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THE HEAT KERNEL TRANSFORM FOR THE HEISENBERG
GROUP

BERNHARD KROTZ, SUNDARAM THANGAVELU AND YUAN XU

ABSTRACT. The heat kernel transform H; is studied for the Heisenberg group
in detail. The main result shows that the image of H: is a direct sum of two
weighted Bergman spaces, in contrast to the classical case of R and compact
symmetric spaces, and the weight functions are found to be (surprisingly) not
non-negative.

1. INTRODUCTION

Over the last decade one could observe interesting developments on the heat ker-
nel transform for various types of homogeneous Riemannian manifolds X. Complete
results have been obtained for compact Lie groups (cf. [2, B]) and, more generally,
for compact symmetric spaces (cf. [6]). For non-compact spaces X the situation
seems to be more complicated and little research has been undertaken in this di-
rection: There is the well understood Euclidean case (e.g. X = R", c¢f. [1]) and
some partial results have been obtained for non-compact Riemannian symmetric
spaces (cf. [B]). The objective of this paper is to give a complete and self-contained
discussion for the Heisenberg group.

Our concern is with the (2n+1)-dimensional Heisenberg group H and its universal
complexification H¢. For t > 0 we write k; : H — R™T for the heat kernel on H.
Contemplating on the spectral resolution of k¢, it is not hard to see that k; admits
an analytic continuation to a holomorphic function k7 : Hg — C. Consequently,
for every f € L?(H) the convolution f * k; continues holomorphically to Hc and we
obtain a map

Hy: L*(H) — O(Hc), f— (f*k)™.

We refer to ‘H; as the heat kernel transform on H with parameter ¢ > 0. The map
H; is injective, left H-equivariant and becomes continuous if O(Hg) is equipped
with its natural Fréchet topology of compact convergence. It follows that im H; is
a reproducing kernel Hilbert space. Standard abstract arguments readily yield an
expression for the kernel function in terms of k3, (see (3.1.2) below).

In all known cases (e.g. X a compact symmetric space or X = R™) the image
of the heat kernel transform has been a weighted Bergman space X¢ with regard
to a postive weight function. It came to our surprise that the Heisenberg group
deviates from this pattern. The main result of this paper asserts that

(1.1) imH,; = B, (Hc) @ B; (Hc)
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is a direct sum of two weighted Bergman spaces on Hc. Most interestingly, the
weight functions W= for B (Hc) have an oscillatory nature and attain positive and
negative values. This fact forces the use of a certain exhaustion Hc = Jz., Kr to
define the inner product a suitable dense subspace Vi* (Hc) of B (Hc) by

(f,g) = Jim /K fRT@WE()dz  (f.g € VEH)),

quite reminiscent to the familiar notion of principal value.

Let us now describe the contents of this paper in more detail. In Section 2 we
introduce our notation and recall some facts on the heat kernel k; on H and its
analytic continuation to H¢. Subsequently in Section 3 we define the heat kernel
transform and give a discussion of its general nature.

For the remainder it is useful to identify H with R?"™ x R. In Section 4 we
introduce for each spectral parameter A € R* a partial heat kernel transform

H} : L*(R*) — O(C*)

and show that im H} is a weighted Bergman space By (C?") associated to an ex-
plicitly given positive weight function W : C?* — R2". With these results we
prove in Section 5 that there is a natural left H-equivariant equivalence

52
(1.2) L2(H) ~ / BMC2) 21X g .
RX
Moreover, within the identification (I2) the heat kernel transform H; becomes the
diagonal operator (H})s.

In Section 6 we combine all previously obtained results to establish our main
result [CI). It turns out that the global weight functions W admit an integral
representation in terms of the partial weight functions W;*. Finally, in the appendix
we derive explicit expansions of Wti by Hermite polynomials and explain their
oscillatory behavior.

Acknowledgement: We would like to express our sincere gratitude to a referee
who read the manuscript very carefully and pointed out several inaccuracies, gaps
and mistakes.

2. THE HEAT KERNEL ON THE HEISENBERG GROUP

2.1. Notation. Let h denote the (2n + 1)-dimensional Heisenberg algebra with
generators, say,

X1, X Uy U Z
and relations [X;,U;] = Z. In the sequel we will often identify h with R?"+! =
R™ x R™ x R. For that let (x,u,{) with x = (z1,...,2,) and u = (u1,...,u,)
denote the canonical coordinates on R?"+!. Then the map

n n
R —p, (x,u,) = Y 2 X+ > wU; +6Z
j=1 j=1
is a linear isomorphism providing us with suitable coordinates for b.

Let H denote a simply connected Lie group with Lie algebra b, the Heisenberg
group. We will identify H with h through the exponential function exp = id : h — HL.
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As H is two step, the Baker-Campbell-Hausdorff formula provides the group law

(x,u,ﬁ)(x’,u’,f/) = (X—i—x’,u—i—u’,%(x-u/ —U'X/)+§+§/).

Here x-u = >." | xju;, as usual, denotes the standard pairing on R". We notice

Jj=1
in particular that

(2.1.1) (x,u,£) ! = (—x, —u, —£).

Write dh for a Haar measure on H. We can and will normalize dh in such a way
that it coincides with the product of Lebesgue measures, i.e.

/f(h)dhz/ f(x,u,&) dxdudg
H R2n+1

for all f € C.(H).

Write H¢ for the universal complexification of H. Of course we can identify H¢
with C?"*! and we will often do so. We will write (z, w, () for the coordinates on
C?+! where z = x +iy, w =u+iv and { = & +in.

For any simply connected nilpotent Lie group H the polar mapping

Hxbh— He, (h,X)— hexp(iX)
is a homeomorphism. Furthermore the Haar measure on H¢ decomposes as

(2.1.2) . f(9) dgz/H/hf(hexp(iX)) dX dh

for all f € C.(Hc).
For the Heisenberg group H, the polar mapping is explicitly given by

(06, €), (0, €)) v (x4 i w ot i, (o = x) + 64 i€)

where h = (x,u,¢) and X = (x/,u’,¢’). In particular the Haar measure on H¢ can
be chosen as the product of Lebesgue measures dx dy dudv d€ dn.
For integrable functions f,g on H we define their convolution by

(fxg)(z /f g(h™'x)dh (x eH).
In coordinates this is explicitly given by

(e = [ g (o =€) . 6)) d e

2.2. The heat kernel. Write U/(h) for the universal enveloping algebra of h and
define the Laplace element in U(h) by

2 2 2
L= X7+> U +2°.
j=1 j=1
For X € b we write X for the left invariant vector field on H, i.e.,

(X)) = 2| fhexp(tx)

for f a function on H which is differentiable at h € H. Write p for the right regular
representation of H on L?(H), i.e.

(p(h)f)(x) = f(zh)
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for h,r € H and f € L?(H). With dp the derived representation we then have
dp(X) = X for all X € §. In particular if

Azzn:Xerzn:UerZ?
j=1 j=1

denotes the Laplace operator on H, then dp(L) = A.
Set R = (0, 00). Our concern will be with the heat equation on H x R*

Oru(h,t) = Au(h,t)

for appropriate functions u(h,t) on H x R*. The fundamental solution is given by
the heat kernel k;(h) which can be computed as follows:

, A "

20 klow g = [ (i) e bt g
with ¢, = (47)~™ (this follows from a slight modification of [, Theorem 2.8.1].) It
satisfies the usual property of k;xk; = ko (see, for example, [7, (2.87) and Corollary
2.3.4]).

