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Abstract, The uniform boundedness of the Riesz means for the sublaplacian on the
Heisenberg group H" is considered. It is proved that S% are uniformly bounded on LP(H")
for 1 € p<2 provided o> a(p)=(2n+ 1[{1/p)—(1/2)].
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1. Introduction

Consider the Heisenberg group H" which is a Lie group whose underlying manifold
is R x C" with coordinates (t,z). Its Lie algebra h" is generated by the left invariant
vector fields

a . = J .
T—_—'éz, ij'a'z—j+leT, Zj‘—-“ézfj-‘leT. (1)
Let L= —4 Y., (Z;Z;+Z,Z)) be the sublaplacian on H". Then L is a formally
nonnegative hypoelliptic differential operator which has a unique self adjoint extension
to L*(H"). Let E(s) denote the spectral resolution of this extension which we normalize
so as to become left ¢ontinuous. E(s) then becomes a right convolution operator with
a C* kernel.

In [5] Mauceri has studied the boundedness properties of the Riesz means S%.
These are defined for Rea > 0 by the equation

X R s \¢
(¥ =L (1 —§> dE(s)f. (2)

Leta(p)=(2n+1) [(1/p)—(1/2)] for I < p< 2. Then Mauceri has proved, among other
things, the following theorem.

Theorem. Assume that 1< p <2 and o> a(p). Then the uniform estimates

I S%S | Loqam < C U S oy ©)
hold for feIF(H™.

Mauceri proved this theorem by getting I’ norm estimates for the kernel of the
Riesz means. Here we propose to-give a different proof of the above theorem using
a pointwise estimate for the kernel.
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Our proof follows an idea of Fefferman-Stein. In [1], in connection with a similar
problem for the Laplacian on R" it was shown that [P — 2 restriction properties of
the Fourier transform imply the boundedness of the Riesz means. Later in [6] Chris
Sogge has adapted the same techniques to prove the uniform boundedness of the
Riesz means associated with self adjoint elliptic operators on a compact manifold.
There it was proved that if we have good pointwise estimates of the kernel of 8% for
large o and proper 17— I* bounds for the projection operators associated with the
Riesz means under consideration then we can get uniform L? estimates for S% itself.
The same idea was used by this author in [9] to prove certain multiplier theorem
for the Weyl transform.

Thus the plan of the paper is as follows. After collecting all preliminary materials
in §2, we will get a good pointwise estimate for the kernel of 5% when « is an even
integer in §3. Finally in §4 we take a partition of unity and write S% as an infinite
sum. For each piece there are certain ‘projections’ associated with it and for those
projections we prove [P — I? bounds. These bounds and the kernel estimate will then
be used to prove that each piece is bounded on LP(H"). The proof of the theorem will
be completed by summing a geometric series.

2. Preliminaries

The main reference for this section is [2]. See also [5]. The (2n+1) dimensional
Heisenberg group is the Lie group whose underlying manifold is R x C". The group
structure is given by

(s,z)~(t-C)=(s+t+2Imz-C_, 7+

The Haar measure on H" is simply the Lebesgue measure dsdzdz on RxC" If
w = (s, z) the homogeneous norm |w| of w s defined by |w|*=52+|z|* The homogene-
ous dimension of H" is Q=2n+2.

Next we recall the definition of the Fourier transform on the Heisenberg group.
The infinite dimensional representations of H" are parametrized by R\{0}. If 4#0
all the representations 7, can be realized on the same Hilbert space, namely, (R").
For feXR"), n,(s,z) is the operator defined by

14(5,2) /(&) = exp (is) exp (1242 = %)) (€ = %) @

where z = x + iyeC" and £eR". The Fourier transform f of a function fel'(H") is
then the operator valued function

fd)= J fwima(w)dw. (5)
HY

We have the following Plancherel and inversion formulas:

If13=c, J I (A IRsl Al dA ©)

r

fw= J tr (m(w)f ()| A1 dA ()
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where tr is the canonical semifinite trace and ||'||,45 is the Hilbert-Schmidt norm.
For a bounded operator S on [*(R") let us define |S|, by

S|, =(tr (S*Sy")'"?, p< oo

|S|,, = operator norm of S.

