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VARIATIONS ON A THEOREM OF COWLING AND PRICE WITH
APPLICATIONS TO NILPOTENT LIE GROUPS

SANJAY PARUI AND S. THANGAVELU

ABSTRACT. In this paper we prove a new version of Cowling—Price theorem for Fourier transform on R™
using which we formulate and prove an uncertainty principle for operators. This leads to an analogue
of Cowling—Price theorem for nilpotent Lie groups. We also prove an exact analogue of Cowling—Price
theorem for the Heisenberg group.

1. INTRODUCTION

Consider functions f on R™ which satisfy estimates of the form
f(@)] < ce | f@)] < c et

for some a,b > 0 where f is the Fourier transform of f defined by
(1.1) f© =@n% [ feiwida.
Rn

A classical theorem of Hardy [8] proved way back in 1933 states that for nontrivial f the product ab is
at most % and the maximum value is attained precisely when f(z) = ¢ e~2l#l”. Since ab > i implies
f = 0 the result of Hardy is an example of uncertainty principle for the Fourier transform. The case
ab =1 is considered as a characterisation of the Gaussian.

In 1983 Cowling and Price [5] obtained a generalization of Hardy’s theorem. Let us define ¢,(z) =
e~2*. Then we have

Theorem 1.1. (Cowling Price)For 1 < p,q < oo let f¢,1 € LP(R") and fqbb_l € LI(R"™). Then
f =0 whenever ab > %.

Note that p = ¢ = o is Hardy’s theorem with ab > i. The above result is true even if ab = i under
the added assumption that min(p, q) < co. A further generalization of Cowling—Price theorem for the
case ab = 1 has been recently obtained by Bonami et al [4].

Analogues of Hardy and Cowling—Price theorems have received considerable attention during the last
decade, see the monograph [16] and the references there. In this paper we are mainly concerned with
Cowling—Price theorem for the group Fourier transform on nilpotent Lie groups. Such a theorem can
be proved for the simplest case of the Heisenberg group.

Let H™ be the (2n + 1) dimensional Heisenberg group and let f(\), A € R\ {0} be the group Fourier
transform of a function f on H™. The role of the Gaussian ¢, will be played by the heat kernel q,(z,t)
associated to the sublaplacian on H™. Let H()\) = — A +A?|z|? be the scaled Hermite operator. Then
we have the following result.

Theorem 1.2. Let f be a function on H™ which satisfies fq;' € LP(H™), 1 < p < oo and F(n)ebHEN
is a bounded operator in L*>(R™) for every X € R\ {0}. Then f =0 whenever a < b.
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The case p = oo is Hardy’s theorem for the Heisenberg group which can be found in [14]. We are
interested in finding an analogue of the above result for stratified nilpotent groups. An examination
of the proof of the above theorem, given in section 3, reveals that we need explicit formula for the
heat kernel and good estimates. Due to the lack of such information in the general case, we look for
alternative versions of the Cowling—Price theorem.

1

Returning to the Euclidean case consider the Gaussian ¢,(z) for which qga = C¢p with b = 4. In

view of the Plancherel theorem we have
n [e’s}
%13 = %¢,(z)|* dz = C 205 ¢ 20t gy
ll 3

Rn =170

which gives the estimate
R o 1

(1.2) 10°¢all3 =C J] T <a]- + 5) (2a)~1°1 < € al(2b)l°l.

j=1

If a function f satisfies | f(z)| < C ¢q () then the derivatives of f satisfy the estimates
(1.3) 10 fll5 < C al(2a)~'*l.

Replacing the pointwise estimate |f(z)| < C ¢q(x) by the slightly weaker estimates (1.3) we get the
following uncertainty principle.

Theorem 1.3. Let f be a function on R™ such that |f(£)| < C e~YE1* | and for every a € N*, |02 |2 <
Cal(2a)71%l. Then f = 0 whenever ab > 1, when ab = 1, f(¢) = B(€)e~t€” where ¢ is a bounded
function.