If f is an analytic function on H which holomorphically extends to Hc, then we
write f~ for this holomorphic extension. The explicit formula (2.2.1) now implies
that k; has a holomorphic continuation to H¢ which is given by

222)  K(mwO=e [P (‘ A—) e BAcohNmztww) gy

R sinh A\t
for (z,w,() € C*"*! = He. It follows from (2.1.1) and (2.2.2) that
(2.2.3) EX(z) =k (27 (2 €Hg).
Furthermore, as k; > 0 is real, we record
(2.2.4) @ =k (z€H)

Here, as usual, z — Z denotes the complex conjugation of H¢ with respect to the
real form H.

3. THE HEAT KERNEL TRANSFORM

3.1. Definition and basic properties. Let C' C H¢ be a compact subset. Then
it follows from (2.2.2) that

(3.1.1) sup/ |k (h2) 2 dh < 0o

zeC JH
Fix t > 0. Then (3.1.1) implies that f  k; has an analytic continuation to Hg for
all f € L?(H). In particular we obtain a linear map

My LP(H) — O(Hg), f (f *ke)™; He(f)(2) = s F(h)kE (W= z) dh

We will call H; the heat kernel transform.

In the sequel we wish to consider O(Hg) as a Fréchet space — the topology being
the one of compact convergence. If h € H and f is a function on H or Hg, then we
write 7(h)f = f(h~!). The following properties of H; are immediate:

e H, is continuous (because of (3.1.1))
e H; is injective (note that H;(f) = ' f and A is a negative definite oper-
ator).
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o H,; is H-equivariant, i.e. Hyo7(h) = 7(h)oH, for all h € H (this is a general
fact for the convolution on a locally compact group).

We will endow imH; with the Hilbert topology induced from L?(H). As H;
is continuous we see that im’H; is an H-invariant Hilbert space of holomorphic
functions on H¢. As such imH; has continuous point evaluations, i.e. for all
z € Hc the map

imH, - C, f f(2)
is continuous. Hence f(z) = (f,K!) for a unique element K! € imH;. We then
obtain a positive definite kernel function

K':He x He — C; K'(z,w) = (K%, KL) = KL, (2)
which is holomorphic in the first and anti-holomorphic in the second variable. More-
over, the H-invariance of im H; translates into Kf(hz, hw) = K!(z,w) for all h € H
and z,w € Hc.

Let us compute K!. Fix w € H¢. Let g € imH;. Then g = Hy(f) for some
f € L*(H) and
(g2JCh) = glw) = Hal()w) = (F k)" (w) = [ SO (0 w)d
H

As this holds for all g € im H;, we thus conclude that

Hi ' (KL)(h) = ki (h=w) = k(@ 'h) (b € H)

where for the last equality we used the facts (2.2.3-4). From this we now get for all
w, z € Hc that

(z) = Ml ) ) = [ k@ gk ()

= / k(h)kr (b 'w12) dh
H

= (ks x k)~ (W t2)

= k5 (w '2).
We have thus shown that the kernel function is given by
(3.1.2) K (z,w) = k3, (@ '2) (z,w € He).

3.2. General remarks on integral transforms and Bergman spaces. The
setup for this Section is as follows: We let N be a positive integer and G be a
Lie group which acts on RY in a measure preserving manner. We assume that the
action of G extends to an action on C by measure preserving biholomorphisms.
Our next data is a continuous (integral) transform

®: L*(RN) — o(CN)

which we assume to be G-equivariant. In this way im ® becomes a G-invariant
Hilbert space of holomorphic functions on CY. We write K : CV x CV — C for the
corresponding kernel function.

Example 3.1. (a) The heat kernel transform H; : L*(H) — O(Hc) meets the
general assumptions from above. In fact, for N = 2n + 1 we may identify H with
R and H¢ with CV. Furthermore the group G = H acts from the left on H = RY
and Hc = C¥ in a measure preserving manner.
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(b) The partial heat kernel transforms H}' : L*(R?") — O(C?") introduced in
Section 4 below satisfy the general assumptions made above. O

For the remainder we will assume that im ® = B(CY, W) is a weighted Bergman
space for some measurable weight function W : CV — R, i.e.,

B(CY, W) = {f € O(C"): /«:N [f(2)] W (2)| dz < oo}

Hilbert structure given by

(3.2.1) (f.9) = g f(2)g(2)W (2)dz

As the action of G on B(CN,W) is unitary, the weight function W should be
left G-invariant, i.e.
(3.2.2) W(g.z) = W(2) (geG,zeCh).

What we cannot expect however is that W is non-negative. It might then be
a surprise that (3.2.1) still defines a Hilbert structure. As the following example
shows, this is a phenomenon which already appears in one variable.

Example 3.2. We consider the unit disk D = {z € C: |z| < 1}. For a measurable
subset A C D write 14 for its characteristic function. Define a weight function W
on D by

W= <<y = Lai<dy -
With W we form the weighted Bergman space

BAD.W) = {7 € 0) - [ 1) W) dedy < )
and endow it with the sesquilinear bracket
(19) = [ 150 W) dady.
D

We will show that (B2(D,W),(-,-)) is a Hilbert space. For that we first ob-
serve that {2"},en, is an orthogonal system in B?(D,W). This is because W is
rotationally invariant. Next we compute

1 3
(z",2") = 27T/ P2t gy — 27T/ 2t dy
3 0
2n+1
1
1—-{ = 0
6"
for any n € No. Thus if f =Y a,2" € B*(D,W) is an arbitrary element, then
2n+1
1
1-1 < >0
O

and (f, f) = 0 if and only if f = 0. This shows that (-,-) defines a pre Hilbert
structure on B2(D, W). Next notice that

(3.2.2) /D PR W) dody = Janl?

-

T
n+1

n—+1

(3.2.1) )= lanl?—

T
n+1"
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It follows from identiies (B2Z1) and BZ2) that (-, -) and the Hilbert bracket (f|g) =
[ f(2)g(z) |W(2)|dzdy induce equivalent norms. Hence (B2(D,W),(-,-)) is a
Hilbert space.

Finally we note that W is uniquely characterized by the Hilbert norm on B2(D, W),
ie. B2(D,W) = B%(D,W') if and only if W = W’ almost everywhere (use Stone-
Weierstraf). O

We conclude this section with some general remarks on how to obtain the weight
function W. Define a subspace of im ® by

(im @) = span{k, : z € RV} .
Since a holomorphic function on CV which vanishes on RY is identically zero, we

conclude that (im ®)g is dense in im ®. Hence im ® = B(CN, W) will hold precisely
if

(3.2.3) K(z,2') = Ky, Ky) = [cN Ko (2)Kg(2)W (2) dz

for all z,2" € RY. The formula (3.2.3) is actually quite helpful and will be applied
in Section 4 below.

4. THE A-TWISTED HEAT-KERNEL TRANSFORM

For A € R, X\ # 0, we will introduce a A-twisted heat kernel transform H} :
L?(R?") — O(C?"). We will show that the image of H} is a weighted Bergman
space B (C?™) on C?". Further we provide an inversion formula for H}.

The results of this section are the building blocks for our general discussion of
the heat kernel transform H; : L?(H) — O(Hc) in the following sections.

4.1. Notation. Let A € R, A # 0. For suitable functions F' on H we define a
function F* on R?" by

FAx,u) = / eMNF(x,u,€)dE .
R

For f,g € L*(R?™) the \-twisted convolution is defined by

(Frag)cu) = [ f(,0)g(x—x/,u—u)e 26w gy du.
R2n
Notice that we have for Schwartz functions F, G € S(H) = S(R?*"*1) that
(4.1.1) (FxG)» = F*x\ G*.