Let £, denote the Banach space of weakly measurable operator valued functions
F:R\{0} — B(LR") such that

1/p
anﬁ{quwmum% <o, forp<ow

IFl., =esssup|F(D), < .
) AF0

The Plancherel formula allows us to extend the Fourier transform as an isometry
from L*(H") onto .%,. More generally the following version of the Hausdorff-Young
inequality holds (see [3]). Let # denote the inverse Fourier transform defined on &, by

FE(w)= jtr(nl(w)*F(A))M]" di (8)

and then extend .# to &, by interpolation for 1 < p <2. Then .# maps Lpl1<p<s
into L{H"), (1/p)+(1/g)=1 and we have

I£F,<CIF|,, ©)

For each 4 0 we can select an orthonormal basis for L2(R"). Let ®X(x)=(2{4]"/?)"'*
®(2|4|'"*x) where ®, are the n-dimensional Hermite functions. Let Py(4) denote the
projection onto the subspace spanned by {®}:|x| = N}. For a function f(s, z}=/(s,z|)
which is called a zonal function, the Fourier transform reduces to the Laguerre
transform and is given by

fi)= 5 RPN , (10)

where Ry(4,f) are defined by
Ry f) = Cyo | F, L 21217)
MBI N =1 o 7
x exp(—|A|rHr2"~1dr. (11)
Here f(A,r) stands for the Euclidean Fourier transform and Ly~ ! are the Laguerre
polynomials of type n— 1. The inversion formula becomes

n—1

flsn =2 f exp(—ilS)<N:R~(i,f)L7v"(2|rllr2) exp(—u|r2))u|" i
(12)
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The Plancherel and the Hausdorff-Young theorem will then read as follows:

1)

T f $ irnr (13

© 1ip
llfllqsc(szolRN(l,f) ﬁ”——)ulnda) . (14)

The Hausdorff- Young inequality in the above form will be used to prove the pointwise
estimates for the kernel Si(w) of the Riesz means.

Finally the following facts are also useful in the sequel. Each representation m,
determines a Lie algebra representation dm;. The operators dn,(Z;) and dn,(Z)) are
closable operators. If W(4) and W {(4) denote the closures then we have

WiAD2 = (214 (e + 1)) 205,
()02 = (214]a) P02 .,
where e; are the the coordinate vectors in R". Let H ()= —%(Wj(l)V_Vj(,l) + Wj-(l)Wj(l))

and H( )=3¥"_, H;(%). Then H(2) is the closure of dm;(L) and has the spectral
resolution

Z (2N +n)|4| Py(4).
More generally one has
drm (@ Z G((2N +n)[A1)Py(4) (1)

for any reasonable function ¢.

3. Pointwise estimates for the Riesz kernel
The aim of this section is to prove the following estimate for the Riesz kernel.

Theorem 3.1. Assume that o > 2m where m is a positive integer. Then the kernel Si(w)
of the Riesz means satisfies the following estimate

|S(w)| < CR¥3(1 + R'2|w|)™2". ' (16)

Recall that S% f = ¢p%(L)f where ¢%(4) =(1—(4/R))% . Therefore, S%f = S§*f where
the Fourier transform of the kernel % is given by the equation

spr= § (1-25E b )
N=o

If we apply the inversion formula (12) we get

SHw) = Jexp (—ils)
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X, (2N A
X { Y (1 —i—-;i)u) Ly YA )exp(—lllrz)}lll"dl (18)
N=0

where we have set w=(s,z), r=|z|. From the above expression it is clear that
S%(s, z) = R9/2§%(Rs, RY'*z) and hence it is enough to estimate ST(w).

