

THE HEAT KERNEL TRANSFORM FOR THE HEISENBERG GROUP

BERNHARD KRÖTZ, SUNDARAM THANGAVELU AND YUAN XU

ABSTRACT. The heat kernel transform \mathcal{H}_t is studied for the Heisenberg group in detail. The main result shows that the image of \mathcal{H}_t is a direct sum of two weighted Bergman spaces, in contrast to the classical case of \mathbb{R}^n and compact symmetric spaces, and the weight functions are found to be (surprisingly) not non-negative.

1. INTRODUCTION

Over the last decade one could observe interesting developments on the *heat kernel transform* for various types of homogeneous Riemannian manifolds X . Complete results have been obtained for compact Lie groups (cf. [2, 3]) and, more generally, for compact symmetric spaces (cf. [6]). For non-compact spaces X the situation seems to be more complicated and little research has been undertaken in this direction: There is the well understood Euclidean case (e.g. $X = \mathbb{R}^n$, cf. [1]) and some partial results have been obtained for non-compact Riemannian symmetric spaces (cf. [5]). The objective of this paper is to give a complete and self-contained discussion for the Heisenberg group.

Our concern is with the $(2n+1)$ -dimensional Heisenberg group \mathbb{H} and its universal complexification $\mathbb{H}_{\mathbb{C}}$. For $t > 0$ we write $k_t : \mathbb{H} \rightarrow \mathbb{R}^+$ for the heat kernel on \mathbb{H} . Contemplating on the spectral resolution of k_t , it is not hard to see that k_t admits an analytic continuation to a holomorphic function $k_t^{\sim} : \mathbb{H}_{\mathbb{C}} \rightarrow \mathbb{C}$. Consequently, for every $f \in L^2(\mathbb{H})$ the convolution $f * k_t$ continues holomorphically to $H_{\mathbb{C}}$ and we obtain a map

$$\mathcal{H}_t : L^2(\mathbb{H}) \rightarrow \mathcal{O}(\mathbb{H}_{\mathbb{C}}), \quad f \mapsto (f * k_t)^{\sim}.$$

We refer to \mathcal{H}_t as the *heat kernel transform* on \mathbb{H} with parameter $t > 0$. The map \mathcal{H}_t is injective, left \mathbb{H} -equivariant and becomes continuous if $\mathcal{O}(\mathbb{H}_{\mathbb{C}})$ is equipped with its natural Fréchet topology of compact convergence. It follows that $\text{im } \mathcal{H}_t$ is a reproducing kernel Hilbert space. Standard abstract arguments readily yield an expression for the kernel function in terms of k_{2t}^{\sim} (see (3.1.2) below).

In all known cases (e.g. X a compact symmetric space or $X = \mathbb{R}^n$) the image of the heat kernel transform has been a weighted Bergman space $X_{\mathbb{C}}$ with regard to a positive weight function. It came to our surprise that the Heisenberg group deviates from this pattern. The main result of this paper asserts that

$$(1.1) \quad \text{im } \mathcal{H}_t = \mathcal{B}_t^+(\mathbb{H}_{\mathbb{C}}) \oplus \mathcal{B}_t^-(\mathbb{H}_{\mathbb{C}})$$

Date: February 1, 2008.

BK was supported in part by NSF grant DMS-0097314 and YX was supported in part by NSF grant DMS-0201669. ST wishes to thank BK and YX for the warm hospitality during his stay in Eugene.

is a direct sum of two weighted Bergman spaces on $H_{\mathbb{C}}$. Most interestingly, the weight functions W_t^{\pm} for $\mathcal{B}_t^{\pm}(\mathbb{H}_{\mathbb{C}})$ have an oscillatory nature and attain positive and negative values. This fact forces the use of a certain exhaustion $\mathbb{H}_{\mathbb{C}} = \bigcup_{R>0} K_R$ to define the inner product a suitable dense subspace $\mathcal{V}_t^{\pm}(\mathbb{H}_{\mathbb{C}})$ of $\mathcal{B}_t^{\pm}(\mathbb{H}_{\mathbb{C}})$ by

$$\langle f, g \rangle = \lim_{R \rightarrow \infty} \int_{K_R} f(z) \overline{g(z)} W_t^{\pm}(z) dz \quad (f, g \in \mathcal{V}_t^{\pm}(\mathbb{H}_{\mathbb{C}})),$$

quite reminiscent to the familiar notion of principal value.

Let us now describe the contents of this paper in more detail. In Section 2 we introduce our notation and recall some facts on the heat kernel k_t on \mathbb{H} and its analytic continuation to $\mathbb{H}_{\mathbb{C}}$. Subsequently in Section 3 we define the heat kernel transform and give a discussion of its general nature.

For the remainder it is useful to identify \mathbb{H} with $\mathbb{R}^{2n} \times \mathbb{R}$. In Section 4 we introduce for each spectral parameter $\lambda \in \mathbb{R}^{\times}$ a partial heat kernel transform

$$H_t^{\lambda} : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{O}(\mathbb{C}^{2n})$$

and show that $\text{im } H_t^{\lambda}$ is a weighted Bergman space $\mathcal{B}_t^{\lambda}(\mathbb{C}^{2n})$ associated to an explicitly given positive weight function $W_t^{\lambda} : \mathbb{C}^{2n} \rightarrow \mathbb{R}^{2n}$. With these results we prove in Section 5 that there is a natural left \mathbb{H} -equivariant equivalence

$$(1.2) \quad L^2(\mathbb{H}) \simeq \int_{\mathbb{R}^{\times}}^{\oplus} \mathcal{B}_t^{\lambda}(\mathbb{C}^{2n}) e^{2t\lambda^2} d\lambda.$$

Moreover, within the identification (1.2) the heat kernel transform \mathcal{H}_t becomes the diagonal operator $(H_t^{\lambda})_{\lambda}$.

In Section 6 we combine all previously obtained results to establish our main result (1.1). It turns out that the global weight functions W_t^{\pm} admit an integral representation in terms of the partial weight functions W_t^{λ} . Finally, in the appendix we derive explicit expansions of W_t^{\pm} by Hermite polynomials and explain their oscillatory behavior.

Acknowledgement: We would like to express our sincere gratitude to a referee who read the manuscript very carefully and pointed out several inaccuracies, gaps and mistakes.

2. THE HEAT KERNEL ON THE HEISENBERG GROUP

2.1. Notation. Let \mathfrak{h} denote the $(2n + 1)$ -dimensional Heisenberg algebra with generators, say,

$$X_1, \dots, X_n, U_1, \dots, U_n, Z$$

and relations $[X_j, U_j] = Z$. In the sequel we will often identify \mathfrak{h} with $\mathbb{R}^{2n+1} = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$. For that let $(\mathbf{x}, \mathbf{u}, \xi)$ with $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{u} = (u_1, \dots, u_n)$ denote the canonical coordinates on \mathbb{R}^{2n+1} . Then the map

$$\mathbb{R}^{2n+1} \rightarrow \mathfrak{h}, \quad (\mathbf{x}, \mathbf{u}, \xi) \mapsto \sum_{j=1}^n x_j X_j + \sum_{j=1}^n u_j U_j + \xi Z$$

is a linear isomorphism providing us with suitable coordinates for \mathfrak{h} .

Let \mathbb{H} denote a simply connected Lie group with Lie algebra \mathfrak{h} , the *Heisenberg group*. We will identify \mathbb{H} with \mathfrak{h} through the exponential function $\exp = \text{id} : \mathfrak{h} \rightarrow \mathbb{H}$.

As \mathbb{H} is two step, the Baker-Campbell-Hausdorff formula provides the group law

$$(\mathbf{x}, \mathbf{u}, \xi)(\mathbf{x}', \mathbf{u}', \xi') = (\mathbf{x} + \mathbf{x}', \mathbf{u} + \mathbf{u}', \frac{1}{2}(\mathbf{x} \cdot \mathbf{u}' - \mathbf{u} \cdot \mathbf{x}') + \xi + \xi') .$$

Here $\mathbf{x} \cdot \mathbf{u} = \sum_{j=1}^n x_j u_j$, as usual, denotes the standard pairing on \mathbb{R}^n . We notice in particular that

$$(2.1.1) \quad (\mathbf{x}, \mathbf{u}, \xi)^{-1} = (-\mathbf{x}, -\mathbf{u}, -\xi) .$$

Write dh for a Haar measure on \mathbb{H} . We can and will normalize dh in such a way that it coincides with the product of Lebesgue measures, i.e.

$$\int_{\mathbb{H}} f(h) dh = \int_{\mathbb{R}^{2n+1}} f(\mathbf{x}, \mathbf{u}, \xi) d\mathbf{x} d\mathbf{u} d\xi$$

for all $f \in C_c(\mathbb{H})$.

Write $\mathbb{H}_{\mathbb{C}}$ for the universal complexification of \mathbb{H} . Of course we can identify $\mathbb{H}_{\mathbb{C}}$ with \mathbb{C}^{2n+1} and we will often do so. We will write $(\mathbf{z}, \mathbf{w}, \zeta)$ for the coordinates on \mathbb{C}^{2n+1} where $\mathbf{z} = \mathbf{x} + i\mathbf{y}$, $\mathbf{w} = \mathbf{u} + i\mathbf{v}$ and $\zeta = \xi + i\eta$.

For any simply connected nilpotent Lie group H the polar mapping

$$H \times \mathfrak{h} \rightarrow H_{\mathbb{C}}, \quad (h, X) \mapsto h \exp(iX)$$

is a homeomorphism. Furthermore the Haar measure on $H_{\mathbb{C}}$ decomposes as

$$(2.1.2) \quad \int_{H_{\mathbb{C}}} f(g) dg = \int_H \int_{\mathfrak{h}} f(h \exp(iX)) dX dh$$

for all $f \in C_c(H_{\mathbb{C}})$.

For the Heisenberg group \mathbb{H} , the polar mapping is explicitly given by

$$((\mathbf{x}, \mathbf{u}, \xi), (\mathbf{x}', \mathbf{u}', \xi')) \mapsto (\mathbf{x} + i\mathbf{x}', \mathbf{u} + i\mathbf{u}', \frac{i}{2}(\mathbf{x} \cdot \mathbf{u}' - \mathbf{u} \cdot \mathbf{x}') + \xi + i\xi')$$

where $h = (\mathbf{x}, \mathbf{u}, \xi)$ and $X = (\mathbf{x}', \mathbf{u}', \xi')$. In particular the Haar measure on $\mathbb{H}_{\mathbb{C}}$ can be chosen as the product of Lebesgue measures $d\mathbf{x} d\mathbf{y} d\mathbf{u} d\mathbf{v} d\xi d\eta$.