Let Agup = dp (Z?:l (XJQ + }32)) denote the sublaplacian on H. The heat kernel

for Agyp is denoted by p; and its inverse Fourier transform in the central variable
is explicitly given by
(4 1 2) p)\(x u) e L n 67% coth(At)(|x|?+|ul?)

o A " \ sinh tA

with ¢, = (4m)™".
For all f € L2(R?") the twisted convolution f ) p; has an analytic continuation
to C?". In particular, there is a A-twisted heat kernel transform

HY : LX(R?™) — O(C*"), f (f*app)™.
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In coordinates we have

H)(f)(z,w) = /Rz F )Nz — X, w — ! )e T FNTWID) gy gy

We define a unitary representation 7* of R?" on L?(R?") by
(TA (au b)f) (Xu U—) - 67%(&“7[}){)][(}( —a,u— b)

for (a,b) € R?, f € L?(R?") and (x,u) € R?". Likewise 7* defines an action of
R?" on O(C?") via

(P (@, b)f)(zw) = ¢ 2@ P (5 —a,w —b)
where (a,b) € R?", f € O(C*") and (z,w) € C?".

As for functions F,G € L*(H) we have 7(h)F x G = 7(h)(F x G) for all h € H,
it is immediate from (@) that H; becomes R*"-equivariant, i.e

(4.1.3) H(m(a,b)f) = 7%(a,b)(H(f))
for all (a,b) € R?" and f € L?(R*").

Remark 4.1. For the proofs in the sequel it is notationally convenient to prove the
assertions for the “essential case” A = 1 only. Whenever we do so we will use a
simplified notation: we write f x g instead of f %1 g for the 1-twisted convolution;
further we will drop all sub- and superscripts involving A = 1, i.e. p} becomes py,
H} becomes H; etc.

4.2. Determination of the weight function. Our objective is to find a non-
negative weight function W on C?" such that

(4.2.1) / |H)(f)(z, W)W (2, w) dz dw = |f(x,u)|? dx du
C2n R2n

for all f € L*(R?*").
Proposition 4.1. A weight function W\ which satisfies BZ) is given by
(4.2.2) WM x + iy, u+iv) = 47AEY=VX)p0 9y 2v).

Remark 4.2. The weight function W} is unique in the sense that is the unique
measurable function W} : C?" — Rsq which satisfies (@ZT). This will be shown
in Lemma B below.

Proof. We restrict our attention to the case A = 1. As mentioned earlier we will
write now p; and W; in place of p} and W)}, respectively, and write f x g for
the 1—twisted convolution of f and ¢g. Via H; we can transfer the Hilbert space
structure of L?(R?") to im H; and make it into Hilbert space of holomorphic func-
tions. Write K*(z,w;z’,w’) for the corresponding reproducing kernel. Arguing as
in Subsection 3.2, the inner product (-,-); on the image is uniquely determined by
the equality

(4'2'3) Kt(avb;alvbl) = <K€a,b)’K€a’,b’)>t
for all real pairs (a, b), (a’,b’) € R™ x R".

As the heat kernel transform f — Hy(f) = (f x p:)™~ commutes with the twisted
translation (see equation 13))), we may assume (a’,b’) = 0in @Z3)). As pixp; =
pat, arguing as in Subsection 3.1 readily yields

a-w—b-z)

K{ap)(2,w) = pau(z —a,w — b)e 3
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In particular, K(tO 0) = P2t and Kt(a,b,0,0) = py(a,b). Thus EZJ) translates
into

pot(a,b) = / / pot(z —a,w — b)e_%(a'w_b'z)pgt(z, W)Wy (z, w) dz dw .
This is established in Lemma below. O
Lemma 4.2. For a,b € R™ we have

/ / P32 +a,w + b)e’T BV P Dp) (2 W)W (2, w) dzdw = p)(a, b).

Proof. We will prove the assertion for A = 1. Further, by the product nature of the
functions involved, we may assume in addition that n = 1.
Expanding out and simplifying we have

1

por(z 4 a+ iy, u+ b+ iv)py (x + iy, u+ ) = (47) " %(sinh 2¢) "2~ z(coth 26)(2*+u?)
. e*%(coth 2t)(a2+b2)e%(coth 2t)(y2+v2)ef 1 (coth 2t) (a(z+iy)+b(utiv)) '
We can combine the terms e~ 2(coth20(@+u®) 44
e(uyf'um) — e(coth 2t) (uy tanh(2¢)—zv tanh(2t))

to get

pot(x + a+ iy, u+ b+ iv)pa(z + ty,u + iv)e(“y_”)
_ (47_072 (sinh 2t>7267%(60th 2t)(a2+b2)e%(coth 2t+tanh 2t) (y2+v?)

e~ 3 (coth 2t) ((m-i—'u tanh(2t))%+(u—y tanh(2t))? ) e~ 3 (coth 2t) (a(z+iy)+b(utiv)) )

Using the identity tanh 2¢ 4 coth 2¢t = 2 coth 4¢ and simplifying further we get

i (aw—bz)

par(z + a,w + b)e2
— 4_27r_3(sinh 2t)—36—% coth 2t(a2+b2)e(coth 4t—coth 2t) (y%+v?)

pot(z, w)Wi(z,w)

. efé(coth 2t)((m+%+tanh(2t)v)2+(u+%7y tanh(2t))2)67%(coth 2t)(ay+bv)e%(aufbx)7

where z = x + iy and w = u + .
First consider the integral

/ 6% (au—bz)e—%(coth 2t)((m+%+’u tanh(2t))2+(u+%—y tanh(2t))2) dz du
R2
— e% (tanh 2t) (ay+bv) / e% (au—bm)e— 1 (coth 2t) (22 +u?) du du
R2
_ 27T(tanh 215)6% (tanh 2t) (ay+bv) ,— 1(tanh 2t)(a®+b) )

Up to an explicit factor the remaining integral is

/ e—%(coth 2t—tanh 2t)(ay+bv)e—(coth 2t—coth 4t) (y%+v?) dy dv.
R2

As coth2t — tanh 2t = 2(sinh4¢)~! and coth 2t — coth4t = (sinh4¢)~! the above
integral reduces to

/ e—i(sinh 4t)71(ay+b'u)e—(sinh 4t) "M (y2+0?) dy dv = W(Sinh 4t)e—i(sinh 4t)71(a2+b2)'
R2
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Combining results yields
/ pot(z + a,w + b)es () o W)Wy (2, w) dz dw
(C2

= 877! (sinh 2¢) 73 (tanh 2t) (sinh 4t)e~F (Coth 2 tanh 2) (0% o = (sinh 407 (a1
Finally using the identities coth 2t 4+ tanh 2t = 2 coth 4t and coth 4t + (sinh 4¢)~! =
coth 2t and simplifying we get

/ pot(z + a,w + b)es () po W)Wy (2, w) dz dw
C2
1
_ —ﬂ_(SiHh 215)7167% coth 2t(a®+b%) _ pola,b).

This proves the lemma. (I

4.3. The twisted Bergman space and surjectivity of H}'. For each \ € R,
A #£ 0, we define the A-twisted Bergman space by

BAC™) = {£ 0@ IfI = [ 1faw) W w) dadw < o}

Clearly B}(C?") is a Hilbert space of holomorphic functions on C2". It follows from
Proposition EZ1l that H : L2(R?") — B} (C?") is an isometric embedding.

