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Abstract. Regularity properties of twisted spherical means are studied in terms of certain
Sobolev spaces defined using Laguerre functions. As an application we prove a localisation
theorem for special Hermite expansions.
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1. Introduction

Regularity of the spherical means f(x,?) defined on R" for fin L. (R") by the equation

flx0)= j f(x—1ty)do(y) (1.1)
sn-t ,

has been the subject of several papers. In 1976, Stein [10] proved that when n > 3 and
p > nj(n—1) the spherical means f(x, t) of a function f in L?(R") are bounded and
continuous as a function of ¢ for almost every x in R Later more refined results
were obtained by Oberlin—Stein [41, Peyriere-Sjolin [7] and Sjolin [8]. To wit, the
following theorem has been proved by Sjolin [8]. Let H*(R) stand for the usual L*
Sobolev space of order s and let peCZ(0, ). Then the following is true.

Theorem (Sjolin). If n>2, 2n/2n— 1<p<2and s= n(1—1/p)—(1/2) then for any

f in LP(R") one has
172 1/p
M%,sdx) scq\f(qux) :

(J ()5
Rn

The above result has been extended from R" to any compact symmetric space by
Colzani [1]. His study of the spherical means on these spaces is essentially group
theoretic and is based on the theory of spherical functions. In this setting the proofs
turned out to be simpler and the results quite general. In order to state the main
result of Colzani it is necessary to recall the definition of the spherical means on 2
compact symmetric space. :

Let (G, K) be a compact symmetric pair and X = G/K be the associated symmetric
space. Functions on X are identified with right K-invariant functions on G. Let
G = KAK be a Cartan decomposition of G and let dg =dk w(t)dtdk’ be the corres-
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ponding decomposition of the Haar measure dg on G. Here w(t) is an appropriate

weight function defined on 4. If fe L!(G) we define the spherical means f(g,1), geG
and teA4 by

Flgst) = f f Flgkek')dk K. T 12
KJK o

Clearly, f (g, t) is K-invariant as a function of g.

Using the Peter-Weyl theorem we can expand f(g,t) in terms of zonal spherical
functions. To see this let us recall the Peter-Weyl theorem for right K-invariant
functions of G. Let Gy be the subset of the dual of G consisting of equivalence classes

of class 1 representations of G and let {¢,}, i G be the associated system of zonal
spherical functions. Then the Peter-Weyl theorem reads

f= Y dif«g,, | | . (1.3)

AeGy

where d; stands for the dimension of 1. Since the spherical functions ¢, satisfy the
relation

j @:(gkg")dk = ¢,(9)@,(g') | (1.4)
K N
the spherical means f(g, t) have the expansion

fg.)= 3, d,f+?9)0.(). , . (1.5)

AeGy

The above expression for f(g, £) suggests that it is natural to study the regularity
properties of f(g,t) in terms of some sort of Sobolev spaces associated to the system
{0:}. For ted we get y A)=d;2,() so that {y,} is an orthonormal basis for
L*(A4,w(t)dt). We then introduce the Sobolev space L2(4,w(t)dt) to be the set of all
functions f =X%7 (A, for which the norm ‘

Il = & a+ieyiiar : e

is finite. Here || denotes the norm of the. highest weight corresponding to A.

Measuring the regularity of the spherical means f (g, ¢) in terms of the above Sobolev
spaces Colzani established the following. ‘

Theorem (Colzani). LyetVX =G/K be a compact rank one symmetric space of real
dimension n. If fe LP(X), 1<p<2,and s=n(l — (1/p))—(1/2) then

jﬂﬂ@ﬂé@SCWM-
G

Using the above regularity theorem he was able to establish a localisation theorem

for spherical harmonic expansions of L? functions on compact rank one symmetric
spaces. ‘ '
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Our goal in this paper is to establish similar regularity results for the twisted
spherical means on C" and to prove an almost everywhere convergence result for
the twisted spherical means. Before stating the results we need to set the notations
up. The twisted convolution f x goftwo functions fand g defined on C"is the function

fxg(a)= j ‘ f(zmw)g(w)exp(%lm z.w),dw. )
- 1ZW |

If p, stands for the normalized surface measure on the sphere {zeC":|z| =r} the
twisted spherical means is defined to be ’ ‘

