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Some uncertainty inequalities
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Abstract. We prove an uncertainty inequality for the Fourier transform on the Heisenberg
group analogous to the classical uncertainty inequality for the Euclidean Fourier transform.
Inequalities of similar form are obtained for the Hermite and Laguerre expansions.
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1. Introduction

The classical uncertainty inequality for the Fourier transform on R" states that

(Jlxlzlf(X)lzdx)(jléﬁlf(é)ﬁ@) > M

for all normalized 12 functions f. Here the Fourier transform of the function f is
defined by

f@=@m™? JeXp (—ix-&) f(x)dx. )

The above inequality can be written in the form

n
x| £ 12 1(=8)2 11l Z3 (3)
where (—A)'/? is defined by the equation

(=)&) = ¢ ] ©). (4)

The purpose of this note is to prove similar inequalities when —A is replaced by
some other differential operator.

First we consider the Hermite operator H = — A + |x|> on R". For normalized I*
functions on R" we prove that

(IEANAPY P : Gt Y P 24- ' (3)

Here HY2f is defined by

HY2 f(x)=Y N +n)/*Pyf(x) - (6)
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wherever f has the Hermite expansion

fx)=3 Pyf(x).

For example when n=1 we get the inequality

<Jtzlf(t)12dt>1/2(2(2k+ DIFGIP = % (7)

where f(k) are the Hermite coefficients of the function f.
Next we consider the operator L,

" 0 0
=—A,—~A, +%(x] -1 f—— Y i— 3
L= = A=A+ (1xP +1yP) g;(%am m3%> ®
on C". This operator is connected with special Hermite expansions. For this operator
we prove the inequality

Mzl f I IL2 1 24 ©)

for all normalized L? functions f on C". If we consider only radial functions the
above inequality becomes an uncertainty inequality for the Laguerre expansions. For
example, when n=1 we have

® 12/ o . 12
(j rzlf(t)lzdr) (k;0(2k+1)|f(k)lz> 24 (10)

0

where (k) are defined by

flo= wa (Ly tyexp(—31)dt (1n

where L,(t) are the usual Laguerre polynomials.
Finally we consider the sublaplacian % on the Heisenberg group H". For normalized
functions f on L*(H") we prove that

(lezlﬂf{z, 1)|*dz dt)”2 (le.?”ﬁ(z, 1)|*dz dt>1/2

2\/;‘l_(—g-)(n%-l)ﬂ (12)

The above inequality can also be written in the form

1/2 N 1/2
(”IZIZIf(z, 0l* dz dt) UM!” I F(HH@? llﬁsdi)

7 (nt+1)/2 )
>v@(5) : (13)
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where f(4) is the Fourier transform of f and H(4) are certain Hermite operators to
be defined later.

All the three inequalities are easy to prove. A very simple proof of the inequality
(1) can be found in Folland [1]. It so happens that we can simply adapt the same
proof to all the three situations which we are interested in.

2. Uncertainty inequalities for Hermite and Laguerre expansions

The n dimensional Hermite functions are denoted by ®(x). They are eigen functions
of the Hermite operator H = (—A+|x|?).

(— A+ [x[)D,(x) = 2] + n)Dy(x). (14)

Let Py denote the projection of IA(R") onto the eigenspace spanned by {®,:|a| = N}.
Then we can write

HY2f=Y (2N + n)'2P,f. (15)

We also need to consider the operators A4;, A; which are defined by

0 0

A' E", Aj+=_a_¢‘
J

=5 +5,..‘ (16)

These operators act on the Hermite functions in the following way:
qu)a = (zaj)i/zq)a—ej
A} O, =(a;+ 1), ,,, (17

where ¢;=(0,0,...1;...0) with 1 in the jth place. Then it is clear that the operators
H™1%4; and H™'2A} are bounded on LA(R").

LetaeR"and feI*(R") be such that [ | f(x)|* dx = 1. Then we will prove the following
theorem,

Theorem 2.1.
(ftx—aﬁf(x)ﬁdx)( ¥ <2N+n)nPNfué)>§.
N=0

Proof. The proof of this theorem is elementary. We start with the identity

0
i{(xj'"‘“j)f} =(xj"aj)5;f+f.

0x;

Then we have

f F)f(x)dx= J 6ixj {(x;—a)f}flx)dx — f(xj— a)f(x) g){; dx.
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Integration by parts gives .