Our goal for this subsection is to show that H} is onto. We begin with a
description of a useful orthonormal basis for im H} in terms of the special Hermite
functions ®), 4(x,u) (see [, Section 2.3]). For each a, 3 € Ng, let us consider

&)g)ﬁ(z, w) = (27T)7”67(2|m+")Mltfbg)ﬁ(z, w)

where @;\éﬁ(z, w) is the extension of ®} ;(x,u) to C"xC". The functions ®} 4(x,u)
satisfy the orthogonal relation

(@) 52 2 ,)(x,1) = 05,8, (x,u).
Lemma 4.3. The set {&’8\45 o, 3 € N2} is an orthonormal basis for im H}.

Proof. Tt is enough to prove it for A = 1 and we drop the superscript when A\ = 1.
As the heat kernel p;(x,u) is given by

pe(x,u) = (2m) 7" Y e G, L (x )
m

we obtain the relation
D, X pi)(x,u) =27 —ne= (@Bt X, ).
8 B

Thus Hy(®y p)(z, W) = $a7g(z, w) and, therefore, using Proposition BTl we obtain

)

/ ‘5a,g(z, W)th (z,w) dz dw
(C2'n.

= Hi(®o ) (2, W)H (P, ) (2, Ww)We(z, W) dz dw
C2n

:/ O, 5(x,u)P, (%, u) dxdu.
R2n

Hence {®,.5 : a, 5 € N2} is an orthonormal system in im H;.
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To show that it is an orthonormal basis for im H;, we only need to show that

Hi(f)(z,w)Py p(z, W)W (z,w)dzdw =0
C2n

for all «, 8 implies f = 0. But the above simply means, by Proposition Bl that

f(xa u)mdx du=0
R2n

for all o, 8 and we know that {®, 3 : a,5 € Ny} is an orthonormal basis for
L?(R?"). Hence f =0 and the proof is complete. (]

We will show that {E)gﬁ : a, 3 € NI} is also an orthonormal basis for By (C?").
Clearly this implies that H} : L2(R?") — B;(C?") is onto.

Note that 525 € B}C?) for any t > 0 and {&)gﬁ ta,p € Nj} will be an
orthonormal basis for any B (C?").

Asz = x+iy and w = u+ iv, we note that u-y — v-x = §(z- W) is the
symplectic form on R?". Thus $(oz - ow) = S(z - W) for o € U(n).

We introduce the twisted Fock space F{(C?") by

FMC*™) = {G € O(C™) :

”GH2 _ / |G(Z,W)|2e)\%(z»W)e—%(coth2t)\)(\z|2+|w\2) dz dw < OO}
CnxCn

Clearly, the prescription
U(n) x FMC?*") — FNC™), (0,G) — G%; G°(z,w) = G(0z,0w)

defines a unitary representation of U(n) on F;(C?").
The Hilbert spaces B;(C?") and F}(C?") are related through
(4.3.1)

F(z,w) € B}C?") if and only if F(z, w)e%(mth 1N (2w w) ¢ FA(C2)

Let T ~ (SY)" be the diagonal subgroup of U(n). We write the elements of T as
o= (e*1,...,e"n). For each n—tuple of integers m = (mq,ma, ..., my) let xm(o)
be the character of T' defined by xm(c) = e'>i=1™%/ For each G € F}(C2")
define

Gm(z,w):/TG(az,aw)xm(U) do.

As @ is holomorphic it is clear that Gy = 0 unless m is a multi-index in Nj. By
the Fourier expansion

G(oz,ow) = Z Gm (2, W)Xm (o)

meNg
and by the Plancherel theorem we have
(4.3.2) / G(oz,0w)|*do = Y |Gm(z,W)|* .
T meNy
Note that the functions Gy, satisfy the homogeneity condition

Gm(02,0W) = Xm(0)Gm (2, W) .
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A 2n Cx =) __ % J—
For any G € F;(C*™) we observe that, as 3(z - W) = S(0z - oW),

[, Glaw) e ez gy
(C2n

- / / G(oz, ow)erSE= ™) =3 (coth 2N (2 +1w*) g7 gy g,
T JC2n

In view of this and the homogeneity condition we arrive at the orthogonality rela-
tions

Gm(z, W)Gm/ (Z, W)ekg(z-w)e—%(coth 2t>\)(|z\2+|w\2)dz dw =0,
(C2n
whenever m and m’ are different. We also note that each Gy, has an expansion of
the form

Gm(z,w) = Z Co g2 WP .
a+B=m
Hence each Gy, is a polynomial.

(e

Lemma 4.4. The linear span of P.s(z,w) = z°w?, o, € Ng, is dense in

FAC™) .
Proof. If G € F}(C?") is orthogonal to all P, 5 then
/ G2, W) G (z, w)e 3™ =2 (oth 200 (2P +1w1) g7 oy —
C2n
for any m € Nj. In view of the homogeneity property of G, this means that
/ (G (2, w) 2623 ¢~ 3 coth 200) (5 +1wI) g oy —
C2n

Hence G (z, w) = 0 for every m and so G = 0 in view of ([332). O

It follows from Lemma Bl and ([EZ3)) that every F € B(C?") has the orthonor-
mal expansion

(4.3.3) F(z,w) = Z Z ca75Paﬁ(z,w)e_%(C°th 26 (224w w)

m a+f[B=m
The functions

U (z, W) = Z Ca.3Po s (z, W)e—%(coth 2t\) (z-z+w-w)

a+fB=m
are orthogonal in B}(C?") but not orthogonal in any other B2(C?") when s # t.
Another crucial property of these functions is proved in the next lemma.
Lemma 4.5. Allthe functions V3 5(z, w) = Po,5(z, w)e~ 1 (coth20) (zztw-w) pelo g
to the image im H} of the heat kernel transform.
Proof. We may restrict ourselves to the case of A = 1. It will suffice to show that
for each pair o, 3 € Ni there exists a function f, 3 € L?(R*") such that

Hi(fo0) (@ W) = (fo,5 % po) ™ (2, w) = a*wlema (o206,

As both sides are holomorphic it is enough to prove this for z = x and w = u where
x,u € R™. Thus we need to solve the equation

(4.3.4) (fo3 X Pt)(x,0) = xauﬁpgt(x, u).
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In the sequel it will be convenient to identify R?® with C" via z = x + 7u. Then
xeu? = 27191(20) 7181 (z + 2)*(2 — 2)?. Tt is then sufficient to solve the equation

(fap X p1)(2) = 227 pas(2)

where p¢(z) = pi(x,u). We solve this equation using properties of the Weyl trans-
form.