Fxple)= j‘ F(z — w)exp (%Ir;nvzw)dp,. o 18)

lwi=r

In this paper we are interested in the regularity of these twisted spherical means.
The study of the twisted spherical means turns out to be much simpler than the

study of spherical means; thanks to the existence of an analogue of the Peter-Weyl

theorem. This analogue is the so-called special Hermite expansion which is written as

f=0n" Y fx o S 9
k=0 . B . : .
Here ¢, stands for the Laguerre function
0, (2) = L2~ &z exp(— (1/4)12l?) ‘ o (L10)

where L!~! is the kth Laguerre polynomial of type (n— 1). For various results
concerning the special Hermite expansions we refer to Strichartz [11] and Thangavelu
[14] and also to the monographs by Folland [2] and Thangavelu [16].

We also have an analogue of the expansion (1.5) for the twisted spherical means,
namely, ' I
e O o
fx =00~ X P o) x @l | (L1
This has been proved in [14] and has played a crucial role in the study of spherical
means on the Heisenberg group (see [14]). The above expansion suggests that we
should measure the regularity of f x p, in terms of some sort of Sobolev spaces
defined using the functions @,(r). If we define

21—-nk! 1/2 (" A . (112)
‘/’k(')z(’(']';;n_—ﬁ) @ilr) _ o (L.

then the system {,} forms an orthonormal basis for  L2(R.,r*"~'dr) where
R, = (0, ). We introduce the Sobolev spaces Wi(R ) to be the set of all functions
of the form f = X®_ 4.y, for which the norms

7B = S la Pk . N (8E)
k=0 . .

are finite. For the twisted spherical means we then establish the foilowing theorem.
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Théorem A If feP(C"),1<p<2,s=n(l—(1/p)) — (1/2) then one has the inequality
and :

J N xp@Rdz<CIrI2
/C

'The Sobolev space W+ (R..) turns out to be a subspace of the Laguerre (or twisted)
Sobolev space W7 (C"). This space and another Sobolev space W4 (R") (Hermite
Sobolev space) will be introduced in the next section. It turns out that fe WiR(R)if
and only if the function g defined by g(z) = f(|z|) belongs to W;(C"). We also prove
the embedding theorem for the Sobolev space W} and Wj. As a consequence we also
establish a pointwise convergence theorem for the twisted spherical means.

We also study the localisation problem for the special Hermite expansion (1.9).
- Let Sy f(z) be the partial sums defined by

N .
Svf(0) =20 ¥ fx oyfa). | (1.14)

Suppose we know that f(w) vanishes in a neighborhood of z, say in |z — w| <a. We
are interested in finding conditions of f which will ensure that Sy f(z) >0 as N — oo

for ae. z in |z — w| < a. Using the regularity of spherical means for L? functions we
are able to prove the following theorem.

Theorem B. Assume n>2 and f is a compactly supported function in WA*(C"). If
f(2)=0 on an open set Q, then Sy f(z)—0 for ae. zin Q as N — co. .

This theorem is proved in §4. We introduce the Sobolev spaces in the next section.
Regularity theorems for the spherical means are proved in § 3.

2. Invariant Sobolev spaces

We have introduced the Laguerre Sobolev spaces W31 (C") in [14] in connection with
the spherical means on the Heisenberg group. There we have called them twisted
Sobolev spaces. They have been also introduced in Peetre-Sparr [6] in connection
with noncommutative interpolation. Let L be the special Hermite operator defined by

1 u 0 0
L= —A+=|z]>—i ——y) (2.1)
+12l ’,El("lay,. y’ax)

Then the special Hermite functions are eigenfunctions of the operator L and the series
(1.9) is nothing but the eigenfunction expansion associated to L. In fact one has

L(f x @) =2k +n)f x ¢ : (22)

for any k. In view of this and spectral theorem one can define L* by

0

Lf=Qmn)™" Y Qk+nff x ¢,. : (2.3)

k=0

‘The usual Sobolev space H*(R") is defined to be the image of L2(R") under the
‘operator (— A + 1)~ /2, Similarly, we define W1(C") to be the image of L*(C") under
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L%, In other words, fe W if and only if