We remark that Theorem 1.3 (case ab > 1) is equivalent to Theorem 1.1 (case p = 2,q = 00). Thus
Theorem 1.3 is another version of Cowling—Price theorem. Stated in this form it has natural extension
to the case of nilpotent Lie groups.

The group Fourier transform on a nilpotent Lie group G is operator valued. Given an irreducible
unitary representation 7 of G and a function f on G the operator f(r) = m(f) is realised on L2(R") for
a suitable n. In order to formulate an analogue of Theorem 1.3 we need such a result for operators.

Given a bounded linear operator T' on L?(R™) we define certain noncommutative derivations of T' by

(1.4) §;T = [4;,T), 6T =T, A7l

where [T, S] = T'S — ST is the commutator and A; = % +&5, Af = —% +¢&; are the annihilation and
creation operators. The above derivations were introduced by Mauceri [10] and the second author has
used them on several occasions, see [15, 16]. For multiindices a, 8 we define §*T and §°T iteratively.
Let H = —A + |z|? be the Hermite operator on R” which generates the semigroup e 4, ¢ > 0. We
denote by S; (g > 0) the set of all linear operators T on L?(R") such that tr(|7|P) < cc. For ¢ > 1, S,
endowed with the norm ||T||, := (tr(|T|‘1))% is a complete subalgebra of the set of all bounded operators
on L?(R™). In particular for ¢ = 2, S, is the Hilbert space of Hilbert—Schmidt operators on L?(R")
equipped with the inner product (T, S) = tr(T'S*). Let ||T||us be the norm of T' in this Hilbert space.
With these notations we are ready to state our operator analogue of Theorem 1.3.

Theorem 1.4. Let T € Sy satisfy the estimates
T'T < c o™, (675 (T*T) |3 < ¢ (o + B)lalH17

for some a,b > 0 for all o, € N™. Then T = 0 whenever a < 2tanh 2b.
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This theorem is an uncertainty principle for the Weyl transform for the following reason. As is well
known every T € S, is of the form W (f) for some f € L?(C"); that is to say

(1.5) T=W(f) = /Cn F2)n(2) dz

where 7(z) = m1(2,0), m; being the Schrédinger representation of H™ with parameter A = 1. The
following analogue of Cowling—Price theorem can be proved for the Weyl transform.

Theorem 1.5. Suppose f on C" satisfies fe?*I” € LP(C") and W(f)e"H € S,, where 1 < p,q < oo.
Then f = 0 whenever atanhb > % and min (p,q) < 0. If p=q = o0 then f =0 for atanhb > % and
f(z) = Ce 2" for atanhb = 1.
As an immediate corollary of Theorem 1.4 we obtain the following theorem for nilpotent Lie groups.

Theorem 1.6. Let G be a connected, simply connected nilpotent Lie group and let A be a cross section
for the generic coadjoint orbits parametrising the elements of G which are relevant for the Plancherel
theorem. For each \ € A let wy be the associated element of G. Let f € L' (\L2(G) satisfy the following
conditions:

(i) mA(f)*ma(f) < C e7?NH

(i) [16%8° (mr(£)*ma(H) s < C (@ + B)la(A)!*HA]
where a(A),b(A\) > 0. Then f =0 whenever a(\) < 2tanh 2b(X) for all A € A.

For the case of of the Heisenberg group it can be easily checked using the explicit formula for the
heat kernel that |f*(2)| < C ¢)(z) leads to the estimates

(1.6) 18987 (FO)" FO)II2s < C (a+ B)l(alA)=+121.

Thus condition (ii) in the above theorem is a suitable alternative which compensates for the absence of
a good formula for the heat kernel. In the case of the Heisenberg group we can replace the condition (i)
by f(A)*f(A) < Ce2HMN Note that e=*#(A) = §,(A) and so it is a natural candidate for measuring the
decay of f(\). As H()) is unitarily equivalent to |A|H the condition (i) is natural. The same comment
applies to the case of all step two groups as the scaled Hermite operator is related to the sublaplacian
even in that case. In the case of general nilpotent groups, there is no canonical way of measuring the
decay of wx(f). Therefore, we have used e ®H to measure the decay of the Fourier transform since
we don’t have any other choice.