For integrable functions f, g on \mathbb{H} we define their convolution by

$$(f * g)(x) = \int_{\mathbb{H}} f(h)g(h^{-1}x) dh \quad (x \in \mathbb{H}) .$$

In coordinates this is explicitly given by

$$(f * g)(\mathbf{x}, \mathbf{u}, \xi) = \int_{\mathbb{R}^{2n+1}} f(\mathbf{x}', \mathbf{u}', \xi')g((-\mathbf{x}', -\mathbf{u}', -\xi')(\mathbf{x}, \mathbf{u}, \xi)) d\mathbf{x}' d\mathbf{u}' d\xi' .$$

2.2. The heat kernel. Write $\mathcal{U}(\mathfrak{h})$ for the universal enveloping algebra of \mathfrak{h} and define the Laplace element in $\mathcal{U}(\mathfrak{h})$ by

$$\mathcal{L} = \sum_{j=1}^n X_j^2 + \sum_{j=1}^n U_j^2 + Z^2 .$$

For $X \in \mathfrak{h}$ we write \tilde{X} for the left invariant vector field on \mathbb{H} , i.e.,

$$(\tilde{X}f)(h) = \frac{d}{dt} \Big|_{t=0} f(h \exp(tX))$$

for f a function on \mathbb{H} which is differentiable at $h \in \mathbb{H}$. Write ρ for the right regular representation of \mathbb{H} on $L^2(\mathbb{H})$, i.e.

$$(\rho(h)f)(x) = f(xh)$$

for $h, x \in \mathbb{H}$ and $f \in L^2(\mathbb{H})$. With $d\rho$ the derived representation we then have $d\rho(X) = \tilde{X}$ for all $X \in \mathfrak{h}$. In particular if

$$\Delta = \sum_{j=1}^n \tilde{X}_j^2 + \sum_{j=1}^n \tilde{U}_j^2 + \tilde{Z}^2$$

denotes the Laplace operator on \mathbb{H} , then $d\rho(\mathcal{L}) = \Delta$.

Set $\mathbb{R}^+ = (0, \infty)$. Our concern will be with the heat equation on $\mathbb{H} \times \mathbb{R}^+$

$$\partial_t u(h, t) = \Delta u(h, t)$$

for appropriate functions $u(h, t)$ on $\mathbb{H} \times \mathbb{R}^+$. The fundamental solution is given by the heat kernel $k_t(h)$ which can be computed as follows:

$$(2.2.1) \quad k_t(\mathbf{x}, \mathbf{u}, \xi) = c_n \int_{\mathbb{R}} e^{-i\lambda\xi} e^{-t\lambda^2} \left(\frac{\lambda}{\sinh \lambda t} \right)^n e^{-\frac{1}{4}\lambda(\coth t\lambda)(\mathbf{x}\cdot\mathbf{x} + \mathbf{u}\cdot\mathbf{u})} d\lambda$$

with $c_n = (4\pi)^{-n}$ (this follows from a slight modification of [7, Theorem 2.8.1].) It satisfies the usual property of $k_t * k_t = k_{2t}$ (see, for example, [7, (2.87) and Corollary 2.3.4]).

If f is an analytic function on \mathbb{H} which holomorphically extends to $\mathbb{H}_{\mathbb{C}}$, then we write f^{\sim} for this holomorphic extension. The explicit formula (2.2.1) now implies that k_t has a holomorphic continuation to $\mathbb{H}_{\mathbb{C}}$ which is given by

$$(2.2.2) \quad k_t^{\sim}(\mathbf{z}, \mathbf{w}, \zeta) = c_n \int_{\mathbb{R}} e^{-i\lambda\zeta} e^{-t\lambda^2} \left(\frac{\lambda}{\sinh \lambda t} \right)^n e^{-\frac{1}{4}\lambda(\coth t\lambda)(\mathbf{z}\cdot\mathbf{z} + \mathbf{w}\cdot\mathbf{w})} d\lambda$$

for $(\mathbf{z}, \mathbf{w}, \zeta) \in \mathbb{C}^{2n+1} = \mathbb{H}_{\mathbb{C}}$. It follows from (2.1.1) and (2.2.2) that

$$(2.2.3) \quad k_t^{\sim}(z) = k_t^{\sim}(z^{-1}) \quad (z \in \mathbb{H}_{\mathbb{C}}).$$

Furthermore, as $k_t \geq 0$ is real, we record

$$(2.2.4) \quad \overline{k_t^{\sim}(z)} = k_t^{\sim}(\overline{z}) \quad (z \in \mathbb{H}_{\mathbb{C}})$$

Here, as usual, $z \mapsto \overline{z}$ denotes the complex conjugation of $\mathbb{H}_{\mathbb{C}}$ with respect to the real form \mathbb{H} .

3. THE HEAT KERNEL TRANSFORM

3.1. Definition and basic properties. Let $C \subseteq \mathbb{H}_{\mathbb{C}}$ be a compact subset. Then it follows from (2.2.2) that

$$(3.1.1) \quad \sup_{z \in C} \int_{\mathbb{H}} |k_t^{\sim}(h^{-1}z)|^2 dh < \infty.$$

Fix $t > 0$. Then (3.1.1) implies that $f * k_t$ has an analytic continuation to $\mathbb{H}_{\mathbb{C}}$ for all $f \in L^2(\mathbb{H})$. In particular we obtain a linear map

$$\mathcal{H}_t : L^2(\mathbb{H}) \rightarrow \mathcal{O}(\mathbb{H}_{\mathbb{C}}), \quad f \mapsto (f * k_t)^{\sim}; \quad \mathcal{H}_t(f)(z) = \int_{\mathbb{H}_{\mathbb{C}}} f(h) k_t^{\sim}(h^{-1}z) dh.$$

We will call \mathcal{H}_t the *heat kernel transform*.

In the sequel we wish to consider $\mathcal{O}(\mathbb{H}_{\mathbb{C}})$ as a Fréchet space – the topology being the one of compact convergence. If $h \in H$ and f is a function on \mathbb{H} or $\mathbb{H}_{\mathbb{C}}$, then we write $\tau(h)f = f(h^{-1}\cdot)$. The following properties of \mathcal{H}_t are immediate:

- \mathcal{H}_t is continuous (because of (3.1.1))
- \mathcal{H}_t is injective (note that $\mathcal{H}_t(f) = e^{t\Delta}f$ and Δ is a negative definite operator).

- \mathcal{H}_t is \mathbb{H} -equivariant, i.e. $\mathcal{H}_t \circ \tau(h) = \tau(h) \circ \mathcal{H}_t$ for all $h \in \mathbb{H}$ (this is a general fact for the convolution on a locally compact group).

We will endow $\text{im } \mathcal{H}_t$ with the Hilbert topology induced from $L^2(\mathbb{H})$. As \mathcal{H}_t is continuous we see that $\text{im } \mathcal{H}_t$ is an \mathbb{H} -invariant Hilbert space of holomorphic functions on $\mathbb{H}_{\mathbb{C}}$. As such $\text{im } \mathcal{H}_t$ has continuous point evaluations, i.e. for all $z \in \mathbb{H}_{\mathbb{C}}$ the map

$$\text{im } \mathcal{H}_t \rightarrow \mathbb{C}, \quad f \mapsto f(z)$$

is continuous. Hence $f(z) = \langle f, \mathcal{K}_z^t \rangle$ for a unique element $\mathcal{K}_z^t \in \text{im } \mathcal{H}_t$. We then obtain a positive definite kernel function

$$\mathcal{K}^t : \mathbb{H}_{\mathbb{C}} \times \mathbb{H}_{\mathbb{C}} \rightarrow \mathbb{C}; \quad \mathcal{K}^t(z, w) = \langle \mathcal{K}_w^t, \mathcal{K}_z^t \rangle = \mathcal{K}_w^t(z)$$

which is holomorphic in the first and anti-holomorphic in the second variable. Moreover, the \mathbb{H} -invariance of $\text{im } \mathcal{H}_t$ translates into $\mathcal{K}^t(hz, hw) = \mathcal{K}^t(z, w)$ for all $h \in \mathbb{H}$ and $z, w \in \mathbb{H}_{\mathbb{C}}$.

Let us compute \mathcal{K}^t . Fix $w \in \mathbb{H}_{\mathbb{C}}$. Let $g \in \text{im } \mathcal{H}_t$. Then $g = \mathcal{H}_t(f)$ for some $f \in L^2(\mathbb{H})$ and

$$\langle g, \mathcal{K}_w^t \rangle = g(w) = \mathcal{H}_t(f)(w) = (f * k_t)^\sim(w) = \int_{\mathbb{H}} f(h) k_t^\sim(h^{-1}w) dh.$$

As this holds for all $g \in \text{im } \mathcal{H}_t$, we thus conclude that

$$\mathcal{H}_t^{-1}(\mathcal{K}_w^t)(h) = \overline{k_t^\sim(h^{-1}w)} = k_t^\sim(\overline{w}^{-1}h) \quad (h \in \mathbb{H})$$

where for the last equality we used the facts (2.2.3-4). From this we now get for all $w, z \in \mathbb{H}_{\mathbb{C}}$ that

$$\begin{aligned} \mathcal{K}_w^t(z) &= \mathcal{H}_t(k_t^\sim(\overline{w}^{-1} \cdot))(z) = \int_{\mathbb{H}} k_t^\sim(\overline{w}^{-1}h) k_t^\sim(h^{-1}z) dh \\ &= \int_{\mathbb{H}} k_t(h) k_t^\sim(h^{-1}\overline{w}^{-1}z) dh \\ &= (k_t * k_t)^\sim(\overline{w}^{-1}z) \\ &= k_{2t}^\sim(\overline{w}^{-1}z). \end{aligned}$$

We have thus shown that the kernel function is given by

$$(3.1.2) \quad \mathcal{K}^t(z, w) = k_{2t}^\sim(\overline{w}^{-1}z) \quad (z, w \in \mathbb{H}_{\mathbb{C}}).$$

3.2. General remarks on integral transforms and Bergman spaces. The setup for this Section is as follows: We let N be a positive integer and G be a Lie group which acts on \mathbb{R}^N in a measure preserving manner. We assume that the action of G extends to an action on \mathbb{C}^N by measure preserving biholomorphisms. Our next data is a continuous (integral) transform

$$\Phi : L^2(\mathbb{R}^N) \hookrightarrow \mathcal{O}(\mathbb{C}^N)$$

which we assume to be G -equivariant. In this way $\text{im } \Phi$ becomes a G -invariant Hilbert space of holomorphic functions on \mathbb{C}^N . We write $\mathcal{K} : \mathbb{C}^N \times \mathbb{C}^N \rightarrow \mathbb{C}$ for the corresponding kernel function.

Example 3.1. (a) The heat kernel transform $\mathcal{H}_t : L^2(\mathbb{H}) \rightarrow \mathcal{O}(\mathbb{H}_{\mathbb{C}})$ meets the general assumptions from above. In fact, for $N = 2n + 1$ we may identify \mathbb{H} with \mathbb{R}^N and $\mathbb{H}_{\mathbb{C}}$ with \mathbb{C}^N . Furthermore the group $G = \mathbb{H}$ acts from the left on $\mathbb{H} = \mathbb{R}^N$ and $\mathbb{H}_{\mathbb{C}} = \mathbb{C}^N$ in a measure preserving manner.