\fP=0m2" ¥ (2k+ 2N f % @elll . (2.4)
k=0
is finite. Before studying properties of W} we also introduce the Sobolev spaces Wy
Consider the Hermite operator H = — A + (1/4)|x|* on R" for which the mggnfunchops
are the ordinary Hermite functions ®@,(x). If Py f stand for the projection of f.in

L2(R") into the kth eigenspace spanned by {®,:lul = k} then the spectral decomposition
of His ,

Hf = é) 2k + n)P.f- (2.5)

Using this one can define the operators H* and W5(R") is dcﬁneq to be the image of
L?(R") under H™* This means f belongs to W5 (R") if and only if

2= 3 Qe IP 1 ~' e

is finite. We use the same notation for the norms in W as well as in W};. The situation
will make it clear which space we refer to. -

The Hermite and Laguerre Sobolev spaces enjoy an invariant property which is
not shared by the usual Sobolev spaces H*(R"). Namely, Wy 1s invariant under the
Fourier transform and W} invariant under the symplectic Fourigr ‘,transformﬁ The
invariance of W under the Fourier transform follows from ‘thev fact that F(P.f) =
(— i)P, f where Ff is the Fourier transform of f. This follows from the well known
properties of the Hermite functions. The invariance of W; can be seen as follows.

Let F,f be the symplectic Fourier transform of f which is defined by

F.f(2)= Jf(w)exp(—-—;—lmz-w)dw. o | 27
We can write this as F,f(z)=f % 1(2). In view of this

stxq’k:fx(lxﬁok) (2.8)
and if we can show that

1% gp=(—1*os | ‘ 29)

the invariance of WS under F, will follow immediately. But (2.9) is an easy consequence
of the generating function identity ’

ir’%pk(z)—_—-u _mexp(— (/41 +7/1 ~ 9l | @10)

k=0

valid for any 0<r < 1. ‘ ‘ S
We now bring out the relation between the Hermite Sobolev space W; and the
ordinary Sobolev space H®. If we let : -

%=(fl+l%) iei2em e
ox; 2
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and A¥ the adjoint of 4; then it is easily seen that

1, 1z 4
In view of this it is clear that H™ f is a finite linear combination of terms of the form
x*0° f where |« + |B| < 2m when m is an integer. Thus, in this case W"(R") = H>"(R").
This inclusion is true for any m > 0. ‘

Theorem 2.1 (i) If s > O then Wi (R") = H*(R"). (ii) Conversely, if s >0 and peCy(R")
then there is a constant C = C(¢) depending on ¢ such that

o JIHS(cpf)!zdx < Cfl(-—A + 1¥ f]2dx.

Proof. In order to prove (i) it is enough to show that the operator (— A + 1)%(— A« |x]?)~*
is bounded on L*(R"). In [15] we have proved that (—A +|x|?)”* is a pseudo
differential operator whose symbol o(x, &) satisfies the estimates

103050 (x, ©)| S C(1 + x| + |&]) 72~ 118 (2.12)

where C is independent of x. Therefore, it follows that (mA+1F(=A+|x])?) isa
pseudo differential operator with symbol in 59 , and hence is bounded on L*(R").
To establish (i) we look at the operator (—A+[x]*Fox)(—A+1)"% Again,
because of the compactly supported ¢, the above operator is a pseudo differential
operator whose symbol b satisfies

10208b(x, &)| < C,(@)(1 + &)~

where C.s(9) is independent of x. This proves part (ii).