We conclude this section with the following remarks. Different versions of Hardy’s theorem and
Cowling—Price theorem for nilpotent Lie groups have been proved in [1, 2, 3, 9] and [13]. In each paper
the conditions are in terms of the Hilbert—-Schmidt norm of 75 (f) and as such they are in some sense
results for the central variable. This remark is easily justified if one considers functions of the form
f(z,t) = g(2)h(t) on the Heisenberg group. The right analogue of Hardy’s theorem for H™ was proved
in [14] and in this paper we have tried to formulate such an analogue of Cowling—Price theorem.
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2. COWLING-PRICE ON R” REVISITED

As we have mentioned in the introduction we will show that Theorem 1.3 (case ab > } ) and Theorem
1.1 (case p = 2,q = oc) are equivalent. However, we first give an independent proof of Theorem 1.3.
We start with the following lemma which allows us to get pointwise estimates on 9% f when we have
estimates on ||8° f||».
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Lemma 2.1. Suppose we have
10°fII3 < C o!(2a)~1*
for every a € N*. Then we also have
*f©)P < C [y +m)'(2a)
j=1

for every a € N™.

Proof. In view of Sobolev embedding theorem

P fEI<C Y 10% fll2

1Bl<n

which gives the estimate

*f P < ¢ Y 10Tl

1BI<n
< C Z (2a)~ |a|+|5\)(a + B)!
|BI<n
n
< C [[(es +n)i(2a) .
j=1
O
In view of this lemma we only need to prove the following version of Theorem 1.3.
Theorem 2.2. The conclusion of Theorem 1.3 are valid if we replace the estimates on ||0%f]|> by
n
|8 f (& H a; 4+ n)!(2a)~ !
for every a € N™.
As an application of the above theorem we have the following corollary:
Corollary 2.3. Let f be a smooth function such that
19711} < Cal(2a)™1*!, 1 f(€)] < Ce™
where 1 < p < oo then f =0 for ab > 1.
Proof. Choose t > 0 such that a > a —t > J;. Consider the function Fy(z) = f * pi(z) where p(z) =
- 2
(47rt)’%e’%. Now
0°Fy(@)* < lpell 0% F11
< Cal(2a)71o
|Fy(z)| < Ceawrrll?
Therefore Fi(z) =0 as aﬁ > 1. Hence f =0 for ab> 1 O

Let us complete the proof of Theorem 2.2. We first consider the case ab > %. We make use of the

following lemma.
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Lemma 2.4. Let F(£) be a smooth function on R* which satisfies

0*FE)P” < C [](ey +n)!(2a)71
=1

j

for all « € N*. Then F extends to C"* as an entire function which satisfies |F({)| < C eb1S¢* for every
1

b> 1.

Proof. For b > ﬁ,

F(E+n) = an“

al

0°F
a'(é-) ‘ |n||a\

a

>

a

5 O] (-5 (2b) 5

IN

(20) 2 af
ST ||

al2

o 2 3 20p) 1l 3
< (Z °F(e) (Qb)a|> (Z (22 )

a

(a+n)! (1 al\ % ol?
C(Z al (rab) ) el

a

IN

= C(n, b)eb‘”‘Q.

This shows that F' can be extended as an entire function on C" and it satisfies
IF(E+in) < C(n,b)e"™".
Coming to the proof of the case ab > 1 choose b’ such that b > b’ > ;.. By Lemma 2.4 we have
1F(Q)] < C I3,

As we have |f(£)| < C e t€” and b < b we appeal to the following lemma to conclude that f = 0. O
Lemma 2.5. Let F({) be an entire function on C* which satisfies

IF(Q)] < C e, [F(§)] < G
for (€ C" and £ € R*. Then F =0 whenever a < b and F(() = Ce—¢” for a = 0.