(b) The partial heat kernel transforms $H_t^\lambda : L^2(\mathbb{R}^{2n}) \hookrightarrow \mathcal{O}(\mathbb{C}^{2n})$ introduced in Section 4 below satisfy the general assumptions made above. \square

For the remainder we will assume that $\text{im } \Phi = \mathcal{B}(\mathbb{C}^N, W)$ is a weighted Bergman space for some measurable weight function $W : \mathbb{C}^N \rightarrow \mathbb{R}$, i.e.,

$$\mathcal{B}(\mathbb{C}^N, W) = \{f \in \mathcal{O}(\mathbb{C}^N) : \int_{\mathbb{C}^N} |f(z)|^2 |W(z)| dz < \infty\}$$

Hilbert structure given by

$$(3.2.1) \quad \langle f, g \rangle = \int_{\mathbb{C}^N} f(z) \overline{g(z)} W(z) dz$$

As the action of G on $\mathcal{B}(\mathbb{C}^N, W)$ is unitary, the weight function W should be left G -invariant, i.e.

$$(3.2.2) \quad W(g.z) = W(z) \quad (g \in G, z \in \mathbb{C}^N).$$

What we cannot expect however is that W is non-negative. It might then be a surprise that (3.2.1) still defines a Hilbert structure. As the following example shows, this is a phenomenon which already appears in one variable.

Example 3.2. We consider the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$. For a measurable subset $A \subseteq D$ write $\mathbf{1}_A$ for its characteristic function. Define a weight function W on D by

$$W = \mathbf{1}_{\{\frac{1}{2} \leq |z| < 1\}} - \mathbf{1}_{\{|z| < \frac{1}{2}\}}.$$

With W we form the weighted Bergman space

$$\mathcal{B}^2(D, W) := \{f \in \mathcal{O}(D) : \int_D |f(z)|^2 |W(z)| dx dy < \infty\}$$

and endow it with the sesquilinear bracket

$$\langle f, g \rangle = \int_D f(z) \overline{g(z)} W(z) dx dy.$$

We will show that $(\mathcal{B}^2(D, W), \langle \cdot, \cdot \rangle)$ is a Hilbert space. For that we first observe that $\{z^n\}_{n \in \mathbb{N}_0}$ is an orthogonal system in $\mathcal{B}^2(D, W)$. This is because W is rotationally invariant. Next we compute

$$\begin{aligned} \langle z^n, z^n \rangle &= 2\pi \int_{\frac{1}{2}}^1 r^{2n+1} dr - 2\pi \int_0^{\frac{1}{2}} r^{2n+1} dr \\ &= \frac{\pi}{n+1} \left[1 - \left(\frac{1}{2} \right)^{2n+1} \right] > 0 \end{aligned}$$

for any $n \in \mathbb{N}_0$. Thus if $f = \sum_n a_n z^n \in \mathcal{B}^2(D, W)$ is an arbitrary element, then

$$(3.2.1) \quad \langle f, f \rangle = \sum_n |a_n|^2 \frac{\pi}{n+1} \left[1 - \left(\frac{1}{2} \right)^{2n+1} \right] \geq 0$$

and $\langle f, f \rangle = 0$ if and only if $f = 0$. This shows that $\langle \cdot, \cdot \rangle$ defines a pre Hilbert structure on $\mathcal{B}^2(D, W)$. Next notice that

$$(3.2.2) \quad \int_D |f(z)|^2 |W(z)| dx dy = \sum_n |a_n|^2 \frac{\pi}{n+1}.$$

It follows from identities (3.2.1) and (3.2.2) that $\langle \cdot, \cdot \rangle$ and the Hilbert bracket $(f|g) = \int_D f(z)\overline{g(z)} |W(z)| dx dy$ induce equivalent norms. Hence $(\mathcal{B}^2(D, W), \langle \cdot, \cdot \rangle)$ is a Hilbert space.

Finally we note that W is uniquely characterized by the Hilbert norm on $\mathcal{B}^2(D, W)$, i.e. $\mathcal{B}^2(D, W) = \mathcal{B}^2(D, W')$ if and only if $W = W'$ almost everywhere (use Stone-Weierstraß). \square

We conclude this section with some general remarks on how to obtain the weight function W . Define a subspace of $\text{im } \Phi$ by

$$(\text{im } \Phi)_0 = \text{span}\{\mathcal{K}_x : x \in \mathbb{R}^N\}.$$

Since a holomorphic function on \mathbb{C}^N which vanishes on \mathbb{R}^N is identically zero, we conclude that $(\text{im } \Phi)_0$ is dense in $\text{im } \Phi$. Hence $\text{im } \Phi = \mathcal{B}(\mathbb{C}^N, W)$ will hold precisely if

$$(3.2.3) \quad \mathcal{K}(x, x') = \langle \mathcal{K}_{x'}, \mathcal{K}_x \rangle = \int_{\mathbb{C}^N} \mathcal{K}_{x'}(z) \overline{\mathcal{K}_x(z)} W(z) dz$$

for all $x, x' \in \mathbb{R}^N$. The formula (3.2.3) is actually quite helpful and will be applied in Section 4 below.

4. THE λ -TWISTED HEAT-KERNEL TRANSFORM

For $\lambda \in \mathbb{R}$, $\lambda \neq 0$, we will introduce a λ -twisted heat kernel transform $H_t^\lambda : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{O}(\mathbb{C}^{2n})$. We will show that the image of H_t^λ is a weighted Bergman space $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ on \mathbb{C}^{2n} . Further we provide an inversion formula for H_t^λ .

The results of this section are the building blocks for our general discussion of the heat kernel transform $\mathcal{H}_t : L^2(\mathbb{H}) \rightarrow \mathcal{O}(\mathbb{H}_{\mathbb{C}})$ in the following sections.

4.1. Notation. Let $\lambda \in \mathbb{R}$, $\lambda \neq 0$. For suitable functions F on \mathbb{H} we define a function F^λ on \mathbb{R}^{2n} by

$$F^\lambda(\mathbf{x}, \mathbf{u}) = \int_{\mathbb{R}} e^{i\lambda\xi} F(\mathbf{x}, \mathbf{u}, \xi) d\xi.$$

For $f, g \in L^1(\mathbb{R}^{2n})$ the λ -twisted convolution is defined by

$$(f *_{\lambda} g)(\mathbf{x}, \mathbf{u}) = \int_{\mathbb{R}^{2n}} f(\mathbf{x}', \mathbf{u}') g(\mathbf{x} - \mathbf{x}', \mathbf{u} - \mathbf{u}') e^{-i\frac{\lambda}{2}(\mathbf{x}' \cdot \mathbf{u} - \mathbf{x} \cdot \mathbf{u}')} d\mathbf{x}' d\mathbf{u}'.$$

Notice that we have for Schwartz functions $F, G \in S(\mathbb{H}) = S(\mathbb{R}^{2n+1})$ that

$$(4.1.1) \quad (F * G)^\lambda = F^\lambda *_{\lambda} G^\lambda.$$

Let $\Delta_{\text{sub}} = d\rho \left(\sum_{j=1}^n (\tilde{X}_j^2 + \tilde{Y}_j^2) \right)$ denote the sublaplacian on \mathbb{H} . The heat kernel for Δ_{sub} is denoted by p_t and its inverse Fourier transform in the central variable is explicitly given by

$$(4.1.2) \quad p_t^\lambda(\mathbf{x}, \mathbf{u}) = c_n \left(\frac{\lambda}{\sinh t\lambda} \right)^n e^{-\frac{\lambda}{4} \coth(\lambda t) (|\mathbf{x}|^2 + |\mathbf{u}|^2)}$$

with $c_n = (4\pi)^{-n}$.

For all $f \in L^2(\mathbb{R}^{2n})$ the twisted convolution $f *_{\lambda} p_t^\lambda$ has an analytic continuation to \mathbb{C}^{2n} . In particular, there is a λ -twisted heat kernel transform

$$H_t^\lambda : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{O}(\mathbb{C}^{2n}), \quad f \mapsto (f *_{\lambda} p_t^\lambda)^\sim.$$

In coordinates we have

$$H_t^\lambda(f)(\mathbf{z}, \mathbf{w}) = \int_{\mathbb{R}^{2n}} f(\mathbf{x}', \mathbf{u}') p_t^\lambda(\mathbf{z} - \mathbf{x}', \mathbf{w} - \mathbf{u}') e^{-\frac{i}{2}\lambda(\mathbf{x}' \cdot \mathbf{w} - \mathbf{u}' \cdot \mathbf{z})} d\mathbf{x}' d\mathbf{u}'.$$

We define a unitary representation τ^λ of \mathbb{R}^{2n} on $L^2(\mathbb{R}^{2n})$ by

$$(\tau^\lambda(\mathbf{a}, \mathbf{b})f)(\mathbf{x}, \mathbf{u}) = e^{-\frac{i\lambda}{2}(\mathbf{a} \cdot \mathbf{u} - \mathbf{b} \cdot \mathbf{x})} f(\mathbf{x} - \mathbf{a}, \mathbf{u} - \mathbf{b})$$

for $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{2n}$, $f \in L^2(\mathbb{R}^{2n})$ and $(\mathbf{x}, \mathbf{u}) \in \mathbb{R}^{2n}$. Likewise τ^λ defines an action of \mathbb{R}^{2n} on $\mathcal{O}(\mathbb{C}^{2n})$ via

$$(\tau^\lambda(\mathbf{a}, \mathbf{b})f)(\mathbf{z}, \mathbf{w}) = e^{-\frac{i\lambda}{2}(\mathbf{a} \cdot \mathbf{w} - \mathbf{b} \cdot \mathbf{z})} f(\mathbf{z} - \mathbf{a}, \mathbf{w} - \mathbf{b})$$

where $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{2n}$, $f \in \mathcal{O}(\mathbb{C}^{2n})$ and $(\mathbf{z}, \mathbf{w}) \in \mathbb{C}^{2n}$.

As for functions $F, G \in L^1(\mathbb{H})$ we have $\tau(h)F * G = \tau(h)(F * G)$ for all $h \in \mathbb{H}$, it is immediate from (4.1.1) that H_t^λ becomes \mathbb{R}^{2n} -equivariant, i.e

$$(4.1.3) \quad H_t^\lambda(\tau^\lambda(\mathbf{a}, \mathbf{b})f) = \tau^\lambda(\mathbf{a}, \mathbf{b})(H_t^\lambda(f))$$

for all $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{2n}$ and $f \in L^2(\mathbb{R}^{2n})$.

Remark 4.1. For the proofs in the sequel it is notationally convenient to prove the assertions for the “essential case” $\lambda = 1$ only. Whenever we do so we will use a simplified notation: we write $f \times g$ instead of $f *_1 g$ for the 1-twisted convolution; further we will drop all sub- and superscripts involving $\lambda = 1$, i.e. p_t^1 becomes p_t , H_t^1 becomes H_t etc.