We remark that a similar inclusion is true for the Laguerre Sobolev spaces also.
This follows from the relation

L=—3 'Zl (Z;Z;+Z;Z)) (2.13)
i=

where the vector fields Z; and Z; are defined by

Ja 1 - Ja 1 .
Z.= —_— -z, ,Z.= —— -z ] 2.14
y (az,. 22’) J (az. 22’) B

The proof runs along similar lines and we leave the details to the interested reader.
We now turn our attention to the relation between the Sobolev spaces W}, W

and Wy introduced in § 1. If for any space V' of functions on C" ~ R?", (V), stands

for the subspace of all radial functions in ¥ then we have the following relation:

(W€ =(Wy(R¥))p = WE(R, ). (2.15)

To see the first equality we observe that when fis radial Lf = Hf. This follows from
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the fact that f is annihilated by operator

n b 0
Xi— —yi— }
,.;( T3y, y’@x,-)

J

This observation has been used in the study of Hermite expansions on R2" for radial
functions. Thus as far as radial functions are concerned L and H have the same
spectral decomposition and hence the equality (W)r= (W3-

The equality W;(RQ:(W;(C”))R follows from the following fact. When f is a

radial function of C" then the special Hermite expansion of f reduces to the Laguerre
expansion. More precisely, one has

1% 0(2) = calfs WYl (2.16)

It is now obvious from this relation that Wi(R,) is equal to (W[)g With these
observations we end discussion on the various Sobolev spaces and turn our attention
to embedding theorems.

Theorem 2.2 (i) If s> g, Wi R < L*R)NCR. @) If 5> 3'2- ws(Cr) e L=(C)n

C(C"). In both cases the inclusion is continuous.

Proof. We first Prove (i). Writing

f) = L@, ), 2.17)
where f(u) = (f,®,) and applying Cauchy-Schwarz we have
f )PP < (ZO—!M + n)zslff.u)|2>B(X) ' | (2.18)
where ’ '
B =T @lul+m)”*@,0 r (2.19)

The sum on the right hand side of (2.18) 1s nothing but |f|? and consequently
suplf ()] < CIfls (220)
would follow once we show that B(x) is bounded.
That B(x) is bounded can be proved in two ways. Writing @, (x,x) = sz((bu(x))z
. - u =
we see that '

B(x)= f 2k + n)~ 2D, (x, x). ‘ (221)
k=0 ~

In [13] we have established the estimate

®,(x,x) <C(2k + /2~ (2:22)
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with C independent of x. Therefore,
Bx)<C Y, Qk+n—2s+{n/2)—1 (2.23)
k=0

the sum being convergent as s > n/4. We can also prove the boundedness of B(x)

without using the estimate (2.22) but using the generating function for the Hermite
functions. One has

i r*®,(x, x) = 1~ ®2(] — )~ @/ exp(—— (1)(1 - |x|'2>). : (2.24)
k=0 ;

2/\1+r

Taking r = e~ 2" we obtain

o0

Z exp(— (2k + n)t) D, (x, x) = (2m) =™ (sinh2z) /2

k=0

exp(—— G)(tanht);xﬁ) | (225

Integrating the above identity against t2*~*dt we get
2 (2k+n)" 2@ (x, x)
k=0

_(27'5)%"/2) ? —(n/2)42s— 1 (_(1) 2)
~Tay (sinh2f) /g2~ 1 exp 3 (tanh)|x|* |de

0
(27.[) —{n/2) >4

I'@2s) Jo

£~ exp(— (nt))(1 — exp(— 41)) " "2 dr < C (2.26)
since s > (n/4).

We prove (ii) using an interesting identity satisfied by the special Hermite functions.
For each pair of multi-indices z and v the special Hermite function ®,,is defined by

: . (2)= (2m) =2 Jexp(ix-C)Qu(C + %y>®v<§ -~ %y)d{. 2.27)

These functions have very interesting properties. To wit, one has

0, x0,=Q1%5,0,, (2.28)
They form an orthonormal basis for L*(C") and one has
fx ou=0ny %Z(’"’q’w""w' - (2.29)
S By

For all these and other intéresting properties we refer to the monograph [16].
The identity which we need is the following.