Recall that the Weyl transform W(f) of a function f € L'(C"), is defined to be
the bounded operator on L?(R"™) given by

W(f)p(§) = . fE)m(2)p(€)dz (£ €R")

where w(z) = m1(2z,0) and 7 is the Schrodinger representation of the Heisenberg
group H with parameter A = 1 (see [0, Section 2.2]). Then for f € L' L?*(C"),
W(f) is a Hilbert-Schmidt operator and W extends to L?(C™") as an isometry onto
the space of Hilbert-Schmidt operators. Moreover W(f x g) = W(f)W(g) and
W(p;) = e . Here H denotes the Hermite operator

l\D|P—‘

= (-A+¢]?) ZAA*+A* s

in which A; = —% + ¢ and A = 8_6 + &, are the creation and annihilation
J J
operators. The eigenfunctions of H are the Hermite functions ®,. They satisfy

Ay = (205 +2)2Baye,, AT, = (205)2 04,

where e; are the coordinate vectors. Given a bounded linear operator T on L?(R"),
define the derivations

6;T = [A;,T) = A;T —TA;,  5;T=I[T,Aj]=TA; — A;T.
Then it can be shown that (see [§])
W(zif) = 6;W(f), and W(z;f)=0d;W(f).
By iteration we obtain
W(=2 ) = 595 W(f)

where 5“36 are defined in an obvious way.
Returning to our equation [EE3), we take the Weyl transform on both sides and
obtain that

W(fap)e = 593 e |
Testing against the Hermite basis it is easy to see that the densely defined operator
T — (5agﬁe—2tH)etH

extends to the whole L?(R"™) as a Hilbert-Schmidt operator. Hence, T = W(fa.3)
for some f, 3 € L?*(C™). This completes the proof of the lemma. O

Theorem 4.6. Lett > 0 and A € R, X # 0. Then the \-twisted heat kernel
transform H} : L2(R*™) — B)NC?") is an isometric isomorphism. Moreover,
{®> 51,3 €Ng}is an orthonormal basis for BY(C*").
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Proof. As usual we restrict our attention to the case A = 1. All what is left to show
is that H; is onto. Suppose that F' € B;(C?*") is orthogonal to all ®, 5. We have
to verify that F = 0. The function

G(z,w) = F(z,w)ei(coth2D(@atww)

is orthogonal in F; to all functions of the form

f X pi(z, w)e a(coth2n)(zatww)
In view of Lemma ECO G is orthogonal to all P, g. Hence by Lemma E we get
G =0 and so F' = 0 as desired. (I

We conclude this subsection with a proof of the uniqueness of the weight function
W

Lemma 4.7. W} is the unique non-negative measurable weight function for the
A-twisted Bergman space B (C?").

Proof. In view of [Z3]), the statement is equivalent to the assertion that
(435) Wt)\(W,Z) _ ek%(z-w)e—%(coth2t>\)(|z‘2+|w‘2)

is the unique weight function for the twisted Fock space F{(C?"). This will be
verified in the sequel.

We may restrict ourselves to the notationally convenient case n =1, A = 1 and
drop all sub and superscripts involving A. Let U; : C* — R be a measurable
function such that
(4.3.6) / fz,w)g(z,w) Wi(z,w) dzdw = f(z,w)g(z,w) Up(z,w) dz dw

C2 C2
holds for all f,g € F;(C?). We have to show that W, = U, almost everywhere.
Recall from Lemma BZH that all polynomials z™w™ lie in F;(C?). In particular the
constant function belongs to F;(C?) and ([3H) implies that U; is integrable.

Let us introduce polar coordinates on C? by (z,w) = (re'?, se?). Consider the
Fourier expansions of W; and U; given by

Wt(rei‘z’, seie) = Z - s)eim‘bem‘g

m,n€”Z
and
Z/[t(rew, Sew) _ Z bm,n(Ta S)€im¢€in0,
m,nez
Identity (@30) applied to f = g = zFw! yields the estimates
o0 o0
(4.3.7) / / p2htl g2l |am,n (T‘, 5)| drds < szwl ||.27-'t(C2)
0Oo ooO
(4.3.8) /O /O P2 by (ry 5) dirds < 280 7 o)

for all m,n € Z.

We finish the proof and show ¢y, = @m,n — bm,n, = 0 for all m,n € Z. In fact
for f = z™w™ and g = 2™2w™ for my,ma,n1,n2 € Ny we obtain from [E30)
that

(4.3.9) / / pratmatlgnatnatle ey (1,8)drds =0.
o Jo
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Note that the integral on the left is absolutely convergent by E3)-E3F). Fix
now m,n € Z. Reformulating [39) reads

(4.3.10) / / plml+2ktlgInl+20461 0 (1, 5) drds = 0
o Jo
for all k,1 € Ny. In view of @31)-[E3), we have the estimate
(4.3.11) / / pImiH 2L gnl #2061 () s)| dr ds < 2||z‘m|+kw‘"|+l||2ft((cz) +C
o Jo
with C' = fl Wi(z,w) + U(z,w))dzdw > 0 a constant independent of
m,n.

Denote by Ry = {¢ € C : R¢ > 0} the right halfplane. Let us recall the
elementary fact that a bounded holomorphic function f : R4 — C which vanishes
on a + ONy for some a > 0, § > 0 is identically zero (see [4], Lemma A.1 for a
proof).

The explicite formula for W, in @31) yields a crude but sufficient estimate for

the norm of monomials: there exists constants ¢,y > 0 such that for all k,1 € Ny
one has

(4.3.12) [2Fw!|? < ¢ eYEHD

z|<1,|w|<1

Now define the function

Fon Ry xRy —C,
o0 o0
(€1, G2) — e*37(<1+<2)/ / T‘mHQCl“s'"‘”@“cmm(r, s)drds.
0 0

It is a consequence of I and E3ZTD) that F, , is bounded and holomorphic
on Ry X Ri. As Fppy n|nxny = 0 by @3T0), we conclude that F,, ,, = 0. But then
¢m,n = 0 by the properties of the Mellin transform. ([

4.4. The inversion formula for H;}. We conclude this section by proving a for-
mula for the inverse map of the A-twisted heat kernel transform H} : L?(R?") —
B} (C?™). It is in the nature of the problem that (H;)~! can only be defined nicely
on a dense subspace of B (C?"). The precise statement is as follows:

Theorem 4.8. The inverse of H} : L>(R?") — B}(C?") is given by
(H)NF) = lm B, (F e B)C™),

where

Fi(a,b) = / F(z+a,w+ b)e%(a'“’_b'z)pi‘ﬂ(z, w) Wz, w) dz dw .
C2n

Proof. As before we only need to handle the case of A = 1.
Let F € B;(C?"). Since the space B(C?") is twisted-translation invariant, it is
clear that the function

(r(~a, —b)F)(z,w) = F(z+a,w + b)es )

belongs to B;(C?"). Hence, by Cauchy-Schwarz ineqaulity, the integral defining Fy
converges. According to Theorem B0 we have F = Hi(f) = (f X p:)™~ for some
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f € L?(R?). Tt is easy to see that Fy € L?(R?") and that Fy converges to f. In
fact, we have

Fi(a,b) = /C% (t(—a,—b)H(f))(z, w)H¢(ps)(z, w)Wi(z, W) dz dw

= - H:(r(—a,—b)f)(z, w)H:(ps)(z, w)W(z, w) dz dw

= /R2" ((—a,—b)f)(x,u)ps(x,u) dxdu.

As (ps)s>0 is a Dirac sequence, it therefore follows that
FS(aa b) - (T(_aa _b)f)(ov 0) = f(a7 b)

for s — 0F. This proves the theorem. O

5. THE IMAGE OF H; AS A DIRECT INTEGRAL

The goal of this section is to give a natural H-equivariant identification of the
image of the heat kernel transform H; : L?(H) — O(Hc) with a direct integral of
twisted Bergman-spaces.

We set R* = R\{0}. For each A € R* we write (-,-), for the inner product
on B}(C?"). Recall the orthonormal basis {®) 5 : o, 3 € Ny} of B}C?") from
Theorem 4.6.