J‘lf(x)\zdx= —j(xj—aj)f(x)ggdx—j(xj—aj)_(x)gx—fjdx.
Now we write

(= a,-)fj—j: = (x—a)f AT~ (5= @)L P

(= aT oL = = a)TA] =0l
Using this it follows that

[is097 85— [ -apra s [i-a)7ars
Applying Cauchy—Schwarz inequality we get

1/2
Jlf(X)lzdxSqlxj—a,-lzlflde) AL N2+ 1A] S
Since 4;H'/* and A H™"/* are bounded on L? we get
1/2
Jlf(x)lzdx < 2([136;— a,-lzlf(X)lde) IHY 11,
Squaring and summing over j gives

n
(Jlx - alzlf(X)lzdx> (Z(2N+n) I Pyf ll%) e
Let us now take up the case of the operator L. The operator L can be written as
i=

where Z; and Z; are the vector fields defined by

a_l _a_ i_a_ 5——-1 _a_+_a_
I72\ex; oy;)’ I 2\ ox, ’ay,. '

We also have to recall some properties of the Weyl transform. For the Weyl transform
we refer to Mauceri [3] and the references thereof.

The Weyl transform which we denote by W takes functions on C" into bounded
operators on [*(R™. There is a Plancherel formula for the Weyl transform:

1F13 =20~ W) .

where
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We also have the identities
W(Z,f) = iW()A}
W(Z,f)=iW(f)A;,

so that W(L™'2Z;f)=W(f)Af H'* and W(L™ 12Z.f)=W(f)A;H™ 2. The
operators Z;L~'/? and Z;L™'/* are easily seen to be bounded on L*C").
Let aeC" and fe LX(C") be normalized. Then we can prove the following inequality.

Theorem 2.2
(f1z=af /)P da) (1L ()2 d2) >

Proof. The proof of this is very similar to the proof of the previous theorem. We start
with the equation.

0i{lzj—ap)f}=r+(z;—a)d;f.

Proceeding as before we obtain

jlf(2)|2d2= —J‘(Zra ) ( f)dz—J(z a)f(0;f)dz,

where we have used the fact that (9,f) = (0, f). Since 8;=Z;—%%;,0,= Z; + ;z; an easy
calculation gives us

f @ dz= — f (o= a) [T, ) dz J(z ~a)Tz)a:

Applying Cauchy-Schwarz inequality and recalling that the operators Z;L™ 12 and
Z,L~"* are bounded on L[*(C") we get

jlf(Z)l2 dz< 2([12,-— a,*| f@)? dZ)m (j]L”Zf(z)P d2>1/2-

Summing over j proves the theorem.

To deduce the uncertainty inequality for the Laguerre expans1ons we proceed as
follows. When f is a radial function the Weyl transform reduces to the Laguerre
transform:

f= 3 Ruf)Py

where Ry(f) are given by

N! ©
m J;) f(r)LR,‘ ! (%rz) exp ( __i.rZ)an ~1dr.

Since W(L'2f)= W(f)H'* we have

Ry(f)=

o

W(L'"2f)= ), (2N +n)'Ry(f)Py

N=0
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which gives

X N+n
iwEnlis= § en+n ™t =R e
N=0
In view of the Plancherel formula we get
- N+n
2713 = 0n) g v 40 D R

Thus we have the following result.

Theorem 2.3. For f in LAR,r*"~ ' dr) with norm 1 we have the inequality

([ 1o ar) (sovsn L= irnr ) or’

If we take n=1 and define f(r) = g( \/_ } then we have
Ryg) = J S(OLyGr)exp(—4r) dr=f(N)
0

and what we have is the following uncertainty inequality for the Laguerre expansions
(of type 0).

(J? | f(r)l’dr) (}:(2k +1)[7k) ) g

3. Uncertainty inequality for the Heisenberg group

On the n-dimensional Heisenberg group H" we consider the following left invariant
vector fields

They generate the Lie algebra of H" and the sublaplacian . is defined by

F=--Y(2Z,+2Z). (19)

]

) o—
.Ma

ji=1

All the infinite dimensional irreducible unitary representations of H" are parametrized
by AeR, 1#0 and they all can be realized on L*(R"). For all the facts about the
representations 7, of H" and for other results which we use on H” we refer to Geller
[2] (see also Mauceri [4]).