4.2. Determination of the weight function. Our objective is to find a non-negative weight function W_t^λ on \mathbb{C}^{2n} such that

$$(4.2.1) \quad \int_{\mathbb{C}^{2n}} |H_t^\lambda(f)(\mathbf{z}, \mathbf{w})|^2 W_t^\lambda(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} = \int_{\mathbb{R}^{2n}} |f(\mathbf{x}, \mathbf{u})|^2 d\mathbf{x} d\mathbf{u}$$

for all $f \in L^2(\mathbb{R}^{2n})$.

Proposition 4.1. *A weight function W_t^λ which satisfies (4.2.1) is given by*

$$(4.2.2) \quad W_t^\lambda(\mathbf{x} + i\mathbf{y}, \mathbf{u} + i\mathbf{v}) = 4^n e^{\lambda(\mathbf{u} \cdot \mathbf{y} - \mathbf{v} \cdot \mathbf{x})} p_{2t}^\lambda(2\mathbf{y}, 2\mathbf{v}).$$

Remark 4.2. The weight function W_t^λ is unique in the sense that is the unique measurable function $W_t^\lambda : \mathbb{C}^{2n} \rightarrow \mathbb{R}_{\geq 0}$ which satisfies (4.2.1). This will be shown in Lemma 4.7 below.

Proof. We restrict our attention to the case $\lambda = 1$. As mentioned earlier we will write now p_t and W_t in place of p_t^λ and W_t^λ , respectively, and write $f \times g$ for the 1-twisted convolution of f and g . Via H_t we can transfer the Hilbert space structure of $L^2(\mathbb{R}^{2n})$ to $\text{im } H_t$ and make it into Hilbert space of holomorphic functions. Write $K^t(\mathbf{z}, \mathbf{w}; \mathbf{z}', \mathbf{w}')$ for the corresponding reproducing kernel. Arguing as in Subsection 3.2, the inner product $\langle \cdot, \cdot \rangle_t$ on the image is uniquely determined by the equality

$$(4.2.3) \quad K^t(\mathbf{a}, \mathbf{b}; \mathbf{a}', \mathbf{b}') = \langle K_{(\mathbf{a}, \mathbf{b})}^t, K_{(\mathbf{a}', \mathbf{b}')}^t \rangle_t$$

for all real pairs $(\mathbf{a}, \mathbf{b}), (\mathbf{a}', \mathbf{b}') \in \mathbb{R}^n \times \mathbb{R}^n$.

As the heat kernel transform $f \rightarrow H_t(f) = (f \times p_t)^\sim$ commutes with the twisted translation (see equation (4.1.3)), we may assume $(\mathbf{a}', \mathbf{b}') = 0$ in (4.2.3). As $p_t \times p_t = p_{2t}$, arguing as in Subsection 3.1 readily yields

$$K_{(\mathbf{a}, \mathbf{b})}^t(\mathbf{z}, \mathbf{w}) = p_{2t}(\mathbf{z} - \mathbf{a}, \mathbf{w} - \mathbf{b}) e^{-\frac{i}{2}(\mathbf{a} \cdot \mathbf{w} - \mathbf{b} \cdot \mathbf{z})}.$$

In particular, $K_{(0,0)}^t = p_{2t}$ and $K^t(\mathbf{a}, \mathbf{b}, 0, 0) = p_{2t}(\mathbf{a}, \mathbf{b})$. Thus (4.2.3) translates into

$$p_{2t}(\mathbf{a}, \mathbf{b}) = \int_{\mathbb{C}^n} \int_{\mathbb{C}^n} p_{2t}(\mathbf{z} - \mathbf{a}, \mathbf{w} - \mathbf{b}) e^{-\frac{i}{2}(\mathbf{a} \cdot \mathbf{w} - \mathbf{b} \cdot \mathbf{z})} \overline{p_{2t}(\mathbf{z}, \mathbf{w})} W_t(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w}.$$

This is established in Lemma 4.2 below. \square

Lemma 4.2. *For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ we have*

$$\int_{\mathbb{C}^n} \int_{\mathbb{C}^n} p_{2t}^\lambda(\mathbf{z} + \mathbf{a}, \mathbf{w} + \mathbf{b}) e^{\frac{i\lambda}{2}(\mathbf{a} \cdot \mathbf{w} - \mathbf{b} \cdot \mathbf{z})} \overline{p_{2t}^\lambda(\mathbf{z}, \mathbf{w})} W_t^\lambda(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} = p_{2t}^\lambda(\mathbf{a}, \mathbf{b}).$$

Proof. We will prove the assertion for $\lambda = 1$. Further, by the product nature of the functions involved, we may assume in addition that $n = 1$.

Expanding out and simplifying we have

$$p_{2t}(x + a + iy, u + b + iv) \overline{p_{2t}(x + iy, u + iv)} = (4\pi)^{-2} (\sinh 2t)^{-2} e^{-\frac{1}{2}(\coth 2t)(x^2 + u^2)} \\ \cdot e^{-\frac{1}{4}(\coth 2t)(a^2 + b^2)} e^{\frac{1}{2}(\coth 2t)(y^2 + v^2)} e^{-\frac{1}{2}(\coth 2t)(a(x + iy) + b(u + iv))}.$$

We can combine the terms $e^{-\frac{1}{2}(\coth 2t)(x^2 + u^2)}$ and

$$e^{(uy - vx)} = e^{(\coth 2t)(uy \tanh(2t) - xv \tanh(2t))}$$

to get

$$p_{2t}(x + a + iy, u + b + iv) \overline{p_{2t}(x + iy, u + iv)} e^{(uy - vx)} \\ = (4\pi)^{-2} (\sinh 2t)^{-2} e^{-\frac{1}{4}(\coth 2t)(a^2 + b^2)} e^{\frac{1}{2}(\coth 2t + \tanh 2t)(y^2 + v^2)} \\ \cdot e^{-\frac{1}{2}(\coth 2t)((x + v \tanh(2t))^2 + (u - y \tanh(2t))^2)} e^{-\frac{1}{2}(\coth 2t)(a(x + iy) + b(u + iv))}.$$

Using the identity $\tanh 2t + \coth 2t = 2 \coth 4t$ and simplifying further we get

$$p_{2t}(z + a, w + b) e^{\frac{i}{2}(aw - bz)} \overline{p_{2t}(z, w)} W_t(z, w) \\ = 4^{-2} \pi^{-3} (\sinh 2t)^{-3} e^{-\frac{1}{8} \coth 2t (a^2 + b^2)} e^{(\coth 4t - \coth 2t)(y^2 + v^2)} \\ \cdot e^{-\frac{1}{2}(\coth 2t)((x + \frac{a}{2} + \tanh(2t)v)^2 + (u + \frac{b}{2} - y \tanh(2t))^2)} e^{-\frac{i}{2}(\coth 2t)(ay + bv)} e^{\frac{i}{2}(au - bx)},$$

where $z = x + iy$ and $w = u + iv$.

First consider the integral

$$\int_{\mathbb{R}^2} e^{\frac{i}{2}(au - bx)} e^{-\frac{1}{2}(\coth 2t)((x + \frac{a}{2} + v \tanh(2t))^2 + (u + \frac{b}{2} - y \tanh(2t))^2)} dx du \\ = e^{\frac{i}{2}(\tanh 2t)(ay + bv)} \int_{\mathbb{R}^2} e^{\frac{i}{2}(au - bx)} e^{-\frac{1}{2}(\coth 2t)(x^2 + u^2)} dx du \\ = 2\pi(\tanh 2t) e^{\frac{i}{2}(\tanh 2t)(ay + bv)} e^{-\frac{1}{8}(\tanh 2t)(a^2 + b^2)}.$$

Up to an explicit factor the remaining integral is

$$\int_{\mathbb{R}^2} e^{-\frac{i}{2}(\coth 2t - \tanh 2t)(ay + bv)} e^{-(\coth 2t - \coth 4t)(y^2 + v^2)} dy dv.$$

As $\coth 2t - \tanh 2t = 2(\sinh 4t)^{-1}$ and $\coth 2t - \coth 4t = (\sinh 4t)^{-1}$ the above integral reduces to

$$\int_{\mathbb{R}^2} e^{-i(\sinh 4t)^{-1}(ay + bv)} e^{-(\sinh 4t)^{-1}(y^2 + v^2)} dy dv = \pi(\sinh 4t) e^{-\frac{1}{4}(\sinh 4t)^{-1}(a^2 + b^2)}.$$

Combining results yields

$$\begin{aligned} & \int_{\mathbb{C}^2} p_{2t}(z+a, w+b) e^{\frac{i}{2}(aw-bz)} \overline{p_{2t}(z, w)} W_t(z, w) dz dw \\ &= 8^{-1} \pi^{-1} (\sinh 2t)^{-3} (\tanh 2t) (\sinh 4t) e^{-\frac{1}{8}(\coth 2t + \tanh 2t)(a^2+b^2)} e^{-\frac{1}{4}(\sinh 4t)^{-1}(a^2+b^2)}. \end{aligned}$$

Finally using the identities $\coth 2t + \tanh 2t = 2 \coth 4t$ and $\coth 4t + (\sinh 4t)^{-1} = \coth 2t$ and simplifying we get

$$\begin{aligned} & \int_{\mathbb{C}^2} p_{2t}(z+a, w+b) e^{\frac{i}{2}(aw-bz)} \overline{p_{2t}(z, w)} W_t(z, w) dz dw \\ &= \frac{1}{4\pi} (\sinh 2t)^{-1} e^{-\frac{1}{4} \coth 2t (a^2+b^2)} = p_{2t}(a, b). \end{aligned}$$

This proves the lemma. \square

4.3. The twisted Bergman space and surjectivity of H_t^λ . For each $\lambda \in \mathbb{R}$, $\lambda \neq 0$, we define the λ -twisted Bergman space by

$$\mathcal{B}_t^\lambda(\mathbb{C}^{2n}) = \{f \in \mathcal{O}(\mathbb{C}^{2n}) : \|f\|_\lambda^2 = \int_{\mathbb{C}^n \times \mathbb{C}^n} |f(\mathbf{z}, \mathbf{w})|^2 W_t^\lambda(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} < \infty\}.$$

Clearly $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ is a Hilbert space of holomorphic functions on \mathbb{C}^{2n} . It follows from Proposition 4.1 that $H_t^\lambda : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ is an isometric embedding.