PROPOSITION 2.1

For any z in C" one has
y

210, = 0n)™




s Y

Special Hermite expansions ‘ 31 1

Proof. The functions {fl')vﬂ(w)} form an orthonormal basis for L2(C"). We expand
the function

@au(é — w)exp(i/2)(Im z.W).

in terms of @ ;. We have

jd)w(z _ wyexp(i/2)(Im z- W)@, (w)dw = @, X Dy5(2) = 5,,ny2®,,(2)
Thus we have |

@, (z — wexp(i/2)(Im z.%) = Q) ; ,,@)®,,W)

The orthonormality of the functions @, DOW proves tp&? proposition.
We can now complete the proof of theorem 2.2. Writing

=YY (9,)0,,0) -9
we obtain the inequality |

If (2)]> < AB(2) - (2.31)
where _

A=Y 2]l +n®| (0,05 .

B=Y Y (2| +n) ¥, N @3

In view of the relation (2.29) we get ‘
A< |f12. | | (2.33)

From the definition of @, it is clear that o uv(— z)= <I>w(z) and hence

} 0

B =T@iv+n) >0, @r <D™ X @k )2
v ®

k=0

in view of the proposition. The last sum is finite precisely when s> n/2. Hence we.
have proved

If @< Clfls

for all z in C". Hence the theorem.

3. Regularity of twisted spherical means

In this section we study the regularity properties of the spherical means fxp asa
function of r in terms of the Sobolev spaces Wa(R.). We first show that the sphencal
means are regularising in the following sense.
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Theorem 3.1 If fe WS(C") then for almost every zeC", f X y,(z) belongs to
Wi “/2(R ) and one has

J‘lfx u, Z)|s+(n 1)/2d2 < lelsz

Proof. The proof is based on the formula (1 11). From the definition of W3(R, ) it
follows that

UXM@@ﬁIM\CzHM+mMJX%Uk (3.1)

where we have used that fact k!(n— DYk+n—1)!=0(k~"*'). From (3.1) we
immediately obtain the theorem.
Using the above theorem together with the embedding theorem of the previous

section one can prove the followxng almost everywhere convergence result for the
spherical means.

Theorem 3.2 If fe Wi(C") with s>1/2 then w,, [ X u(z) converges to f(z) for
almost every z in C" as r -0, where W,, is the measure of the unit sphere in C".

Rroof. When s> 1/2 the embedding theorem shows that

SUPLS X 4 (2) < CIf X (24 o1y -

r>0

and hence one has the inequality

r>0

‘vaxmwﬁz<cvﬁ | (3.2

It is easy to see that f x u,(z)— f(z) as r —0 whenever fis a Schwartz class function.
Hence the theorem follows from the above maximal inequality in a routine fashion.
We now turn our attention to the spherical means of L” functions.

Theorgm 3.3 @) If fe LY(C") and s < — 3 one has
jlfx L2)7dz < C| f2.

(i) If fe LP(C"), 1<p<2and s-n(l —1/p)—3,
fVX%@E&<CWM-

Proof. The proof of (i) is rather easy. In fact,

|f>{ u;(z)lf <C kzo (2k + n)2s'—(n-1)‘lfx ()2
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and this gives, upon using the estimate

j % oy(2)Pdz < Ck+ny I

g the inequality
| j\fx w@2dz < CIfI ‘,Z.O (2k -+ n).

The last sum is finite when s < —%-
In order to prove (ii) we use the mapping
of the operator L. Proceeding as above we have

| j Sx p@Rdz<C Y kNS x ol
k=0
1

and therefore, we only need to show that where s = n( >

kgo (2k + ‘")"2"“”" 12| fx g, |3 < CIS I
This inequality follows fr

PROPOSITION 3.1

n

If0<s<nand1=
q

Proof. Let e be the semigroup defined by

e Lf=02n)7" i exp(—(2k + M) f X @i
S k=0 .

It is clear that e~ f = f x K, where the kernel K, is given by

K@= L exp(= 2k + o

Using the generating function identity (2.10) we see that

K (2) = (4m)~"(sinh) "exp(— (1/4)cothtlzl’

In view of the formula

L =—l—j ple L fde
I'(s)Jo

the kernel of L™ is given by

e
KO=15 Ot K, (z)dt.

om the more general resuit given in the next propo
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properties of the fractional powers L™°

(3.3)

1———)——1—we have
2

(3.4)

sition.

1—iwhere‘l <p<qg<wthen I L“fﬂqsCllf]lpforfinL”(C").