Since S%(w) is the inverse Fourier transform of the operator valued function
(1 — H(A)Y: , Hausdorff-Young inequality gives the estimate

18T W)l < CIH(T — HA o, -

As(1 — HA). =380 (1 —(2N +n)|A] 3 Py(4), it is easy to see that (1 — H(A))% |4, <
C and hence || S%(w) |, <C. Thus it is enough to prove the estimate | S;"(w)| < c|w|‘2"'
when [w| > 1.
Let us set f=S% so that f(4) is given by F=P_o Ru(A,f)Px(4). Here
(Af)=(1—@2N +n)| 1) =v(( 2N+n )|4]), say. Our aim is to calculate
RN(A (is—r?)"f) and then apply the Hausdorff-Young inequality getting

(N+n—1}

Iis—r?)fllo,<C Z JIRN (& (is =2y Nl —¢5

[A]"dA. (19)

If we can show that the right hand side of (19) is bounded then we are done.
Recall the definition of Ry(4, /). We have

Ryh)=c, j O, ALE 1A exp (— | A2~ dr.

N!
"(N+n—1)
Since (isf)(4,r) =(d/d4) 7(1, r) we have the formula

N!
N f F@.n

X HI {L% (2| Alr¥) exp(—|Alr*) 3"~ L dr.

W) =5 Ryl )~

Now we make use of the following formula satisfied by the Laguerre polynomials
(see [77).

d
raL"N~ Yr)= NLY Y1) — (N +n— DLYZL ().

Using this formula, a simple calculation shows that for 4 # 0 we have

Ry(4,isf) =d%~R~(/1,f) — NIA7* {Ry(2, ) — Ry—1 (A N} + Ry Ff).

So, if we let o =(2N +n)|A| and ¥ ,(6)=Rp(A (is—r?)f) then we have proved the
following formula

V1(0) =417 {oy'(0) — Ni(o) + Nip(o — 2[ A1)}

Let us now recall that y(s) = (1 — 0)?, satisfies the following two properties: i)  is
supported in (2N +n)|A|<1; i) _[||[1((2N+n)1l|)| |A"dA < C@N+m)~"" L
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From the above equation for ¥, (o) it is clear that ¥, also satisfies the property (i).
We claim that W, satisfies property (ii) also. To see this we have

0
AN )= bnl1| 35+ 2N

|
»

{é‘p__¢((2N+n)|M —Y(QAN - 1+n)lll)}

e

Using Taylor expansion we can write

w((z(zv_1)+n)un~w2N+n>lil>+§% |

=4"”2F (t+1— NW((2t +m)lAD . | ’

N-1

Since (2N + n)|A} < 1 we get *
2
szr1 4

Y((2N — 1)+n)|ll)~¢((2N+n)lll)+W [A]"dA
scr dtj(l—(2t+n)]2|)°ﬂ,‘2|/l|"dﬂ.<C(2N+n)‘"“. )

N-

We also have l
a¢}|A|"d,1<C(2N+n)""".

Jfll_l N

Hence we have proved that !

II%((ZN +n)ADIAI"dA < C2N +n)~" L,

Now an iteration of the process shows that Ry(4, (is—r?)¥) =y, satisfies the
inequality

Ji¢k((2N+n)M[)| |A"dA< C,2N +n)™"""

a—2k

provided (1 —A)%

is integrable. Hence when k =m we get
JlRN(l(is —r)"f)| |A]"dA < C2N +n)~"1
and consequently

h J|RN zs—r)'"f)|m++)|z|"dx<c§ (2N +n)"2<C.
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Thus we have proved
lis=ry"flle<C

and hence this completes the proof of Theorem 3.1.

4. Boundedness of the Riesz means

In this section we will prove our main theorem. By rescaling we can assume that
R=1. So we are considering the operator T = (1 — L)% . We are going to prove that
when o > ofp)

ITf 1, <CI SNy feLZ(H). (20)

To that end we take a partition of unity 32 _ ., ¢(2/s)=1 where ¢eCg(3,2). Let us

j=

write ¢%(s) = (1 — 5)°d(2/(1 — s)) and define ‘
TJ-=J1 ¢% (s) dE(s). (21)
0

Then T =312, T; and (20) will follow once we prove the following proposition:

PROPOSITION 4.1
Assume that o > «(p).and felP(H"). Then 3¢ >0 such that

IT; 1, <C27E| f1,. (22)