We now introduce a measurable structure on [],cpx B2 (C?"). By a section s of
[Tyerx B2(C?*") we understand an assignment

s:R* — [ BMC™), X sy €BMC™).
AERX
We declare a section s = (sy) to be measurable if for all a, f € Nj the map
R* — (C, A= <S>\,(i)g_ﬂ>>\
is measurable. With that we can define a direct integral of Hilbert spaces by

53]
/ BMNC*) 2N\ = {s : R* — H B}C") : s measurable,
R AERX

Is1P = [ llsl3e¥dn < o0).

Recall the unitary representation 7* of H on B(C*") from Subsection 4.1. We
then obtain a unitary representation [;, 7 dX on fﬂgi BMC2™) 22 dX by

(/]Rx ™ d)‘> (R)(s) = (T (R)sx)A

for h € H and s = (s») a square integrable section.

In our next step we will identify im H; with our direct integral from above. For
that let f € S(H) be a Schwartz function. Then H,(f) = (k = f)~ and from
(f k) = e~ fA 5\ p it hence follows that

(5.1) (He(f) = e N HN).
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Theorem 5.1. Lett > 0. The map

e+ S(H) — ®B?<CZ"> AN AN, e (H())Y),

RX
extends to an H-equivariant unitary equivalence

(r,L*(H)) ~ (/R ™ dX, /; 33(@%)&&2&) .

X

Proof. Let f € S(H). Then

I £1I1? = / |f(x,0,8)|? dx dud€ = / / |2 (x,u) | dx dudA.
R27+1 R2n JR
By Theorem L we have for each A that

[ 1Pl dxau = AP
Thus it follows from (B that J; extends to an isometric embedding

53]
T LA(H) — [ BMC*™) e dn,
RX
denoted by the same symbol. The discussion leading up to LI3) shows that J; is
H-equivariant.
It remains to show that J; is onto. For that observe if

f(x,u,8) = F(x,u)p(£)
for Schwartz functions F € S(R*"), ¢ € S(R), then

(Ha ()¢ w) = @(N)e™ HM () (x,w).
From that the surjectivity of J; easily follows. O

6. THE IMAGE OF H; AS A SUM OF WEIGHTED BERGMAN SPACES

In this section we prove the main result of this paper: imH; = B (Hc) @
B, (Hg) is a direct sum of two weighted Bergman spaces. Very surprisingly, the
corresponding weight functions W, and W, attain also negative values (see the
phenomenon explained in Example 3.1).

We will begin our discussion by showing that im H; is not a weighted Bergman
space corresponding to a non-negative weight function. This will lead naturally to
the definition of the partial weight functions W," and W,” and to a proof of the
main theorem.

6.1. Non-existence of a non-negative weight function. The goal of this sub-
section is to discuss the non-existence of a non-negative weight function W; on Hg¢
such that

(6.1.1) 117 = [ e Pw) d:

holds for all f € L?(H). In other words, im H; is not a weighted Bergman space
corresponding to a non-negative weight function W;. Subject to the natural as-
sumption that W, is H-invariant, this will be established in Theorem below.

Recall that we identify H¢ with C* xC" xC. If z = x+iy,w = u+iv,( = {+in
then (z,w,() = he'™ with X = (y,v,n+ 3(x-v—u-y)) and h = (x,u,§).
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Suppose that [EIT) holds. As H; is H-equivariant, it is natural to assume that
Wi (heX) = Wy (e*X) for all h € H. In coordinates (z,w, () this means that

(6.1.2) Wi(x +iy,u+iv,&+in) = W, (iy,iv, in + %(x v—u- y)) .

Thus the weight function is uniquely determined by its restriction to (iy,iv,in).
Furthermore W; is independent of the ¢ variable. Hence ([EIl) reads as

(6.1.3) 172 = /H H4(f) (2w, )12 Wi (2, w, i) da dw dC

Proposition 6.1. Let Wi(z, w,in) be a non-negative measurable function on Hc.
If @I3) holds for all f € L2(H), then it is necessary that W, satisfies

(6.1.4) Wz, w) = e 2N / AW, (2, w,in) dn
R

or all A € R* and W} the function given in .
[ t g
Proof. Write
W (z,w) = e 2N / MW, (2, w,in) dn .
R

We have to show that W = W)
It follows from (2.2.2) that

(/k?@ﬂmf+imfﬁd§=e “Np(z,w) .

R

An easy calculation shows that

©015) [ Hlfln w4 e ds = e () w)
R

= M N )N () (2, W) .

Therefore, upon applying Plancherel theorem in the {-variable, the equation (13
becomes

17 = [ [ [ 1) w0 W, . ) iy e dy v

Here we applied Fubini’s theorem which is justified as W, is by assumption non-
negative. Employing the definition of W, we therefore get

// |f)‘(x,u)|2dxdud)\:// |H} () (2, W) W)z, w) dx dudy dv d).
R JR2n R JC2n

Let now ¢ be a Schwartz class function on R with unit L?-norm and define f
by f(x,u,£) = §(&)F(x,u) with F € L}(R?*"). Then f(x,u) = ¢(\)F(x,u) and
H}f) = ¢(\)H}F). For such f the above displayed equation becomes
(6.1.6)

/|(mﬂﬂm_// (VPH)MNF)(z, w)[*W) (2, w) dx dudy dv dX .
R2n C2n
From (EIH) it is easy to see that for every A # 0 and all F € L?(R?")

/ |F(x,u)|2dxdu:/ |H} F) (2, w)|*W) (2, w) dx dudy dv .
R2n C2n

By Lemma EZ7 the weight function W) is given by @ZJ). O
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Theorem 6.2. There is no non-negative left H-invariant weight function Wy for
which @I3) holds for all f € L*(H), i.e. im H; is not a weighted Bergman spaces
corresponding to a left H-invariant non-negative weight function.

Proof. By I32), W; is uniquely determined by its restriction to (iy,iv,in). By

[EZ2) and (@13,
[ midiy,iv.indn = X y,2v) (e R,
R

If W; were non-negative, then for fixed y, v and X the function n — e2*W, (iy, iv,in)
would belong to L!(R). Consequently, we would have

(6.1.7) / 2O, iy iv,in) dn = 2 OF) pAtis oy 9v) |
R

The left hand side of (EI1) would be holomorphic in A + is since for every n € Ny
there exists an € > 0 such that |n|"e2 W, (iy,iv,in) < e HelW, (iy,iv, in).
However, the right side of [EI) is holomorphic only for A # 0. If A = 0, it
becomes

S " 2 2
2v. 2 en | —— —s(cot 2st) (y“+v*)
P5i(2y,2v) = (sin(2st)> c ’

which has an essential singularity at the points s € Z*(7/t). Therefore there is no
non-negative W; that will satisfy (@4 or (EI13). O

6.2. The partial weight functions W," and W, . Recall the twisted weight
function W from [EZ3).
Let A > 0 and define a function W," on Hc by

(6.2.1) W, (z,w, () :/ezt()‘+%s)26_2"()‘+%5)Wt)\+%s(z,W)ds.
R

It is easy to see that W,' is well-defined. Notice that ;" does not depend on ¢. In
Proposition B33 below we will show that W, is independent of the choice of A > 0.

Proposition 6.3. The function W, satisfies the following properties:
(i) W, is independent of the choice of A > 0. In particular,

Wit (z,w,() = }\138+ R62t(A+%5)2€*2n(>\+%S)W;‘ﬂL%S(z’W) ds.

(ii) Let a > 0 and Q C C>" be a compact set. Then there exists a constant C' =
C(Q,a) > 0 such that for all e € [a=*,a] and £ € R

sup / ’e%"WJr(z w, & +1in) ’ dn < C.
(z,w)EQ

(iii) W," satisfies @LA) with A > 0, i.e.