We now take up the equality case. Clearly it is enough to prove it when n = 1. Indeed if we have the
result in the one dimensional case then by considering the function

F(&n) = f(€.60), £ = (&1,6,+&n1)
which satisfies the estimates
|F(€a)] < C(€)e™ 0¥ F(&,)* < C (k +n)!(2a)*
we obtain
F(&) = C(&,&)e ™.

But now the function C(¢£',&,) satisfies the same estimates as f on R* 1. By using induction we can
obtain f(&) = ¢(€)e t1€l* with ¢ bounded. For the one dimensional case using Lemma 2.4 f can be
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extended to C as an entire function of order at most 2, f can’t decay in R faster than its order. So its
order is 2. Since we have the estimate

1£(0)] < C e3P for all b > %

its type is ﬁ. Now we apply the following result of Pfannschmidt [11] to the entire function f 0.

Theorem 2.6. Let F' be an entire function of one variable ¢ of order p (p integer) and type b. Let

h(#) = lim sup

00

i0
log |F(re )|,0 € [0, o)
re

be its indicator and assume that
2
h( ZJ> <—bj=0,1,2,--- ,p—1.

Then F(¢) = P(¢)e """ where P(() is an entire function at most of minimal type of order p.

The following remark is in order. In Theorem 1.3 with ab = 7 we have concluded that fe =

¢(§)e‘b|§|2. It would be nice to say some thing about f itself. As ¢(¢) is an entire function we have

$&) = > aak®+én(8)

la|<N

where |¢n (€)| < ¢ (14 [£])N. This shows that, in view of the inversion formula

1) f@) = @m? [ eepgeteae

f can be written as

@ = Y car® | e + fu(a)

la|<N

where
Fn () = o (©)e e,

Finally it is an easy matter to prove the equivalence between Theorem 1.3 (case ab > i) and Theorem
1.1 (case p = 2,q = 00). Assuming Theorem 1.1 consider Theorem 1.3 with ab > i. Choose a’ < a but
satisfying a'b > % and consider f¢, . Expanding the Gaussian we have

[ 1f@ow @ do
> ([ e Celiep )

k=0

(Y4 i @ra ds | eat.

k=0 \|a|= k
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Under the hypothesis on ||0%f]|2 we get

/ f@)de (@) de
Rn

oE(x2)©)
B k=0 |a|:ka! a
¢ 3 (2

B k=0 a

< o0

Hence we can apply Theorem 1.1 to conclude that f = 0.
The above calculation shows that f¢; ! € L? implies the estimates

18° /13 < Cal(2a)~1

for every a € N* and therefore Theorem 1.3 implies Theorem 1.1 (p = 2,q = 0).
We also have the following implication: Theorem 2.2 implies Theorem 1.1 (p = 2,q = o¢). In view of

(2:2) 0*f(&) = (2m) % (=) [ e f(a)e® da
Rn
and by the Cauchy-Schwarz inequality, the assumption f¢;! € L? gives,
8 FOF < C ezt BlIz"all
< C al(2a)71e

Hence the hypothesis of Theorem 2.2 are satisfied.

3. AN UNCERTAINTY PRINCIPLE FOR OPERATORS

In this section we prove Theorem 1.4 and Theorem 1.5. In order to prove those results we need to use
several properties of the Weyl transform and special Hermite functions. We recall the relevant results
referring to [17, 18] for details.

The Weyl transform is closely related to the Fourier transform on the Heisenberg group H™. If 7 is
the Schrodinger representations on H™ with parameter \. Explicitly mx(2,t) : L?(R™) — L?(R") is the
unitary operator given by

(3.1) Az, 1)B(E) = NNV (E 1)

where ¢ € L2(R"), £ € R" and z = (z + iy). We define m)(z) = m(2,0) so that mx(z,t) = ey (2).
For f € L'(C") its Weyl transform Wy (f) is the bounded operator on L%(R") given by

(3.2) Wa(f)p = /@ F(2)ma(2)6 dz .

It is clear that [|[Wx(f)|| < ||f]|x and for f € L* N L3(C*), Wi(f) is Hilbert-Schmidt and we have the
Plancherel theorem

(53 WAl = o [ £GP d.