Our goal for this subsection is to show that H_t^λ is onto. We begin with a description of a useful orthonormal basis for $\text{im } H_t^\lambda$ in terms of the special Hermite functions $\Phi_{\alpha, \beta}^\lambda(\mathbf{x}, \mathbf{u})$ (see [7, Section 2.3]). For each $\alpha, \beta \in \mathbb{N}_0^n$, let us consider

$$\tilde{\Phi}_{\alpha, \beta}^\lambda(\mathbf{z}, \mathbf{w}) = (2\pi)^{-n} e^{-(2|\beta|+n)|\lambda|t} \Phi_{\alpha, \beta}^\lambda(\mathbf{z}, \mathbf{w})$$

where $\Phi_{\alpha, \beta}^\lambda(\mathbf{z}, \mathbf{w})$ is the extension of $\Phi_{\alpha, \beta}^\lambda(\mathbf{x}, \mathbf{u})$ to $\mathbb{C}^n \times \mathbb{C}^n$. The functions $\Phi_{\alpha, \beta}^\lambda(\mathbf{x}, \mathbf{u})$ satisfy the orthogonal relation

$$(\Phi_{\alpha, \beta}^\lambda *_{\lambda} \Phi_{\mu, \nu}^\lambda)(\mathbf{x}, \mathbf{u}) = \delta_{\beta, \mu} \Phi_{\alpha, \nu}^\lambda(\mathbf{x}, \mathbf{u}).$$

Lemma 4.3. *The set $\{\tilde{\Phi}_{\alpha, \beta}^\lambda : \alpha, \beta \in \mathbb{N}_0^n\}$ is an orthonormal basis for $\text{im } H_t^\lambda$.*

Proof. It is enough to prove it for $\lambda = 1$ and we drop the superscript when $\lambda = 1$. As the heat kernel $p_t(\mathbf{x}, \mathbf{u})$ is given by

$$p_t(\mathbf{x}, \mathbf{u}) = (2\pi)^{-n} \sum_{\mu} e^{-(2|\mu|+n)t} \Phi_{\mu, \mu}(\mathbf{x}, \mathbf{u}),$$

we obtain the relation

$$(\Phi_{\alpha, \beta} \times p_t)(\mathbf{x}, \mathbf{u}) = (2\pi)^{-n} e^{-(2|\beta|+n)t} \Phi_{\alpha, \beta}(\mathbf{x}, \mathbf{u}).$$

Thus $H_t(\Phi_{\alpha, \beta})(\mathbf{z}, \mathbf{w}) = \tilde{\Phi}_{\alpha, \beta}(\mathbf{z}, \mathbf{w})$ and, therefore, using Proposition 4.1 we obtain

$$\begin{aligned} & \int_{\mathbb{C}^{2n}} \tilde{\Phi}_{\alpha, \beta}(\mathbf{z}, \mathbf{w}) \overline{\tilde{\Phi}_{\mu, \nu}(\mathbf{z}, \mathbf{w})} W_t(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} \\ &= \int_{\mathbb{C}^{2n}} H_t(\Phi_{\alpha, \beta})(\mathbf{z}, \mathbf{w}) \overline{H_t(\Phi_{\mu, \nu})(\mathbf{z}, \mathbf{w})} W_t(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} \\ &= \int_{\mathbb{R}^{2n}} \Phi_{\alpha, \beta}(\mathbf{x}, \mathbf{u}) \overline{\Phi_{\mu, \nu}(\mathbf{x}, \mathbf{u})} d\mathbf{x} d\mathbf{u}. \end{aligned}$$

Hence $\{\tilde{\Phi}_{\alpha, \beta} : \alpha, \beta \in \mathbb{N}_0^n\}$ is an orthonormal system in $\text{im } H_t$.

To show that it is an orthonormal basis for $\text{im } H_t$, we only need to show that

$$\int_{\mathbb{C}^{2n}} H_t(f)(\mathbf{z}, \mathbf{w}) \overline{\tilde{\Phi}_{\alpha, \beta}(\mathbf{z}, \mathbf{w})} W_t(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} = 0$$

for all α, β implies $f \equiv 0$. But the above simply means, by Proposition 4.1, that

$$\int_{\mathbb{R}^{2n}} f(\mathbf{x}, \mathbf{u}) \overline{\tilde{\Phi}_{\alpha, \beta}(\mathbf{x}, \mathbf{u})} d\mathbf{x} d\mathbf{u} = 0$$

for all α, β and we know that $\{\Phi_{\alpha, \beta} : \alpha, \beta \in \mathbb{N}_0^n\}$ is an orthonormal basis for $L^2(\mathbb{R}^{2n})$. Hence $f \equiv 0$ and the proof is complete. \square

We will show that $\{\tilde{\Phi}_{\alpha, \beta}^\lambda : \alpha, \beta \in \mathbb{N}_0^n\}$ is also an orthonormal basis for $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$. Clearly this implies that $H_t^\lambda : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ is onto.

Note that $\tilde{\Phi}_{\alpha, \beta}^\lambda \in \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ for any $t > 0$ and $\{\tilde{\Phi}_{\alpha, \beta}^\lambda : \alpha, \beta \in \mathbb{N}_0^n\}$ will be an orthonormal basis for any $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$.

As $\mathbf{z} = \mathbf{x} + i\mathbf{y}$ and $\mathbf{w} = \mathbf{u} + i\mathbf{v}$, we note that $\mathbf{u} \cdot \mathbf{y} - \mathbf{v} \cdot \mathbf{x} = \Im(\mathbf{z} \cdot \overline{\mathbf{w}})$ is the symplectic form on \mathbb{R}^{2n} . Thus $\Im(\sigma \mathbf{z} \cdot \overline{\sigma \mathbf{w}}) = \Im(\mathbf{z} \cdot \overline{\mathbf{w}})$ for $\sigma \in U(n)$.

We introduce the *twisted Fock space* $\mathcal{F}_t^\lambda(\mathbb{C}^{2n})$ by

$$\begin{aligned} \mathcal{F}_t^\lambda(\mathbb{C}^{2n}) &= \{G \in \mathcal{O}(\mathbb{C}^{2n}) : \\ \|G\|^2 &= \int_{\mathbb{C}^n \times \mathbb{C}^n} |G(\mathbf{z}, \mathbf{w})|^2 e^{\lambda \Im(\mathbf{z} \cdot \overline{\mathbf{w}})} e^{-\frac{\lambda}{2}(\coth 2t\lambda)(|\mathbf{z}|^2 + |\mathbf{w}|^2)} d\mathbf{z} d\mathbf{w} < \infty\}. \end{aligned}$$

Clearly, the prescription

$$U(n) \times \mathcal{F}_t^\lambda(\mathbb{C}^{2n}) \rightarrow \mathcal{F}_t^\lambda(\mathbb{C}^{2n}), \quad (\sigma, G) \mapsto G^\sigma; \quad G^\sigma(\mathbf{z}, \mathbf{w}) = G(\sigma \mathbf{z}, \sigma \mathbf{w})$$

defines a unitary representation of $U(n)$ on $\mathcal{F}_t(\mathbb{C}^{2n})$.

The Hilbert spaces $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ and $\mathcal{F}_t^\lambda(\mathbb{C}^{2n})$ are related through

(4.3.1)

$$F(\mathbf{z}, \mathbf{w}) \in \mathcal{B}_t^\lambda(\mathbb{C}^{2n}) \quad \text{if and only if} \quad F(\mathbf{z}, \mathbf{w}) e^{\frac{\lambda}{4}(\coth 2t\lambda)(\mathbf{z} \cdot \mathbf{z} + \mathbf{w} \cdot \mathbf{w})} \in \mathcal{F}_t^\lambda(\mathbb{C}^{2n}).$$

Let $T \simeq (\mathbb{S}^1)^n$ be the diagonal subgroup of $U(n)$. We write the elements of T as $\sigma = (e^{i\varphi_1}, \dots, e^{i\varphi_n})$. For each n -tuple of integers $\mathbf{m} = (m_1, m_2, \dots, m_n)$ let $\chi_{\mathbf{m}}(\sigma)$ be the character of T defined by $\chi_{\mathbf{m}}(\sigma) = e^{i \sum_{j=1}^n m_j \varphi_j}$. For each $G \in \mathcal{F}_t^\lambda(\mathbb{C}^{2n})$ define

$$G_{\mathbf{m}}(\mathbf{z}, \mathbf{w}) = \int_T G(\sigma \mathbf{z}, \sigma \mathbf{w}) \overline{\chi_{\mathbf{m}}(\sigma)} d\sigma.$$

As G is holomorphic it is clear that $G_{\mathbf{m}} = 0$ unless \mathbf{m} is a multi-index in \mathbb{N}_0^n . By the Fourier expansion

$$G(\sigma \mathbf{z}, \sigma \mathbf{w}) = \sum_{\mathbf{m} \in \mathbb{N}_0^n} G_{\mathbf{m}}(\mathbf{z}, \mathbf{w}) \chi_{\mathbf{m}}(\sigma)$$

and by the Plancherel theorem we have

$$(4.3.2) \quad \int_T |G(\sigma \mathbf{z}, \sigma \mathbf{w})|^2 d\sigma = \sum_{\mathbf{m} \in \mathbb{N}_0^n} |G_{\mathbf{m}}(\mathbf{z}, \mathbf{w})|^2.$$

Note that the functions $G_{\mathbf{m}}$ satisfy the homogeneity condition

$$G_{\mathbf{m}}(\sigma \mathbf{z}, \sigma \mathbf{w}) = \chi_{\mathbf{m}}(\sigma) G_{\mathbf{m}}(\mathbf{z}, \mathbf{w}).$$

For any $G \in \mathcal{F}_t^\lambda(\mathbb{C}^{2n})$ we observe that, as $\Im(\mathbf{z} \cdot \overline{\mathbf{w}}) = \Im(\sigma \mathbf{z} \cdot \sigma \overline{\mathbf{w}})$,

$$\begin{aligned} & \int_{\mathbb{C}^{2n}} G(\mathbf{z}, \mathbf{w}) e^{\lambda \Im(\mathbf{z} \cdot \overline{\mathbf{w}})} e^{-\frac{\lambda}{2}(\coth 2t\lambda)(|\mathbf{z}|^2 + |\mathbf{w}|^2)} d\mathbf{z} d\mathbf{w} \\ &= \int_T \int_{\mathbb{C}^{2n}} G(\sigma \mathbf{z}, \sigma \mathbf{w}) e^{\lambda \Im(\mathbf{z} \cdot \overline{\mathbf{w}})} e^{-\frac{\lambda}{2}(\coth 2t\lambda)(|\mathbf{z}|^2 + |\mathbf{w}|^2)} d\mathbf{z} d\mathbf{w} d\sigma. \end{aligned}$$

In view of this and the homogeneity condition we arrive at the orthogonality relations

$$\int_{\mathbb{C}^{2n}} G_{\mathbf{m}}(\mathbf{z}, \mathbf{w}) \overline{G_{\mathbf{m}'}(\mathbf{z}, \mathbf{w})} e^{\lambda \Im(\mathbf{z} \cdot \overline{\mathbf{w}})} e^{-\frac{\lambda}{2}(\coth 2t\lambda)(|\mathbf{z}|^2 + |\mathbf{w}|^2)} d\mathbf{z} d\mathbf{w} = 0,$$

whenever \mathbf{m} and \mathbf{m}' are different. We also note that each $G_{\mathbf{m}}$ has an expansion of the form

$$G_{\mathbf{m}}(\mathbf{z}, \mathbf{w}) = \sum_{\alpha+\beta=\mathbf{m}} c_{\alpha, \beta} \mathbf{z}^\alpha \mathbf{w}^\beta.$$

Hence each $G_{\mathbf{m}}$ is a polynomial.