(3.5)

(3.6)

(3.75

(3.8)

(3.9)
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Using (3.7) in (3.9) it is now an easy matter to prove the estimate

IK(2)| < Clz| 72" %,
The proposition now follows from the Hardy-Littlewood-Sobolev theorem for

fractional integration (see Stein [9).

There is an analogue of Theorem 3.3 for the twisted Hardy space . This space
was introduced by Mauceri-Picardello-Ricci in [3] and is defined using twisted
convolution instead of ordinary convolution. It can also be defined to the subspace
of L}(C") containing all functions f for which the maximal function

f*(z)=suple™™ f(z)| (3.10)°

t>0

isalsoin L*(C"). There s also an atomic decomposition. Any f in #! can be written as

=3 Lfi) (3.11)
k=1

ao
with C [Ifll,,.< X 141<C,|fll,,. were the atoms f, satisfy the properties
k=1

(i) fi is supported in a cube Q(zy,7,) centred at z, and half side e
@) [fello <@r)~2" '

(i) | fk(w)exp( ~ % Im zk-w)dw =0,
Using this atomic decomposition we can establish the following result.

Theorem 3.4 If fes#, fx p,(z) belongs to Wy YR, ) for almost every z and one has

J!f X (22 ;5,2 < C f11%..

Proof. We need to prove the inequality _
'kzo(2k+n)“"llf><<0k||§<CllfH§fl- (3.12)
It is enough to prove this when fis an atom. So, let f be supported in Q(z,,r) and
satisfying the above conditions (i), (i) and (iii).
Using the mean zero condition
f f(w)exp(— (i/2)Imz.%)) dw = 0 ’ (3.13)
we rewrite the twisted convolution fx @u(z) as

[ xouz)= f fw) ((Pk(z = W) exp(— (i/2)Im 2.9) — @y (z — z,)

exp(— (i/2)Im zo (W —E)))dw (3.14)
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An application of Minkowski’s integral inequality gives the estimate

If xeilla< Jlf(w)l lgi (> w) ll2dw, (3.15)

where g,(z, w) is the function inside the bracket on the right hand side of (3.14).
Now a simple calculation shows that

lgul, w3 = j(%(z —w))’dz + J((pk(z —20))*dz

- jcpk(z — W) @iz — 2o) exp(— (i/2)Im(z-W — zo"W — 2 Zo))dz
— j‘qok(z — w),(z — zo) exp(i/2 Im(z'Ww — zo'W — 2-Zg))dz. (3.16)

The first two terms are equal to (27)" ¢,(0) each and the third term is

j(Pk(Z + 2o — W) @i(2)exp(if2 Im(w — z0))-2dz

= jwk(w — 20— 2)¢1(2) gxp (—;— Im(w — zo).g) dz

=y X Q(w— Zo) = (2my* oulw— Zo)-

g Similarly, the fourth term is also (2n)" @ (W — 2o)- Therefore,

Jigk(z, w)[2dz = 2n)(@4(0) — @xlw = Zo)) (3.17)

Writing ¢4(0) = @1(Zo — Zo) the mean value theorem gives

n

|0x(0) — 9w — Zo)l < Zl sup

(20— Wi (318)

0 o
ow; *
Recall that the Laguerre polynomials L, ~1(t) satisfy the relation

d (3.19)

dt
and L(r) exp(— (1/2) t) satisfy the estimate

i =— L0

3.20)
sup| L*(t)exp(— (1/2)0)| < ck". (3.20

t>0
Using (3.19) and (3.20) in (3.18) we obtain
i (0) — (W — zo)| < CK| 2o —wl*
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As f is supported in |z, — w| €2r we have from (3.15) and (3.21)
1f.% @ull, < Ch j |f W)l 2o — widw < C(2k + n)"?r. (3.22)
jzo—w|< 2r
Now we are in a position to estimate the sum (3.12). Using (3.22) the sum taken

for k <r™2 gives

Y @k+mTifxeli<C (3.23)

k<r—2

On the other hand using the estimate

Ifl%= J If(w)ldw < Cr™?" | . (3.24)
zo— W< 2r .
we also get o
Y @Qk+n)7tf xedi<CriflisC (3.25)
k>r—2 .