Thus W), is an isometric isomorphism between L?(C") and Ss. For f € L*(H™) set
P =[N
—0o0

to be the inverse Fourier transform of f in the t-variable. Then from the definition of f(}\) it follows
that f(A) = Wx(f*). For A = 1 we define W (z) = m(z) and W (f) = W1 (f).
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Given f € L' L?(C") we define the Fourier-Weyl transform of f as the operator valued function
f(u,v) on R?" given by

(3.4) fu,v) = W(u+ i)W ()W (u + iv)*.

As W(z) is a projective representation of C" it is easily seen that

(3.5) flu,v) = / e @v=vY) (g 4 i)W (z + iy) de dy.
c

A simple calculation using the definition shows that §;W (f) = W (M; f) and §;W (f) = W (M, f) where
M, f(2) = z;jf(2) and M, f(2) = z; f(2). By iteration we get 6*W (f) = W (z°f) and W (f) = W (2° f).
Taking derivatives in u,v and using these relations we get
829° f(u,v) = 2~ UeHBDW (4 + iv) (8 4 8)P (6 — )W (F)W (u + iv)*.
This identity shows that
(3.6) 1030 f (u,v)ll3s < C (a + B)lal**1P
whenever we have
(3.7) 18%6°W (f)llfis < C (a + B)lal*F 1AL,

The special Hermite functions ®,, are defined as follows. Let ®,(z), € R" be the Hermite functions
on R*. Then we define

B,(2) = (2m)F (W(2)3,,8,).

These functions form an orthonormal basis for L2(C") and they are expressible in terms of Laguerre
functions. For our purposes we only require the formula

(3.8) B, (2) = (27) (%) (—i%)ueiw.

We refer to [18] for these and more on special Hermite functions.
With these preparations we embark on a proof of Theorem 1.4. For T € S, we define T'(u,v) =
W (u+ iv)TW (u +iv)* so that T'(u,v) = f(u,v) if T = W(f). Let F be the function on 2" defined by

(3.9) F(u,v) = (T(u,v)*f(u,u)%,%) .

We claim that F'(u,v) satisfies the following two properties:
(i) F(u,v) extends to C*" as an entire function which satisfies the estimate |F(¢)| < Ce® /3¢ for
some a; < (1 —e™*),
(il) F(u,v) < C e~ 3(=e)(ul+*)
Assuming this claim for a moment we appeal to the following lemma.

Lemma 3.1. Let F(¢) be an entire function on C* which satisfies |F ()| < C elS¢” ¢ e C and
|F(&)| < C (1+|¢)2)me=bEl” ¢ € R". Then F = 0 whenever a < b.

The lemma shows that F' = 0 whenever a; < %(1 —e™*). Since a < 2tanh2b we have coth 2b < %
and so we can choose by and by such that coth2b < 4b; < 4by < % This gives bs < % and 1+ 4b; >
1+ coth2b = =2z or 755 < (1 —e™*). In our claim we can take a; = - so that F' = 0.

Let S = T*T. Then it follows that S(u,v) = T'(u,v)*T (u,v). If S = W(f), f € L2(C") then we have

Fu,v) = (W(u+iv)W(f)W(u+ iv)*®g, Do)

/ i v=u) £ e el HY®) gy gy
R2n

(3.10)
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Hence F'(u,v) = 0 implies f(z,y) = 0 proving the theorem as S =T*T = W (f) = 0.
It remains to prove the claim with a; = ﬁ where b; is chosen as above. As we have indicated
earlier the estimates on §*0°S give the estimates

(3.11) 1505 Fu, ) o < C (o + B)lal*+19
for all @, 8 € N* and hence
(3.12) 10208 F (u,v)|3 < C (a + B)lal*+ /A

for all a, 8 € N*.
Since S = W (f) using the Plancherel theorem we have the estimates

/ |22y £ (,y) Pdz dy < C(a + B)lall*IHAD.
RZn
We claim that

(3.13) / |f (@, ) Pe> 1=+ da dy < oo
R2n

for any by < % To see this consider the series

= 1 2 k()2 2\k
(314 351 L @8 e+ ) ey

which converges as long as by < % as in section 2.
Now consider F'(u,v) which is given by