Lemma 4.4. *The linear span of $P_{\alpha, \beta}(\mathbf{z}, \mathbf{w}) = \mathbf{z}^\alpha \mathbf{w}^\beta$, $\alpha, \beta \in \mathbb{N}_0^n$, is dense in $\mathcal{F}_t^\lambda(\mathbb{C}^{2n})$.*

Proof. If $G \in \mathcal{F}_t^\lambda(\mathbb{C}^{2n})$ is orthogonal to all $P_{\alpha, \beta}$ then

$$\int_{\mathbb{C}^{2n}} G(\mathbf{z}, \mathbf{w}) \overline{G_{\mathbf{m}}(\mathbf{z}, \mathbf{w})} e^{\lambda \Im(\mathbf{z} \cdot \overline{\mathbf{w}})} e^{-\frac{\lambda}{2}(\coth 2t\lambda)(|\mathbf{z}|^2 + |\mathbf{w}|^2)} d\mathbf{z} d\mathbf{w} = 0$$

for any $\mathbf{m} \in \mathbb{N}_0^n$. In view of the homogeneity property of $G_{\mathbf{m}}$ this means that

$$\int_{\mathbb{C}^{2n}} |G_{\mathbf{m}}(\mathbf{z}, \mathbf{w})|^2 e^{\lambda \Im(\mathbf{z} \cdot \overline{\mathbf{w}})} e^{-\frac{\lambda}{2}(\coth 2t\lambda)(|\mathbf{z}|^2 + |\mathbf{w}|^2)} d\mathbf{z} d\mathbf{w} = 0.$$

Hence $G_{\mathbf{m}}(\mathbf{z}, \mathbf{w}) = 0$ for every \mathbf{m} and so $G = 0$ in view of (4.3.2). \square

It follows from Lemma 4.4 and (4.3.1) that every $F \in \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ has the orthonormal expansion

$$(4.3.3) \quad F(\mathbf{z}, \mathbf{w}) = \sum_{\mathbf{m}} \sum_{\alpha+\beta=\mathbf{m}} c_{\alpha, \beta} P_{\alpha, \beta}(\mathbf{z}, \mathbf{w}) e^{-\frac{\lambda}{4}(\coth 2t\lambda)(\mathbf{z} \cdot \mathbf{z} + \mathbf{w} \cdot \mathbf{w})}.$$

The functions

$$\Psi_{\mathbf{m}}(\mathbf{z}, \mathbf{w}) = \sum_{\alpha+\beta=\mathbf{m}} c_{\alpha, \beta} P_{\alpha, \beta}(\mathbf{z}, \mathbf{w}) e^{-\frac{\lambda}{4}(\coth 2t\lambda)(\mathbf{z} \cdot \mathbf{z} + \mathbf{w} \cdot \mathbf{w})}$$

are orthogonal in $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ but not orthogonal in any other $\mathcal{B}_s^\lambda(\mathbb{C}^{2n})$ when $s \neq t$. Another crucial property of these functions is proved in the next lemma.

Lemma 4.5. *All the functions $\Psi_{\alpha, \beta}^{\mathbf{m}}(\mathbf{z}, \mathbf{w}) = P_{\alpha, \beta}(\mathbf{z}, \mathbf{w}) e^{-\frac{\lambda}{4}(\coth 2t\lambda)(\mathbf{z} \cdot \mathbf{z} + \mathbf{w} \cdot \mathbf{w})}$ belong to the image $\text{im } H_t^\lambda$ of the heat kernel transform.*

Proof. We may restrict ourselves to the case of $\lambda = 1$. It will suffice to show that for each pair $\alpha, \beta \in \mathbb{N}_0^n$ there exists a function $f_{\alpha, \beta} \in L^2(\mathbb{R}^{2n})$ such that

$$H_t(f_{\alpha, \beta})(\mathbf{z}, \mathbf{w}) = (f_{\alpha, \beta} \times p_t)^\sim(\mathbf{z}, \mathbf{w}) = \mathbf{z}^\alpha \mathbf{w}^\beta e^{-\frac{1}{4}(\coth 2t)(\mathbf{z}^2 + \mathbf{w}^2)}.$$

As both sides are holomorphic it is enough to prove this for $\mathbf{z} = \mathbf{x}$ and $\mathbf{w} = \mathbf{u}$ where $\mathbf{x}, \mathbf{u} \in \mathbb{R}^n$. Thus we need to solve the equation

$$(4.3.4) \quad (f_{\alpha, \beta} \times p_t)(\mathbf{x}, \mathbf{u}) = \mathbf{x}^\alpha \mathbf{u}^\beta p_{2t}(\mathbf{x}, \mathbf{u}).$$

In the sequel it will be convenient to identify \mathbb{R}^{2n} with \mathbb{C}^n via $z = \mathbf{x} + i\mathbf{u}$. Then $\mathbf{x}^\alpha \mathbf{u}^\beta = 2^{-|\alpha|}(2i)^{-|\beta|}(z + \bar{z})^\alpha(z - \bar{z})^\beta$. It is then sufficient to solve the equation

$$(f_{\alpha,\beta} \times p_t)(z) = z^\alpha \bar{z}^\beta p_{2t}(z)$$

where $p_t(z) = p_t(\mathbf{x}, \mathbf{u})$. We solve this equation using properties of the Weyl transform.

Recall that the Weyl transform $\mathbb{W}(f)$ of a function $f \in L^1(\mathbb{C}^n)$, is defined to be the bounded operator on $L^2(\mathbb{R}^n)$ given by

$$\mathbb{W}(f)\varphi(\xi) = \int_{\mathbb{C}^n} f(z)\pi(z)\varphi(\xi) dz \quad (\xi \in \mathbb{R}^n)$$

where $\pi(z) = \pi_1(z, 0)$ and π_1 is the Schrödinger representation of the Heisenberg group \mathbb{H} with parameter $\lambda = 1$ (see [7, Section 2.2]). Then for $f \in L^1 \cap L^2(\mathbb{C}^n)$, $\mathbb{W}(f)$ is a Hilbert-Schmidt operator and \mathbb{W} extends to $L^2(\mathbb{C}^n)$ as an isometry onto the space of Hilbert-Schmidt operators. Moreover $\mathbb{W}(f \times g) = \mathbb{W}(f)\mathbb{W}(g)$ and $\mathbb{W}(p_t) = e^{-tH}$. Here H denotes the Hermite operator

$$H = (-\Delta + |\xi|^2) = \frac{1}{2} \sum_{j=1}^n (A_j A_j^* + A_j^* A_j),$$

in which $A_j = -\frac{\partial}{\partial \xi_j} + \xi_j$ and $A_j^* = \frac{\partial}{\partial \xi_j} + \xi_j$ are the creation and annihilation operators. The eigenfunctions of H are the Hermite functions Φ_α . They satisfy

$$A_j \Phi_\alpha = (2\alpha_j + 2)^{\frac{1}{2}} \Phi_{\alpha+e_j}, \quad A_j^* \Phi_\alpha = (2\alpha_j)^{\frac{1}{2}} \Phi_{\alpha-e_j}$$

where e_j are the coordinate vectors. Given a bounded linear operator T on $L^2(\mathbb{R}^n)$, define the derivations

$$\delta_j T = [A_j^*, T] = A_j^* T - T A_j^*, \quad \bar{\delta}_j T = [T, A_j] = T A_j - A_j T.$$

Then it can be shown that (see [8])

$$\mathbb{W}(z_j f) = \delta_j \mathbb{W}(f), \quad \text{and} \quad \mathbb{W}(\bar{z}_j f) = \bar{\delta}_j \mathbb{W}(f).$$

By iteration we obtain

$$\mathbb{W}(z^\alpha \bar{z}^\beta f) = \delta^\alpha \bar{\delta}^\beta \mathbb{W}(f)$$

where $\delta^\alpha \bar{\delta}^\beta$ are defined in an obvious way.

Returning to our equation (4.3.4), we take the Weyl transform on both sides and obtain that

$$\mathbb{W}(f_{\alpha,\beta}) e^{-tH} = \delta^\alpha \bar{\delta}^\beta e^{-2tH}.$$

Testing against the Hermite basis it is easy to see that the densely defined operator

$$T = (\delta^\alpha \bar{\delta}^\beta e^{-2tH}) e^{tH}$$

extends to the whole $L^2(\mathbb{R}^n)$ as a Hilbert-Schmidt operator. Hence, $T = \mathbb{W}(f_{\alpha,\beta})$ for some $f_{\alpha,\beta} \in L^2(\mathbb{C}^n)$. This completes the proof of the lemma. \square

Theorem 4.6. *Let $t > 0$ and $\lambda \in \mathbb{R}$, $\lambda \neq 0$. Then the λ -twisted heat kernel transform $H_t^\lambda : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ is an isometric isomorphism. Moreover, $\{\tilde{\Phi}_{\alpha,\beta}^\lambda : \alpha, \beta \in \mathbb{N}_0^n\}$ is an orthonormal basis for $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$.*

Proof. As usual we restrict our attention to the case $\lambda = 1$. All what is left to show is that H_t is onto. Suppose that $F \in \mathcal{B}_t(\mathbb{C}^{2n})$ is orthogonal to all $\tilde{\Phi}_{\alpha,\beta}$. We have to verify that $F \equiv 0$. The function

$$G(\mathbf{z}, \mathbf{w}) = F(\mathbf{z}, \mathbf{w}) e^{\frac{1}{4}(\coth 2t)(\mathbf{z} \cdot \mathbf{z} + \mathbf{w} \cdot \mathbf{w})}$$

is orthogonal in \mathcal{F}_t to all functions of the form

$$f \times p_t(\mathbf{z}, \mathbf{w}) e^{-\frac{1}{4}(\coth 2t)(\mathbf{z} \cdot \mathbf{z} + \mathbf{w} \cdot \mathbf{w})}.$$

In view of Lemma 4.5, G is orthogonal to all $P_{\alpha,\beta}$. Hence by Lemma 4.4 we get $G = 0$ and so $F = 0$ as desired. \square

We conclude this subsection with a proof of the uniqueness of the weight function W_t^λ .