Hence (3.12) is established and consequently the theorem follows.

4. A localisation theorem for special Hermite expansions

In this section we prove Theorem B stated in the introduction. The proof is based
on the following fact. If a function ge L*(R,,r*"'dr) then the Fourier-Laguerre
coefficients (g, 1/,)— 0 as k— o0. Recalling the definition of ¥, this means that

J g @ (r)r*"~*dr = o((2k + n)(n — 1)/2) | 4.1)
0 : ;
as k—co. If in addition geW%(R. ) then it follows that

on g (r)r** 1dr = o((2k + n)(n — 1)/2). , 4.2)
0

Inview of Theorem 3.1, Theorem B is an immediate corollary of the following result.

Theorem 4.1. Let n>2 and f be a compactly supported function vanishing in a
neighbourhood of a point zeC". Further assume that f x p,(z) belongs to Wy*(R..) as
a function of r. Then Sy f(z)—0 as N — cc.

Proof. From the relation (1.11) and the orthogonality of ¢, we can write the partial

sums Sy f(z) as

0

Suf ()= jwfxu,(z)(kgo @k(r))rz"_ldr. B @3
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Using the formulas (see Szego [121)

& '"—1 1*2 n 1 2 :
kgoL" —z—r = L% Er , (4.4)

1 1 e -1 (L2
5r? L';V(Erz) =N+n Lyt (5’2> — (N + DL (572) | (4.5)

we can write (4.3) in the form

o o)

Snf(2)= j g.(N(N + oy —(N+ D@y, ()2 idr (4.6)

0

where we have written g.(r)=2r" 2 fx pu,(2). Rewriting

(N+n) Lyt (%ﬁ) —(N+ 1)L’,;’+11(~12—r2)
-1 1 2 n—1 1 2 n—1 1 2
=(N+ n)(L‘;, <§r )—— LN+1(§" )) +(n—1) LN+1<':,:" ) (4.7)

and using the formula

11! e . .
L'I'wll (ETZ)— Ly ‘(:—272>= LN+21 (572> (4.8)

we finally express (4.6) as the sum of the following two terms:

(n—1) jw Go(P) O I tdr, 4.9)
and ° ' |
(N +n) jw g:(r} A (%P) exp(——~(1/4)r2)r7'”" tdr. (4.10)
0 ,

Now if fis supported in w|<b and vanishes in |z —w|<a then f x u,(z) as a
function of r is supported in a <7 < b +|z|. Consider the integral (4.9) first. As we
are assuming that f x ,(7) belongs to Wwr2(R. ) it also belongs to H?(R,). As 1t
vanishes near 0,g.(r) belongs to H"2(R, ) as well. The compactness of the support
of g, implies that g.€ wr2(R,) and hence by the remark (4.2) it follows that

0

Jw g, (NOx+ ,nr*"” 1dr=0(2N + n)~ D). (4.11)

Thus the term (4.9) tends to 0 as N— 0.
We write the term (4.10) as

(N +n) r % uy(2) L;;ﬁ (%F)exp(— (1/4)r*)r>"~2dr. 4.12)
o}
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The function f x g,(z) belongs to W7*(R, ) and as it is compactly supported it also

belongs to the same space defined using Lr=2(1/2r*)exp(—(1 /4)r?) instead of @, (r).
Therefore,

rf x iz L2 (%r’)exp(— (L/4)yr2yrn=3dr = o(N 1) (4.13)

0

and hence the term (4.10) also converges to 0 as N — co. This completes the proof
of the theorem. '

In the case of compact symmetric spaces of rank one a localisation theorem for
spherical harmonic expansions was proved under the only assumption that f is in
L2. As we are dealing with the noncompact situation in order to prove theorem B
we have had to assume a further regularity assumption on f. We don’t know if the

condition f'e W}/*(C")is optimal; nevertheless some regularity assumption is essential
as the following counter-example shows.