(6.2.2) Wz, w) = g2tV / W (2, w,in) dn
R

for A > 0.
(iv) W, is real valued and left H-invariant.
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Proof. (i) Let A > 0. We have to show that

Wi (z,w,() = / €2t(>‘+%s)26_277(’\+%5)Wt>\+%5(z,W) ds
R

is independent of the choice of A > 0. This will be a consequence of Cauchy’s
theorem. Indeed, let us denote the right hand side by I(A). For R > 0 and Ay >
A1 > 0, let T'g be the contour consisting four lines, Tr(A1) := {A\1 +1is/2: —2R <
$<2R}, v-p={A—iR: M <A< A}, Tr(A2) = {A2+1is/2: —2R < s < 2R}
and g = {A+iR : A\ < X < A2}, going counterclockwise. As R — oo, the integral
on 'r(A\) becomes I()\). Cauchy’s theorem shows that

/ 672’7ze2t22Wf(z, w)dz =0.
I'r

It is easy to see that |sinh(A + ¢R)t| > sinh(At) and |cosh(\ + iR)t| < cosh(At).
Thus,

P3¢ sinh At

Together with [e2(A£iR)?| = ¢20X°c=2tR* thig shows that the integrals on y_ g and
on yg go to zero as R — +oo. Thus, taking R — oo shows that (A1) = I()\2).
This completes the proof of (i).

(ii) Tt follows from (i) that W," satisfies the bound

kiiR(2y7 2v)| < ( A+ R ) e(A+R) coth(At) (ly|*+v]?)

(W, (z, w, & +1in)| < 2 20N / e ts” W{H%s(z,w) ds .
R
for any A > 0. Notice that the integral on the right is independent of n. Thus if
we let A > e if n > 0 and A < € if n < 0, we see that n — eZ"W," (z,w,& +in) is
integrable. This implies (ii).
(iii) This is immediate from the definition (EZ1l) and Fourier inversion (which
is justified by (ii)). In fact, we have

— —i i6)2r A4
Wt+(27W=C) —¢ 27])\/6 mse2t()\+2s) Wt +2S(Z,W) ds
R

and so v
MW (2, w, €+ in)e™ dn = th()‘Jr%S)ZWt)\-i_%S(Z, w) .

Setting s = 0 gives the the stated result.

(iv) We first show that W, is real valued. In fact, taking the conjugate of the
integral (1)) and then changing variable s — —s shows that the weight function
W, is real. Finally, the fact that W} is twisted-translation invariant forces that

W, is left H-invariant. O
The function W, has a natural counterpart W, . For A < 0 we define W,~ by
(6.2.3) W (z,w,() = / e2t()‘+%s)2672”()‘+%S)Wt)\+%s(z,w) ds.
R

It is more or less obvious that W, satisfies the same properties as W, listed
in Proposition [B3), i.e. W, is independent of the choice of A < 0 etc. In fact, a
simple change of variable in the integral and the fact that p}(2y,2v) is even in A
leads to the relation

W, (z, w,in) = W, (z,w, —in).
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We refer to W," and W, as the partial weight functions. Their importance will
become clear in the next subsection.

Remark 6.1. We will show in the appendix that both W,% and W, attain posi-
tive and negative values. In addition we shall discuss their oscillatory behaviour.
A more heuristic explanation of these phenomena might be the following: Both
Wt (iy,iv,in) and W, (iy,iv,in) satisfy the differential equation

(6.2.4) 2QU— A+ (1| |2—|v|2)8—2 U
- ot Y a2 )
Indeed, this follows from a straightforward computation starting from

0 A2

G = (8= vP 4 V) )

for all A # 0 (see [7]). We note that the differential equation ([EZ) is parabolic
only for |y|? + |v|? < 1. If |y|* + |v|* > 1, then the right hand side of (G2
resembles a wave equation which in turn might explain the oscillatory behaviour of
Wt and W, on the large scale.

6.3. The image of the heat kernel transform. The objective of this section is
to prove our main theorem: imH; = B; (He) ® B; (Hc) is a sum of two weighted
Bergman spaces.

To exhibit the Bergman structure of the spaces B; (H¢) and B; (Hc) needs some
preparation.

First we define subspaces of L?(H) by

LiH) = {feL’H): f* =0, A<0}
and
L2 (H)={f € L*(H): f* =0, X\>0}.
Notice that both subspaces are H-invariant and
L*(H) = L2 (H) © L2 (H).

Next we recall some facts on the heat kernel transform on the real line. The heat
kernel on R is given by

22

q(z) = (Art)"2e” % (2 €R).
Define a weighted Bergman space on C by

2
Bi(C) ={g € O(C): |g|* = /«: l9(x +iy)[Pe™ ¥ dxdy < oo}
and recall that the mapping
hy LQ(R) = Bi(C), g— (f*aq)”
is (up to scale) an R-equivariant isometric isomorphism.

Set RT = (0,00) and R~ = (—o00,0). With L2 (R) = {f € L*(R) : suppf C R*}
and L2 (R) = {f € L*(R) : suppf C R~} we have L*(R) = L2 (R)& L2 (R). Finally,
let us write Bi*(C) = hy(L2.(R)). Clearly we have B;(C) = B;"(C) @ B; (C).

Let R > 0. Denote by Br the open ball centered at 0 with radius R in C™.
Further define Kr = Br x Br x C C Hc and note that |z, Kr = Hc.

We define V;" (Hc) as the vector space consisting of all holomorphic functions F
on H¢ such that
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o Fl|i, € L*(Kg,|W,"|dz) for all R > 0,
o limg oo [, [F(2)PW;F(2) dz < o0,
e F(z,w,-) € Bf(C) for all z,w € C".
We endow V" (Hc) with a sesquilinear bracket

(6.3.1) (F,G)y = hm . F(2)G(2)W; (2)dz,

for F,G € V;" (H¢). Similarly one defines V; (Hc) and (-,-)_

Remark 6.2. One might ask if one cannot define Vi*(Hc) in a simpler manner:
avoid the exhaustion |Jz. o Kr = Hc and just require |F' |2WZ to be absolutely
integrable on H¢. However, this will not work, and the reason for this is the bad
oscillatory behaviour of W= (see the appendix).

A priori it is not clear that (F, F')+ > 0. This will be shown next.
Lemma 6.4. The bracket (-,-)+ induces on ViE(Hc) a pre Hilbert space structure.

Proof. Tt is sufficient to treat the case “4” only. All what is left to show is that
(F,F)y >0 and (F,F); =0 if and only if F = 0.
Fix F € V;"(Hg). Then F(z,w,-) € B; (C) implies the existence of a function
g(z,w,-) € L% (R) such that
F(Z7W7 C) = ht(g(Z7W7 ))(C) = ~/]Rg(Z7W, S)Qt(c - 8) ds.

Therefore, up to an irrelevant constant only depending on ¢, the following equality
holds:

/ F(z,w, & +in)e™ de = e)‘"eftvg)‘(z,w) :

R

Consequently, as W, is independent of &,

| r@EWE = [ [T 10w R W i dy d dad
R R

In view of (ZZ) we thus get

/ |F(2)]PW;F (2 dz-/BR/BR/ (z, w)|? Wz, w) d\ dz dw .