Lemma 4.7. *W_t^λ is the unique non-negative measurable weight function for the λ -twisted Bergman space $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$.*

Proof. In view of (4.3.1), the statement is equivalent to the assertion that

$$(4.3.5) \quad \mathcal{W}_t^\lambda(\mathbf{w}, \mathbf{z}) = e^{\lambda \Im(\mathbf{z} \cdot \overline{\mathbf{w}})} e^{-\frac{\lambda}{2}(\coth 2t\lambda)(|\mathbf{z}|^2 + |\mathbf{w}|^2)}$$

is the unique weight function for the twisted Fock space $\mathcal{F}_t^\lambda(\mathbb{C}^{2n})$. This will be verified in the sequel.

We may restrict ourselves to the notationally convenient case $n = 1$, $\lambda = 1$ and drop all sub and superscripts involving λ . Let $\mathcal{U}_t : \mathbb{C}^2 \rightarrow \mathbb{R}_{\geq 0}$ be a measurable function such that

$$(4.3.6) \quad \int_{\mathbb{C}^2} f(z, w) \overline{g(z, w)} \mathcal{W}_t(z, w) dz dw = \int_{\mathbb{C}^2} f(z, w) \overline{g(z, w)} \mathcal{U}_t(z, w) dz dw$$

holds for all $f, g \in \mathcal{F}_t(\mathbb{C}^2)$. We have to show that $\mathcal{W}_t = \mathcal{U}_t$ almost everywhere. Recall from Lemma 4.5 that all polynomials $z^m w^n$ lie in $\mathcal{F}_t(\mathbb{C}^2)$. In particular the constant function belongs to $\mathcal{F}_t(\mathbb{C}^2)$ and (4.3.6) implies that \mathcal{U}_t is integrable.

Let us introduce polar coordinates on \mathbb{C}^2 by $(z, w) = (re^{i\phi}, se^{i\theta})$. Consider the Fourier expansions of \mathcal{W}_t and \mathcal{U}_t given by

$$\mathcal{W}_t(re^{i\phi}, se^{i\theta}) = \sum_{m,n \in \mathbb{Z}} a_{m,n}(r, s) e^{im\phi} e^{in\theta}$$

and

$$\mathcal{U}_t(re^{i\phi}, se^{i\theta}) = \sum_{m,n \in \mathbb{Z}} b_{m,n}(r, s) e^{im\phi} e^{in\theta}.$$

Identity (4.3.6) applied to $f = g = z^k w^l$ yields the estimates

$$(4.3.7) \quad \int_0^\infty \int_0^\infty r^{2k+1} s^{2l+1} |a_{m,n}(r, s)| dr ds \leq \|z^k w^l\|_{\mathcal{F}_t(\mathbb{C}^2)}^2$$

$$(4.3.8) \quad \int_0^\infty \int_0^\infty r^{2k+1} s^{2l+1} |b_{m,n}(r, s)| dr ds \leq \|z^k w^l\|_{\mathcal{F}_t(\mathbb{C}^2)}^2$$

for all $m, n \in \mathbb{Z}$.

We finish the proof and show $c_{m,n} = a_{m,n} - b_{m,n} = 0$ for all $m, n \in \mathbb{Z}$. In fact for $f = z^{m_1} w^{n_1}$ and $g = z^{m_2} w^{n_2}$ for $m_1, m_2, n_1, n_2 \in \mathbb{N}_0$ we obtain from (4.3.6) that

$$(4.3.9) \quad \int_0^\infty \int_0^\infty r^{m_1+m_2+1} s^{n_1+n_2+1} c_{m_2-m_1, n_2-n_1}(r, s) dr ds = 0.$$

Note that the integral on the left is absolutely convergent by (4.3.7)-(4.3.8). Fix now $m, n \in \mathbb{Z}$. Reformulating (4.3.9) reads

$$(4.3.10) \quad \int_0^\infty \int_0^\infty r^{|m|+2k+1} s^{|n|+2l+1} c_{m,n}(r, s) dr ds = 0$$

for all $k, l \in \mathbb{N}_0$. In view of (4.3.7)-(4.3.8), we have the estimate

$$(4.3.11) \quad \int_0^\infty \int_0^\infty r^{|m|+2k+1} s^{|n|+2l+1} |c_{m,n}(r, s)| dr ds \leq 2 \|z^{|m|+k} w^{|n|+l}\|_{\mathcal{F}_t(\mathbb{C}^2)}^2 + C$$

with $C = \int_{|z|<1, |w|<1} (\mathcal{W}_t(z, w) + \mathcal{U}_t(z, w)) dz dw > 0$ a constant independent of m, n .

Denote by $\mathcal{R}_+ = \{\zeta \in \mathbb{C} : \Re \zeta > 0\}$ the right halfplane. Let us recall the elementary fact that a bounded holomorphic function $f : \mathcal{R}_+ \rightarrow \mathbb{C}$ which vanishes on $\alpha + \beta \mathbb{N}_0$ for some $\alpha \geq 0, \beta > 0$ is identically zero (see [4], Lemma A.1 for a proof).

The explicite formula for \mathcal{W}_t in (4.3.5) yields a crude but sufficient estimate for the norm of monomials: there exists constants $c, \gamma > 0$ such that for all $k, l \in \mathbb{N}_0$ one has

$$(4.3.12) \quad \|z^k w^l\|^2 \leq c \cdot e^{\gamma(k+l)}.$$

Now define the function

$$\begin{aligned} F_{m,n} : \mathcal{R}_+ \times \mathcal{R}_+ &\rightarrow \mathbb{C}, \\ (\zeta_1, \zeta_2) &\mapsto e^{-3\gamma(\zeta_1 + \zeta_2)} \int_0^\infty \int_0^\infty r^{|m|+2\zeta_1+1} s^{|n|+2\zeta_2+1} c_{m,n}(r, s) dr ds. \end{aligned}$$

It is a consequence of (4.3.11) and (4.3.12) that $F_{m,n}$ is bounded and holomorphic on $\mathcal{R}_+ \times \mathcal{R}_+$. As $F_{m,n}|_{\mathbb{N} \times \mathbb{N}} = 0$ by (4.3.10), we conclude that $F_{m,n} = 0$. But then $c_{m,n} = 0$ by the properties of the Mellin transform. \square

4.4. The inversion formula for H_t^λ . We conclude this section by proving a formula for the inverse map of the λ -twisted heat kernel transform $H_t^\lambda : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$. It is in the nature of the problem that $(H_t^\lambda)^{-1}$ can only be defined nicely on a dense subspace of $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$. The precise statement is as follows:

Theorem 4.8. *The inverse of $H_t^\lambda : L^2(\mathbb{R}^{2n}) \rightarrow \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ is given by*

$$(H_t^\lambda)^{-1}(F) = \lim_{s \rightarrow 0^+} F_s \quad (F \in \mathcal{B}_t^\lambda(\mathbb{C}^{2n})),$$

where

$$F_s(\mathbf{a}, \mathbf{b}) = \int_{\mathbb{C}^{2n}} F(\mathbf{z} + \mathbf{a}, \mathbf{w} + \mathbf{b}) e^{\frac{i\lambda}{2}(\mathbf{a} \cdot \mathbf{w} - \mathbf{b} \cdot \mathbf{z})} \overline{p_{t+s}^\lambda(\mathbf{z}, \mathbf{w})} W_t^\lambda(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w}.$$

Proof. As before we only need to handle the case of $\lambda = 1$.

Let $F \in \mathcal{B}_t(\mathbb{C}^{2n})$. Since the space $\mathcal{B}_t(\mathbb{C}^{2n})$ is twisted-translation invariant, it is clear that the function

$$(\tau(-\mathbf{a}, -\mathbf{b})F)(\mathbf{z}, \mathbf{w}) = F(\mathbf{z} + \mathbf{a}, \mathbf{w} + \mathbf{b}) e^{\frac{i}{2}(\mathbf{a} \cdot \mathbf{w} - \mathbf{b} \cdot \mathbf{z})}$$

belongs to $\mathcal{B}_t(\mathbb{C}^{2n})$. Hence, by Cauchy-Schwarz inequality, the integral defining F_s converges. According to Theorem 4.6 we have $F = H_t(f) = (f \times p_t)^\sim$ for some

$f \in L^2(\mathbb{R}^{2n})$. It is easy to see that $F_s \in L^2(\mathbb{R}^{2n})$ and that F_s converges to f . In fact, we have

$$\begin{aligned} F_s(\mathbf{a}, \mathbf{b}) &= \int_{\mathbb{C}^{2n}} (\tau(-\mathbf{a}, -\mathbf{b}) H_t(f))(\mathbf{z}, \mathbf{w}) \overline{H_t(p_s)(\mathbf{z}, \mathbf{w})} W_t(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} \\ &= \int_{\mathbb{C}^{2n}} H_t(\tau(-\mathbf{a}, -\mathbf{b}) f)(\mathbf{z}, \mathbf{w}) \overline{H_t(p_s)(\mathbf{z}, \mathbf{w})} W_t(\mathbf{z}, \mathbf{w}) d\mathbf{z} d\mathbf{w} \\ &= \int_{\mathbb{R}^{2n}} (\tau(-\mathbf{a}, -\mathbf{b}) f)(\mathbf{x}, \mathbf{u}) p_s(\mathbf{x}, \mathbf{u}) d\mathbf{x} d\mathbf{u}. \end{aligned}$$

As $(p_s)_{s>0}$ is a Dirac sequence, it therefore follows that

$$F_s(\mathbf{a}, \mathbf{b}) \rightarrow (\tau(-\mathbf{a}, -\mathbf{b}) f)(0, 0) = f(\mathbf{a}, \mathbf{b})$$

for $s \rightarrow 0^+$. This proves the theorem. \square

5. THE IMAGE OF \mathcal{H}_t AS A DIRECT INTEGRAL

The goal of this section is to give a natural \mathbb{H} -equivariant identification of the image of the heat kernel transform $\mathcal{H}_t : L^2(\mathbb{H}) \rightarrow \mathcal{O}(\mathbb{H}_\mathbb{C})$ with a direct integral of twisted Bergman-spaces.

We set $\mathbb{R}^\times = \mathbb{R} \setminus \{0\}$. For each $\lambda \in \mathbb{R}^\times$ we write $\langle \cdot, \cdot \rangle_\lambda$ for the inner product on $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$. Recall the orthonormal basis $\{\tilde{\Phi}_{\alpha, \beta}^\lambda : \alpha, \beta \in \mathbb{N}_0^n\}$ of $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ from Theorem 4.6.