The Fourier transform of a function f on H" which we denote by 7(4) is a bounded
linear operator on L*(R") for each A #0. The Fourier transform satisfies the following
Plancherel’s theorem:

n—1
1f13= 2 JUI" | 7(A) lis d2. (20)
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Each representation 7, determines a Lie algebra representation dz,. The operators
dny(Z;) and dn AZ)) are closable operators. Let W;(4) and Wj(i) denote their closures.
Then they have a very simple description as follows let ®} be the scaled Hermite
functions defined by

By(x) = (2| 2] 122 @,(2| A]'2x). | 21)
Then Geller [2] has proved that for each 1>0

W ()0H(x) = (2121 (o + 1)) 120, () )

WAOIx) = (2|2 o) P2, o (1) (23)

For 4 <0, W;(4) = W;(— ), W,;(1)= W;(— A). Let Py(4) denote the projection of LX(R")
onto the eigenspace spanned by {®}: |a| = N} and let H(1)=Y5-o 2N +n)|i| Py(A).
Then it is clear that the operators H(1)™*/2W;(4) and H(1)™“/2W,(1) are bounded on
LXR") for each A #0. We also have the identities

(Zf) :
Zf Y3 = i AW, (4) (24)
, .

Finally, when f is a zonal function ie. a function of the form f(|z|, t) then the Fourier
transform f(A) is explicitly given by the formula

fiy= 3 RuhSIPA2) 29)
where Ry(4, f) are defined by

N! ©
Ry(%,f)= N+n=0 L S, ALY 2]l exp—(J et~ dr. (26)

In the above f(r, ) is the Fourier transform of f in the ¢ variable and L%y Y(r) are the
Laguerre polynomials of type (n—1).
Now for normalized I? functions f on H" we can prove the following uncertainty

inequality
12 . 12 [p\(+1)2
(ﬂﬂf(z, t)lzdzdt) (jlll" 147(2) Ilﬁsdl> 2(5) 27

The proof of this is elementary. First one proves that

If1z<20ef 200111, (28)

and then uses the Plancherel formula

2n—1 N
lo.f13= FJ‘MI" 121 (2) lfks dA (29)

where we have used the relation (3,f)(4) = i4 7).
From inequality (27) it is quite clear that if f(z,t) has compact support in the ¢
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variable then f(4) cannot have compact support and vice versa. Actually much more
is true. In [5] Price and Sitaram have proved that if both the sets {t:f@zt)# 0} and
{A: f(4)#0} have finite measure then f= 0. But things are quite different when we
consider f as a function of z.

Let f be zonal function viz. a function of the form f(z,t)=@(t)g(z) where g is radial.
Then the Fourier transform of f is given by

fy=a0) 5 R 9Py (60

where

NC[R )
Ri% )= =y L gL 121 A r) exp (= | A2y dr.

If g is compactly supported then by choosing ¢ to have compact support we can
make f(4) also to have compact support. Nevertheless the following uncertainty
inequality is valid.

Theorem 3.1. For a normalized L? function f on H" one has

12 . 1/2
(”lz —a’| f(z.1)*dz dt) (JMI” | FA)HD) s d/1>
. \/ﬁ(g)mﬂ)ﬂ_

Proof. Let f(z, ) denote the Fourier transform of f in the ¢ variable. Then we have
fuf(z, M dz = j 0((z;—a)])dz — j (z;—a)Jofdz.

Integrating by parts in the first integral we get
flf(z, WFdz=— j(zj —a)JG)dz~ j(z,-—a,-)fz(ajf) dz.

Define Z (1) and Z(2) by the equations

Then a simple calculation shows that

jmz, DPdz= —f(zf —a)f(Z,H dz—f(zj—a,ﬁ(zj(x)f) dz.
But .
Z,M () =(Z;f @A

Z (0] =Zf @
and therefore,

Jlf(z, NPdz=— f(zj—a,-)f?zjfrdz ~ f(z,-—a,—)f( ) dz

o
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Integrating with respect to 4, applying Cauchy—Schwarz and Plancherel theorem for

the Fourier transform in the ¢t variable we obtain -

B < U =a)f 1 {1 Z;f N2+ 1 Z;f N2}

In view of the Plancherel formula for the Heisenberg group

1Z,f =2 jw | T W, () s dA

Using the fact that H(1)™'/2W,(1) is bounded on L*(R") we get

otn—1)2

1/2
(PATRPES {n+1)/2< lll"llfl)(H(l))l’zlinsM) :

Similarly
_ (n 1)/2 1/2
“ij HZ (n+1)/2<Jv|/1]n ” f(’l H(l)llz ”HSd’l) .

(n+1)/2 N 1/2
Iifi{§<<%> ||(z,-—aj)fuz(f|z|" ilf(l)H(/l)”zllﬁsdl) .

Summing over j proves the theorem.
If we use the fact that (£ Y2 f)(3) =f(A)H(4)!/* then we get the inequality

(n+1)2
|||z—a|f||z||$1'2f1|2>ﬁ(32‘->

as advertised.

Hence
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