But W2 > 0 and so

(F,F); = hm/ / / Mz, w)|> W)z, w) d\ dzdw > 0
Br JBr

and (F, F),; = 0 if and only if g* = 0 for all \, i.e. F = 0. This completes the
proof of the lemma. O

Let us write ;5 for the heat kernel transform when restricted to L2 (H). Define

Hilbert spaces of holomorphic functions by B; (Hc) = im H; and note that

imH, = B} (He) ® B; (He) .
Let us remark that this decomposition can be also achieved using the Hilbert trans-
form in the last variable.
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Theorem 6.5. Lett > 0. Then B (Hc) is the Hilbert completion of (V- (Hc), (-, )+)
with (-, )+ given by E3T).

Proof. We restrict ourselves to the “+7”-case. Define a dense subspace of L2 (H)
of L2 (H) by

0

LAM)° = {f € L3A(H) : A\ f* compactly supported in (0,00)}

We claim that H, (L2 (H)°) C V;' (H). Let f € L2 (H)° and set F = H;"(f). Choose
a > 0 such that f* =0 for A outside of (a~!,a). Proceeding as in Lemma 6.4 and
using the estimate Proposition 6.3 (ii) we see that ;" (f) satisfies the first condition
in the definition of V," (Hc). Furthermore (6.1.5) implies that

/I<R|F(Z)|2Wt+(z)d'2:/BR /BR /Ooo M) (2 w) PW (2, w) d dz diw

As W >0, it hence follows that fKR |F(2)|?W;" (2) dz is increasing in R. Similar
reasoning as in (6.1.6) now shows that

lim |F(2)*WrF(2)dz = ||f|I* < oo .

R—oo Jk
Furthermore, for fixed (z,w) we have F(z,w,-) € B;(C) as a quick inspection of
(6.1.5) shows. This proves our claim.

As a byproduct of our reasoning above we have shown that H; : L (H)° —
V,"(H) is an isometric map. It remains to verify that each function F' € V;" (Hc) can
be written as H;" (f) for some f € L2 (H). Let g*(z, w) be the function associated to
F as in the proof of Lemma 6.4. Then for almost all A there exists an f* € L2(R?")
such that g* = H)}(f*). It is easy to check that the prescription

foud) = [P dy
R

defines a function in L2 (H) such that ;" (f) = F. This completes the proof of the
theorem. g

7. APPENDIX: THE OSCILLATORY BEHAVIOUR OF THE PARTIAL WEIGHT
FUNCTIONS

This appendix is devoted to a closer study of the partial weight functions Wti.
In particular we will detect “good” and “bad” directions for Wti, meaning rays in
H¢ on which WtjE stays positive resp. starts to oscillate. It is no loss of generality
to treat the case of W, only.

We start with an expicit formula for the function W,". Recall that the kernel p;
admits an expansion of the type [7 p. 85]

PRy, v) = (2m) A" Y e*<2k+n>‘*|tL;g—1(%(|y|2 £ |v]2))e Ty PV
k=0

where LZ_l is the Laguerre polynomial of degree k with parameter n — 1, which

can be extended analytically to A + is for A # 0. Let Hg(x) denote the Hermite

polynomial, which can be defined by Rodrigue’s formula Hy(z) = (—l)kec”2 (gc_"ke—ﬁ_
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Proposition 7.1. For n =1 and 3 := (y* + v?),

Wi iy, iv, i —c[kzoe—zuk
x MZ ( ) (Mk\f(> gi%(j) (umf)( +1>

where p, = (2k+ 14+ (2n+ B)/t)/2.

Proof. The integral formula of W, shows that, for a fixed A > 0,

W+

iy, iv,in) = / etOFi)" =20 H) pAtis (9 9) dis
R

_Ce—(t+2n)/\+t,\2_,\ﬁz —2kt,\/ A+ is)e —ts? L~ 1(2)\54—2255)
k=0

> efzst(2)\72kfﬁf2n/t)efzsﬁ ds

= Ce*(t+277)>\+t)\2,)\ﬁ 2672]615)\(A + 804)LZ_1(26(/\ + aa)) / eia567t52 ds
k=0 R

_ C\/§6_(t+2n))\+t>\2_>\ﬁ Ze—2kt>\()\ + aa)LZ_1(2ﬁ()\ + (%))e_%‘f
k=0

where o = t(2\ — 2k — 1 — (2 + (§)/t) and 0, = 0/ 04.
Using the Rodrigue’s formula of the Hermite polynomials and the explicit formula
of L}, we conclude that

k
Ly 28N+ 0a))eH" = (;?;' 28) (A + 9. )le~
il
k 1
_ (—k) l 1 Cye-derpg (O
- (26)zjz_:o<j) o HJ<2\/¥)
L hey L B )
P E I (557) Hesaon.

upon changing summations, simplifying and using the explicit formula of Li. Let
a be fixed. It turns out that the generating function of the above quantity is given
by

> k 1 j E_ 20Bsp Bs
2 ;7 oF (M)Lk 5 (20%) S‘e"p[_l—s_a—s)ﬁ

where o = 2¢(A — p). Since the generating function is independent of A, this shows
that the inner sum is in fact independent of A\. We can, in particular, set A = 0 in
the inner sum and set 4 = (2k+1+ (277+6)/t)/2 Recall that L7 _ ;(0) = ( ). The

change of variable from a to p also leads to 0, = ta . A simple computation

»PlH
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then leads to
A+ ) LY 1 (2B(A + 0a))e T = et

PEr ) men ()5 () e (L)

from which the stated formula follows readily. O

We note that the formula proved above shows explicitly that ;" is independent
of A\ without using the contour integral and Cauchy’s theorem.

Proposition 7.2. The function W," is positive in a neighborhood of (0,0,0). Fur-
thermore, W, (0,0, 1) is non-negative for all 0.

Proof. Setting 3 = 0 in the explicit formula of W, gives

W+

1 (2k+1421/1)2 2n
t/Q(OOm —C\/726 n (2k+1+ =)

which is clearly positive if n > 0. Furthermore, if 1/t = —m for m € N then the
sum can be written as

o0

Ze §ERAL2 o) 11— om) = Y e EERD 9k 1 1) = e H D (9 — 1)
k=0 k=1

which is strictly positive. Similarly, the sum is strictly positive if n/t = —m — 1/2.
Hence, we are left with the case of 21/t = —2m — 1 + r, where 0 < r < 1. In this
case, the sum becomes

m

S =23 e BTN i 2) = 93 e ) =37 e B ()

k=0 k=0 k=1

where 0 < s = 1/2 < 1/2. Set gi(s) = ek (k4 5) — e~ (RH1=9)"(k 41 —5). Tt
is easy to see that g (s) > 0 for 0 < s < 1. Hence gy, is increasing. It follows that

oo oo oo

e~ H@HH? () 4 1) = § om0 () _ 1) = > gk(s) =D gi(0) =
k=0

k=0 k=1 k=0
from which the stated result follows. O
However, the weight function W, (iy, iv,4n) is not non-negative for all (y,v,n).

In fact, if 2n = —(y? + v?), then 2n+ 3 = 0 and

k
Wi

samn ol o [ A (4) e (Y

A5 (G) v (L)

For each fixed ¢, this is a function of 8 and it appears to be oscillatory. The graph
for t = 1 is shown below.
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e =
a L oa N
:

-0.5¢F
S1E
-1.5¢

The function oscillates in growing intervals and increasing amplitudes. To demon-
strate the oscillatory nature of the function, what we have shown above is the
function W (iy, iv, —i3/2)/log(2 + %) without the factor cy/7. It is a function of

B,

1
2
3
[4
5
6

7
B

where 3 = y? + v2.
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