \lambda) = \lambda^{-k} \sum_{i+j+m=k} a_{ijm} S^i T^j S^m \psi(N, \lambda). \quad (38)$$

Now we observe that $S^m \psi(N, \lambda) = \psi^{(m)}((2N+n)\lambda)(2\lambda)^m$ and by hypothesis of the theorem S^m in essence brings a factor $(2N+n)^{-m}$. We will show that T^j also does

the same thing. Then each term in the sum (38) will behave like $\lambda^{-k}(2N+n)^{-k}\psi(N, \lambda)$. Recalling the definition of $\psi(N, \lambda)$ we see that

$$|\psi_k(N, \lambda)| \leq C \exp[-\varepsilon(2N+n)\lambda t]$$

as desired.

For the operators T^j the following formula is valid.

Lemma 5.2.

$$T^j \psi = \sum C_{p,q,m} N^p D^q (\Delta^m \psi)$$

where the sum is extended over all p, q, m satisfying the relation $j + p \leq 2q + m \leq 2j$.

Proof. We prove this lemma by induction. We first observe that from the definition of T , the lemma is trivially valid for $j = 1$. Now assume the lemma true for some j and consider $T^{j+1} \psi$

$$T^{j+1} \psi = \sum C_{p,q,m} N D(N^p D^q (\Delta^m \psi)) \quad (39)$$

where $j + p \leq 2q + m \leq 2j$. We need a formula for $D(N^p D^q \psi)$.

We claim that

$$D(N^p D^q \psi) = N^p D^2 \psi + \sum_{i=0}^{p-1} a_i N^i D(\Delta \psi) + \sum_{i=0}^{p-2} b_i N^i D \psi. \quad (40)$$

Assuming the claim for a moment we have

$$\begin{aligned} T^{j+1} \psi &= \sum_{p,q,m} C_{p,q,m} N^{p+1} D^{q+1} (\Delta^m \psi) + \sum_{p,q,m} C_{p,q,m} \sum_{i=0}^{p-1} a_i N^{i+1} D^q (\Delta^{m+1} \psi) \\ &\quad + \sum_{p,q,m} C_{p,q,m} \sum_{i=0}^{p-2} b_i N^{i+1} D^q (\Delta^m \psi). \end{aligned}$$

From this formula it is clear that $T^{j+1} \psi$ is of the desired form.

To prove the claim we first observe that

$$\Delta(\phi\psi)(N) = \Delta\phi(N)\psi(N) + \phi(N-1)\Delta\psi(N). \quad (41)$$

In view of this formula

$$\Delta(N^p D\psi) = \Delta(N^p)D\psi + (N-1)^p D(\Delta\psi). \quad (42)$$

We also have

$$\Delta(N^p) = N^p - (N-1)^p = pN^{p-1} - \sum_{i=0}^{p-2} b_i N^i \quad (43)$$

$$(N-1)^p D(\Delta\psi) = N^p D(\Delta\psi) - \sum_{i=0}^{p-1} a_i N^i D(\Delta\psi) \quad (44)$$

$$\frac{\partial}{\partial N} (N^p D\psi) = pN^{p-1} D\psi + N^p D\left(\frac{\partial\psi}{\partial N}\right). \quad (45)$$

From (42)–(45) it follows that

$$D(N^p D\psi) = N^p D^2\psi + \sum_{i=0}^{p-1} a_i N^i D(\Delta\psi) + \sum_{i=0}^{p-2} b_i N^i D\psi. \quad (46)$$

This proves the claim.

Finally we will show that the action of T^j has the desired properties. We have

$$T^j\psi = \sum C_{pqm} N^p D^q (\Delta^m \psi), \quad (47)$$

where $p + j \leq 2q + m \leq 2j$. Now using Taylor's formula with integral form of remainder we can write

$$D\psi(N) = \int_0^1 t\psi''(N-1+t, \lambda) dt, \quad (48)$$

where the primes stand for the derivatives with respect to N . From (48) it is clear that the action of D is to bring down the factor N^{-2} . An iteration will show that D^q will bring down the factor of N^{-2q} when applied to ψ . Since $\Delta^m \psi$ brings down N^{-m} the formula (47) shows that T^j acting on ψ brings down the factor

$$\sum C_{pqm} N^p N^{-2q-m}.$$

Since $p + j \leq 2q + m$, essentially T^j brings down a factor of N^{-j} as required.

References

- [1] Coifman R and Weiss G, Analyse harmonique non commutative sur certaines espaces homogènes, in *Lecture notes in Math.* (Berlin: Springer-Verlag) Vol. 242 (1971)
- [2] Folland G, Subelliptic estimates and function spaces on nilpotent Lie groups, *Ark. Math.* **13** (1975) 161–207
- [3] Geller D, Fourier analysis on the Heisenberg group, *J. Funct. Anal.* **36** (1980) 205–254
- [4] Mauceri G, Zonal multipliers on the Heisenberg group, *Pacific J. Math.* **95** (1981) 143–159
- [5] de Michele L and Mauceri G, H^p multipliers on stratified groups, *Annali Mat. Pura. Appl.* **148** (1987) 353–366
- [6] Stein E M, *Topics in harmonic analysis* (Princeton: University Press) 63 *Ann. Math. Stud.* (1971)
- [7] Strichartz R S, Multipliers for spherical harmonic expansions, *Trans. A.M.S.* **167** (1972) 115–124
- [8] Szegő G, Orthogonal polynomials, *Am. Math. Soc. Colloq. Pub.* Providence (1967) vol. 23
- [9] Thangavelu S, Multipliers for Hermite expansions, *Revista Math. Ibero.* **3** (1987) 1–24
- [10] Thangavelu S, Littlewood-Paley-Stein theory on \mathbb{C}^n and Weyl multipliers *Revista Mat. Ibero.* **6** (1990) 75–90