F(u,v) = f(x,y)ei(w'”_y'“)e_%(‘$‘2+‘y|2) dz dy.
R2n
By Hdlder’s inequality
(3.15) 0208 F(u,v)|]* < C / ey Pe =D dp dy
R n

which gives the estimate

1\ —(al+18D
(3.16) 0308 F(u,v)]> < C (a + ) (z (b2 ; z)) -

Appealing to Lemma 2.3 we see that F(u,v) extends to an entire function of type as where as =
Since as < a1 we get |[F(¢)| < C em3¢1* which proves the claim (i).
The second claim is proved using the bound T*T < C e 2*H . We have

_1
1+4bs "

Fu,v) = (W(u+iv)T*TW (u+iv)*®g, ®o)
(3.17) < C (W(u+iv)e W (u +iv)*®g, ) .
We now expand W (u + iv)*®¢ = W (u — iv)®¢ in terms of ®,:
(3.18) W (u+iv)*®o = (2m) 2 ) o, (u — iv) .
Since
e, = o~ 2Clul) G,
we have, using Parseval’s formula for Hermite expansions,

(3.19) F(u,v) < CZ e~ 2@+ B, (u — iv)[2.
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Now using the explicit formula for &, , we get
< et L (Lo ey} bt
(3.20) Flu,n)<C Y e (Gl + o)) e

which gives
(3.21) F(u,v) < C e~ 3(1=e™)(ul*+]v/*)

as desired. This completes the proof of Theorem 1.4.
Let f be a function in L?(C") which is invariant under the action on T". Then f is called polyradial
and it has expansion

f(z) = Z(f: q)uu)q)uu (2)-

I

Let d be a function on N. For each j € N we define the difference operators Aj and A} by
(AT d)(p) = d(p + e5) — d(p), (A; d) () = d(p) — d(p — e;)-
For multi-indices «, 8 € N we define
A% = (MDA (AN AL = (AT)PH(AG)P - (D).

With these notations we will prove the following corollary of Theorem 1.4 which can be considered as
Cowling—Price theorem for eigenfunction expansion of polyradial functions.

Corollary 3.2. Let f be a polyradial function which is in L*(C"), C(p) = (f, @) and d(u) = |C(p)|?,
w € N, If C(u) satisfy the following conditions:
(i) |C(w)| < Ceb@Eultm)

' 2
(i) 3 E‘,ﬁiz§; ‘(Aﬁﬂfﬁd) (#)‘ < Cla + B)12-(al+8D) gllal+8)
w

where a,b > 0, then f = 0 whenever a < 2tanh 2b.

Proof. Since f is polyradial

W(f)e = Z(fa (I)uu)(¢a ‘I’u)@u-

I

Using the formulae
1 . 1
APy = (2115 +2)2 Rpupe; AjPp = (204))2 By

it is easy to see that

-

(5a3ﬂw(f)*w(f)) B, = (~1)a+iBIg =5 (%) ’ (Aéaid) (1) ams.

Then using the above conditions we will get
W(f)*W(f) < Ce M, 116°5" (W (£)* W (1) IIs < Cla+ Bl 2.

So by Theorem 1.4, W(f) = 0 for a < 2tanh 2b and hence f = 0. O
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4. COWLING-PRICE THEOREM FOR HEISENBERG
GROUPS

In this section we prove Theorem 1.2 which is an analogue of Cowling—Price theorem for the Heisen-
berg group H™. Before going to the proof of Theorem 1.2, let us prove the following theorem which
can be considered as Cowling—Price theorem for Weyl transform and Theorem 1.5 will be proved as a
special case A = 1.