Consider the function f which is the characteristic function of the annulus 1 < lz| <2.
As f is radial, the special Hermite expansion takes the form

_ R k!(n—1)! - 14
f@) c,.kgo——————(k +n_1)!(£<pk(s)s d8>¢k(z), | (4.14)

where ¢, is a constant. Hence the spherical means f x y,(z) has the expansion

2 ( kln—-1! \2( [? _
fxu(z)=c, kgo ((I—-{%T:%ﬁ) ( J.l @i(s)s* ! ds) 0 (N @y (2). 4.15)
Setting z =0 and remembering ¢,(0) = (k + n— 1)!/k!(n—1)! we get

% kl(n—1)! \¥? 2 ne1
fxu0)=c Y (m> (L 0 (5)s? ds)l//k(r). (4.16)

k=0

It is clear that f x p,(0) belongs to L*(R, ,r?"~1ds). We claim that it does not belong
to Wa*(R.) and the partial sums Sy f(0) does not converge to 0.

In order to prove these two claims we need the following asymptotic property of
the Laguerre functions (see Szego [12]): for x>0

(42" - 2@ — /2 r(k+a+1)> | a/2 —3/4
Lf(x*)exp(— (1/2)x7)x* =k ( ST J(2/Kx) +0(x )

(4.17)

where K =k + (« + 1)/2 and the bound holds uniformly in 0 < x < X,. As J,(t) behaves
like t~%/% as t— co it follows from (4.17) that '

oS ~ k)T D21 <D (4.18)

as k— oo. This shows that f x p,(0) is certainly not in W/2(R.).
To see that Sy f(0) does not converge we have

[V}

Sxf(0)= Jmf x p,(0) L;,(%r")exp(——(1/4)r2)r2""1dr. - (4.19)
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A calculation shows that f x u(0) =1 for 1 <r<2 and is zero elsewhere. Thus

Suf(0)= j

1

2

1
o (72) exp(— (L/Ar)rdr. (4.20)

Again (4.17) shows that Sy f(0) behaves like NM2-1% a5 N—oc and hence Sy f(0)
does not converge to 0 as N— 0.

In a recent article [5] Mark Pinsky has related the smoothness of the spherical
means with pointwise convergence of the partial seems associated to Fourier integrals
and Fourier series. In a similar vein we can also prove pointwise convergence of
special Hermite expansions under some smoothness properties of the twisted spherical

means. For example, let n=1 and consider the partial sums Sy f(z) which is given
in terms of the spherical means as

Syf(@)= jmf x u(z) Ly (%rz)exp(—(l/ét)rz)rdr. {4.21)
0

Assume that [ x g,(z) is supported in 0<r<a and that d/drf x p,(z) is piecewise
continuous, the discontinuties being at a; <a; <... <a, where a, >0 and ¢, <a.

Using the relation d/dr Li(t) = — Lyt 1(t) we may write (4.21) as
“ . d 1 _
Syf@) = j‘ f x u(2) exp(-—(1/4)r2)a;{Lg+l(§r2>}dr. (4.22)
0

Integrating by parts we get
a " 1
Sef(@)=fz+0+ j Ed;{f x () exp(— (4™} L‘,’m(irﬂ)dr, #23)
(o}

where f(z + 0)=lim f x p,(2)- By the asymptotic properties of LS it is easily seen
r—+0 ’

that the integral on the right hand side of (4.23) tends to 0as N — 0. Thus Sy fizi—
f(z+0)as N— 0. More generally, we can prove the following theorem.

Theorem 4.2. Assume that f % u(2) is compactly supported in T and drdr{(f x uAzh)
is piecewise continuous. Then Sy f(2)— fz+0)as N — 0.

Proof. The proof follows by iteration. We have
‘ n— n 1 2‘ (4.24‘
Snf2)= j fx u,.(z)cxp(——(l/4)r2) yn-1 LN(Er )dr. ;
0

If D stands for the operator 1/7 d/dr then we have the relation

1 (425)
(___ 1)"D"<Lgv +,,.(%r2>) = L’;v(_irz)

i n1(f x pic)) is 2
Using this to integrate by parts in (4.24) and remembeﬂigo)tzztl\? - oou;s in the case
continuous function of r we can prove that Syf(@) -~ f

of n= 1. The details are left to the reader.
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