We claim that Proposition 4.1 is a consequence of the following estimates:
131 ll, < C2~=i2=Hasim=0aay g (23)
This estimate will be proved in the next proposition. To complete the proof of (22)

we follow Sogge [6] and therefore will be sketchy in the proof.
We first show that whenever B is a ball of radius 2/ then

I TS o < C27H75 £, (24)

. This is immediate since

I Tif Nom < C2AUP=CEN T

in view of the estimate (23). We next show that the kernel of T} has ‘thickness’ 2/.
More precisely it is enough to show that for each v> 03 an &> 0 for which one has
the uniform estimates

J |S%(w)ldw < C2 7
] >2f1+ ¥
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where S is the kernel of T;. To prove this estimate we make use of the kernel estimate
|3+ (w)] < CROZ(1+ R |wl) ™" (25)
Recall that T; = [g ¢;(s)dE(s), ¢;(s}=(1— 5)% (21 — 5)).
Proceeding as in [6] one obtains the following equation for the kernel §%

SH(W) = Cp fﬂ'” L g2m+L(1)32m+ 242 (1) .

Since ¢2 is supported in 277! < (1 =)< 27" we have the bound
|72 (1)] < C2HPm e,

If we use the estimate (25) what we get is
|5(w)| < C2m+ D] =2m

From the estimate it follows that

©

J‘ IS?(W)|dW<2j(2m+2)J t—2m+Q-1dt
] > 2/

2j(l*\')

j j(1 -2m+
<C21(2m+2)21( ) (~2m+Q)

Choosing m large so that (2m+2)y>(Q+1)(v+1) we can arrange it so that
J |S3(w)| dw < C27% (26)
}w|>2j“ R

Now using (24) and (26) one can prove (22). A detailed proof of this fact can be found
in [8]. We omit the details here and proceed to the proof of the following:

PROPOSITION 4.2.
Assume that 1 < p<2 and felP(H"). Then we have
ITf < Camep=em=am | £, ey
Since || T;f |, < C27%| f ||, it is enough to prove the inequality when p=1. The
proof of the inequality is simple when p=1. In view of the Plancherel theorem we have

1T 12= j (T (D) lEs] A1 dA.

Since T;=¢%(L) we have the equation
TV 0)= 3. GOIDPI)

where v=(2N +n). Due to the orthogonality of the projections Py(1) we have
ITf 13= Ni f 1301 ADPYDF (D35 Al d.

=0

et IS
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If we define the function @y;(t,|z])=y;(t,r) by the equation

PNt 1) = jexp(#lt)fp?(\'!ll)ﬂz‘v'1(2|/1Ir2)exp(—|llr2)lll" di
then it is easy to see that ¢y;(4)=@}(v|A[)Py(4) so that

ITS 3= 3 lowsf . (8)

By applying Young’s inequality we obtain

ITI2<clF13 3 loxl2.
N=0

Now it is an easy matter to calculate || y;ll;. Recalling the definition of @y; we have
| osll3 = JJ |@(v| A [21 A" (Ly~* 2] A r?) exp (— Ar?)r®" ™ T drdd
0

= Jr) |31 A1 ALY (r)? exp (= Ar¥)r*" =" drdi.

0

Since @(s) = (1 — ) ©(2(1 — 5)), on the support of ¢} we have 2-iTtg (1 —s)g 270!
and hence (1—v|A|)* < c277% We also have

j (L)) exp (=~ Hdr <ov'” 1
0
which is a basic property of the Laguerre functions. Therefore, we have

low; I3 SCV"”Z’-‘”“flfp(?(l —v[2DP1Al"dA
L2 iy 2, (29)
Hence we have proved

17,113 <C||f||f2’2“f2‘jNZO N +m)~2
or
. I Tif“z g 2727 (walPe (30)
This completes the proof of Proposition 4.2.

Note: After this paper was written the author came to know that D. Muller has
obtained the same result by using almost similar methods in the paper ‘On Riesz
means of eigenfunction expansions for the Kohn-Laplacian’ (preprint).
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