Theorem 4.1. Let fe?lI” € LP(C") and Wy(f)etHON € S, where 1 < p,q < 0co. Then f = 0
a.e. whenever a% > % and min(p,q) < co. Ifp = q = oo then f = 0 for aw > L oand

r
f(z) = Ce =" for glanhbd — 1

Proof. Let T™ denotes the subgroup of the unitary group U(n) consisting of diagonal matrices. Then
each element of T" can be written in the form e? = (e¥1, %2 ... ¢ir) 50 that T™ can be identified
with n-torus. The action of the n-torus on C" is given by e¥ - z = (e#%12;,e¥22, - -- € 2,,). Let m be
an n-tuple of integers. We say g is m—homogeneous if g(e? - z) = e™g(z) for all §. It is easy to see
that when g is m-homogeneous and h is k—homogeneous then (g, h) = 0 unless m = k. Since fe“‘z‘2 is
in LP(C™) it follows that fmel?” € LP(C™) where

(4.1) fm(2) = f(e? - z)e im0 qdp.
']I‘n

Hence

Wix(fm) - f(ew -z)ﬂx(z)e*im'a do

= f(e - 2)ma(e~?2)e ™Y d
'Il"n
= [ @ WA @)™ a8

where py () is a unitary operator on L?(R™) such that

ma(€? - 2) = pa(8)*ma(2) ur (6).-

We refer to [17] for several properties of py(6). Using the above expression for Wy (f,,) we get

IMAGnBal < [ In@ W@l a6

4.2 = [ Immee. .
Now Ej = span of {®), : |a| = k} are invariant under the action of u(6). Therefore,
(43) IO = 3 Cly(0)2)

|8]=k

for all @ € T™. As px(6) is a unitary operator
(1.4 S @) =1
|B1=k
for all § € T™. Since Wy(f)e?HN € &, it is bounded and hence there exists C' > 0 such that

IWa(f)®A]|2 < Ce PClel+m)Al for all o € N*. Now using these estimates on Wy (f) and applying
the Cauchy-Schwarz inequality we get

E4+n—-1) _
‘ A2 < ( 2b(2k+n)|A|
ws) wam@n < Lt
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for all ®) with |a| = k. So for all a with |a| =k

| (fm; o a+m) | = | (WA(fm)(I)/\ <I>3+m) |

< IWA(Fn) @512
L(k+1n) _portn)n
< “\hvT ) n
S O TET)©
< anne—b(2k+n)|)\\
(4.6) < O, H ((2% n l)ne—b(Zai+1)|)\\) ‘
i=1

Let Ff stand for the symplectic Fourier transform of a function f in C* defined by
(4.7) Faf(z) = (2m)~ / Flz —w)eizSED gy

F is related to the ordinary Fourier transform by Fy f(z) = f (—Z%z) As fm is m-homogeneous and

®,p is (B — a)-homogeneous expanding fn, we get

Fn(2) =D (fm> 5.54m)®3,51m-

B
As .7:,\(1)(1 at+m — ( )|m|(1)g a+m>
(4-8) -7:/\fm(z) = Z( )lml (fm’ a, a+m) @3 at+m:*

For a proof of this we refer to [17]. The functions @é a+m are expressible as products of one dimensional
Laguerre functions and so without loss of generality we can assume that n = 1 and m is an integer.
Explicit formula for ®3 , .. is given as follows

(ﬁ?,k—i-m () = )‘%(I)k,k—i-m(\/XZ) for A > 0,
@2,k+m(2) = |)\|%6k,k+m( [Mz) for A < 0

where
1
1 f —1 m F(k‘ + 1) 2
@ = 2 2 e _ mAHm
i) = @) () (o) o0 )
and ¢}'(z) are the Laguerre functions on C* defined by

1 1 2
o) = I (5laP ) e

Therefore
< Z 2k‘+1 |}\|efb(2k+1)|/\\ |(I)’\, +m( )|
k=0
0 B Tk+1) \?
< m 1 b(2k+m—+1) || m
< CnmOl" 32k m DA )

-

m [ —2b(2k+m+1 T(k+1) m 2\
< Com(N)2] (;((2k+m+1)|/\|)46 bEkFmA1)1 (m) (Br'A(2)) )

< CumA) (L + [A||2[2)le (32 tanh bz

for some positive integer [ > 0. See page 93 of [16].
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Using the relation

Fafm(2) = fm(=iz2)

we have

tnnil b |z|2 )

|fn(2)] < Crm W) + |22 e

So by the Cowling—Price theorem for Fourier transform we conclude the following:
Case 1. if p < 00,q < oo then for atanhb)‘ > %, fm =0 for all m and hence f =0 a.e.

Case 2. if p = 00, ¢ < oo then for a‘a“;‘b’\ > 1, fm =0 and for a‘a“hb’\ L fm(2) = Crme=" for all
m. Since fp, is m—homogeneous C,, = 0 except m = 0 and hence f(z) = ( ) = Ce~9#I* which yields
Wi(f) = Ce *H#N) | But this is not compatible with the condition Wy (f)e?H ) S and hence f =0
a.e.

Case 3. if p = ¢ = oo then fn, = 0 for all m whenever a22222 > 1 and for q®22002 = 1 arguing as
before f(z) = fo(z) = Ce—al=l”, O

The special Hermite operator Ly is defined by the relation

L(e™f(2)) = eMLxf(2)

where L is the sublaplacian on the Heisenberg group. This operator plays an important role in harmonic
analysis and we refer [16, 18] for details.

Corollary 4.2. If f(¢})~! € LP(C") and W(f)e!#N € S,, 1 < p,q < 0o, where g is the heat kernel
corresponding to the special Hermite operator, then f = 0 a.e. whenever a < b and min(p,q) < oco. If
p=gq=o0 then f =0 fora <b and f(z) = C(\)q)(z) for a=b.

Proof. The explicit formula for the heat kernel ¢} corresponding to the special Hermite operator is
n

A 1 2
A — (47)" " —zA(cotha))|z| .
4a(2) = (4m) sinhxa) ©

Since a < b and tanh(-) is an increasing function, tanh a|A| < tanh b|A|. So we will get the desired result
applying Theorem 4.1. O

To prove the Theorem 1.2 let g(z,t) = ¢, *(2,t) f(z,t). Then g € LP(H"). Using the estimate
|ga(2,t)| < C a™ ™! e—a (1212 +1t])

for some C, A > 0 and the condition g € LP(H™) it is easy to see that

(4.9) P = / €M ga (2, 8)g(2,1) dt
— 00
can be extended as a holomorphic function in the strip |[SA| < % of the complex plane.
For p = oo,
o0
@ < 19 )loo / lg(z, 0)]dt
—0
< lg(z,)llooe™ 21
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For1<p<2,
PO < [ laGolseold
(L ) ([neora)
< (Jeore) (L)
< o ([ () ) ()
< ook ([ pgtanp dt)

When 2 < p < 00, 1 < p' < 2 write 1% = ¥ 4+ 5% for some 0 < v < 1. Since [|ga(2,-)[1 < e 4l

and ||ga(z,)]|2 < e‘ﬁ|z|2, applying Holder’s inequality with the pair of conjugate exponents % and

14
ﬁ, we get

‘ 2

/ da(2, )P dt / 190 (2, 8)["7 |qa (2, 8)| A7 dt

— 0 -0
1-v)p
laa(z, I llga(z, 157
which gives ||g.(-, )|y < e —4:l#". Therefore fressl*I” € LP(C")for 1 < p < oco. Also we have
Wi (f)e!HN) = F(X)ebHD js a bounded operator on L?(R") for every A € R\ 0.
Since a < b, we can choose § > 0 such that a(e? + e=%%) < 2b. Now for 0 < A < &

ebr —e0A 2b\ 26\
tanh bA = P > > Y > 55 e, > al.
Using Theorem 4.1 we can conclude that f» =0 for 0 < A < § and hence f* =0 for all A as f* can be

extended to a holomorphic function in the strip |SA| < %. So f =0 a.e.

IN

Remark 4.3. We can assume f(A\)et#X) € S,, 1 < ¢ < oo in Theorem 1.2 as every member in S, is
also a bounded operator.
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