We now introduce a measurable structure on $\coprod_{\lambda \in \mathbb{R}^\times} \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$. By a *section* s of $\coprod_{\lambda \in \mathbb{R}^\times} \mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ we understand an assignment

$$s : \mathbb{R}^\times \rightarrow \coprod_{\lambda \in \mathbb{R}^\times} \mathcal{B}_t^\lambda(\mathbb{C}^{2n}), \quad \lambda \mapsto s_\lambda \in \mathcal{B}_t^\lambda(\mathbb{C}^{2n}).$$

We declare a section $s = (s_\lambda)$ to be *measurable* if for all $\alpha, \beta \in \mathbb{N}_0^n$ the map

$$\mathbb{R}^\times \rightarrow \mathbb{C}, \quad \lambda \mapsto \langle s_\lambda, \tilde{\Phi}_{\alpha, \beta}^\lambda \rangle_\lambda$$

is measurable. With that we can define a direct integral of Hilbert spaces by

$$\begin{aligned} \int_{\mathbb{R}^\times}^\oplus \mathcal{B}_t^\lambda(\mathbb{C}^{2n}) e^{2t\lambda^2} d\lambda &= \{s : \mathbb{R}^\times \rightarrow \coprod_{\lambda \in \mathbb{R}^\times} \mathcal{B}_t^\lambda(\mathbb{C}^{2n}) : s \text{ measurable}, \\ &\quad \|s\|^2 = \int_{\mathbb{R}^\times} \|\langle s_\lambda, \tilde{\Phi}_{\alpha, \beta}^\lambda \rangle_\lambda\|^2 e^{2t\lambda^2} d\lambda < \infty\}. \end{aligned}$$

Recall the unitary representation τ^λ of \mathbb{H} on $\mathcal{B}_t^\lambda(\mathbb{C}^{2n})$ from Subsection 4.1. We then obtain a unitary representation $\int_{\mathbb{R}^\times} \tau^\lambda d\lambda$ on $\int_{\mathbb{R}^\times}^\oplus \mathcal{B}_t^\lambda(\mathbb{C}^{2n}) e^{2t\lambda^2} d\lambda$ by

$$\left(\int_{\mathbb{R}^\times} \tau^\lambda d\lambda \right) (h)(s) = (\tau^\lambda(h) s_\lambda)_\lambda$$

for $h \in \mathbb{H}$ and $s = (s_\lambda)$ a square integrable section.

In our next step we will identify $\text{im } \mathcal{H}_t$ with our direct integral from above. For that let $f \in S(\mathbb{H})$ be a Schwartz function. Then $\mathcal{H}_t(f) = (k_t * f)^\sim$ and from $(f * k_t)^\lambda = e^{-t\lambda^2} f^\lambda *_{\lambda} p_t^\lambda$ it hence follows that

$$(5.1) \quad (\mathcal{H}_t(f))^\lambda = e^{-t\lambda^2} H_t^\lambda(f^\lambda).$$

Theorem 5.1. *Let $t > 0$. The map*

$$\mathcal{J}_t : S(\mathbb{H}) \rightarrow \int_{\mathbb{R}^\times}^\oplus \mathcal{B}_t^\lambda(\mathbb{C}^{2n}) e^{2t\lambda^2} d\lambda, \quad f \mapsto ((\mathcal{H}_t(f))^\lambda)_\lambda$$

extends to an \mathbb{H} -equivariant unitary equivalence

$$(\tau, L^2(\mathbb{H})) \simeq \left(\int_{\mathbb{R}^\times} \tau^\lambda d\lambda, \int_{\mathbb{R}^\times}^\oplus \mathcal{B}_t^\lambda(\mathbb{C}^{2n}) e^{2t\lambda^2} d\lambda \right).$$

Proof. Let $f \in S(\mathbb{H})$. Then

$$\|f\|^2 = \int_{\mathbb{R}^{2n+1}} |f(\mathbf{x}, \mathbf{u}, \xi)|^2 d\mathbf{x} d\mathbf{u} d\xi = \int_{\mathbb{R}^{2n}} \int_{\mathbb{R}} |f^\lambda(\mathbf{x}, \mathbf{u})|^2 d\mathbf{x} d\mathbf{u} d\lambda.$$

By Theorem 4.6 we have for each λ that

$$\int_{\mathbb{R}^{2n}} |f^\lambda(\mathbf{x}, \mathbf{u})|^2 d\mathbf{x} d\mathbf{u} = \|H_t^\lambda(f^\lambda)\|^2.$$

Thus it follows from (5.1) that \mathcal{J}_t extends to an isometric embedding

$$\mathcal{J}_t : L^2(\mathbb{H}) \rightarrow \int_{\mathbb{R}^\times}^\oplus \mathcal{B}_t^\lambda(\mathbb{C}^{2n}) e^{2t\lambda^2} d\lambda,$$

denoted by the same symbol. The discussion leading up to (4.1.3) shows that \mathcal{J}_t is \mathbb{H} -equivariant.

It remains to show that \mathcal{J}_t is onto. For that observe if

$$f(\mathbf{x}, \mathbf{u}, \xi) = F(\mathbf{x}, \mathbf{u})\varphi(\xi)$$

for Schwartz functions $F \in S(\mathbb{R}^{2n})$, $\varphi \in \mathbb{S}(\mathbb{R})$, then

$$(\mathcal{H}_t(f))^\lambda(\mathbf{x}, \mathbf{u}) = \hat{\varphi}(\lambda) e^{-t\lambda^2} H_t^\lambda(F)(\mathbf{x}, \mathbf{u}).$$

From that the surjectivity of \mathcal{J}_t easily follows. \square

6. THE IMAGE OF \mathcal{H}_t AS A SUM OF WEIGHTED BERGMAN SPACES

In this section we prove the main result of this paper: $\text{im } \mathcal{H}_t = \mathcal{B}_t^+(\mathbb{H}_\mathbb{C}) \oplus \mathcal{B}_t^-(\mathbb{H}_\mathbb{C})$ is a direct sum of two weighted Bergman spaces. Very surprisingly, the corresponding weight functions W_t^+ and W_t^- attain also negative values (see the phenomenon explained in Example 3.1).

We will begin our discussion by showing that $\text{im } \mathcal{H}_t$ is not a weighted Bergman space corresponding to a non-negative weight function. This will lead naturally to the definition of the partial weight functions W_t^+ and W_t^- and to a proof of the main theorem.

6.1. Non-existence of a non-negative weight function. The goal of this subsection is to discuss the non-existence of a non-negative weight function W_t on $\mathbb{H}_\mathbb{C}$ such that

$$(6.1.1) \quad \|f\|^2 = \int_{\mathbb{H}_\mathbb{C}} |\mathcal{H}_t(f)(z)|^2 W_t(z) dz$$

holds for all $f \in L^2(\mathbb{H})$. In other words, $\text{im } \mathcal{H}_t$ is not a weighted Bergman space corresponding to a non-negative weight function W_t . Subject to the natural assumption that W_t is \mathbb{H} -invariant, this will be established in Theorem 6.2 below.

Recall that we identify $\mathbb{H}_\mathbb{C}$ with $\mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C}$. If $\mathbf{z} = \mathbf{x} + i\mathbf{y}$, $\mathbf{w} = \mathbf{u} + i\mathbf{v}$, $\zeta = \xi + i\eta$ then $(\mathbf{z}, \mathbf{w}, \zeta) = h e^{iX}$ with $X = (\mathbf{y}, \mathbf{v}, \eta + \frac{1}{2}(\mathbf{x} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{y}))$ and $h = (\mathbf{x}, \mathbf{u}, \xi)$.

Suppose that (6.1.1) holds. As \mathcal{H}_t is \mathbb{H} -equivariant, it is natural to assume that $W_t(he^{iX}) = W_t(e^{iX})$ for all $h \in \mathbb{H}$. In coordinates $(\mathbf{z}, \mathbf{w}, \zeta)$ this means that

$$(6.1.2) \quad W_t(\mathbf{x} + i\mathbf{y}, \mathbf{u} + i\mathbf{v}, \xi + i\eta) = W_t\left(i\mathbf{y}, i\mathbf{v}, i\eta + \frac{i}{2}(\mathbf{x} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{y})\right).$$

Thus the weight function is uniquely determined by its restriction to $(i\mathbf{y}, i\mathbf{v}, i\eta)$. Furthermore W_t is independent of the ξ variable. Hence (6.1.1) reads as

$$(6.1.3) \quad \|f\|^2 = \int_{\mathbb{H}_C} |\mathcal{H}_t(f)(\mathbf{z}, \mathbf{w}, \zeta)|^2 W_t(\mathbf{z}, \mathbf{w}, i\eta) d\mathbf{z} d\mathbf{w} d\zeta$$

Proposition 6.1. *Let $W_t(\mathbf{z}, \mathbf{w}, i\eta)$ be a non-negative measurable function on \mathbb{H}_C . If (6.1.3) holds for all $f \in L^2(\mathbb{H})$, then it is necessary that W_t satisfies*

$$(6.1.4) \quad W_t^\lambda(\mathbf{z}, \mathbf{w}) = e^{-2t\lambda^2} \int_{\mathbb{R}} e^{2\lambda\eta} W_t(\mathbf{z}, \mathbf{w}, i\eta) d\eta$$

for all $\lambda \in \mathbb{R}^\times$ and W_t^λ the function given in (4.2.2).

Proof. Write

$$\mathcal{W}_t^\lambda(\mathbf{z}, \mathbf{w}) = e^{-2t\lambda^2} \int_{\mathbb{R}} e^{2\lambda\eta} W_t(\mathbf{z}, \mathbf{w}, i\eta) d\eta.$$

We have to show that $W_t^\lambda = \mathcal{W}_t^\lambda$.

It follows from (2.2.2) that

$$\int_{\mathbb{R}} k_t^\sim(\mathbf{z}, \mathbf{w}, \xi + i\eta) e^{i\lambda\xi} d\xi = e^{\lambda\eta} e^{-t\lambda^2} p_t^\lambda(\mathbf{z}, \mathbf{w}).$$

An easy calculation shows that

$$(6.1.5) \quad \begin{aligned} \int_{\mathbb{R}} \mathcal{H}_t(f)(\mathbf{z}, \mathbf{w}, \xi + i\eta) e^{i\lambda\xi} d\xi &= e^{\lambda\eta} e^{-t\lambda^2} (f^\lambda *_{\lambda} p_t^\lambda)(\mathbf{z}, \mathbf{w}) \\ &= e^{\lambda\eta} e^{-t\lambda^2} H_t^\lambda(f^\lambda)(\mathbf{z}, \mathbf{w}). \end{aligned}$$

Therefore, upon applying Plancherel theorem in the ξ -variable, the equation (6.1.3) becomes

$$\|f\|^2 = \int_{\mathbb{R}} \int_{\mathbb{C}^{2n}} \int_{\mathbb{R}} |H_t^\lambda(f^\lambda)(\mathbf{z}, \mathbf{w})|^2 e^{-2t\lambda^2} e^{2\lambda\eta} W_t(\mathbf{z}, \mathbf{w}, i\eta) d\eta d\mathbf{x} d\mathbf{u} d\mathbf{y} d\mathbf{v} d\lambda.$$

Here we applied Fubini's theorem which is justified as W_t is by assumption non-negative. Employing the definition of \mathcal{W}_t we therefore get

$$\int_{\mathbb{R}} \int_{\mathbb{R}^{2n}} |f^\lambda(\mathbf{x}, \mathbf{u})|^2 d\mathbf{x} d\mathbf{u} d\lambda = \int_{\mathbb{R}} \int_{\mathbb{C}^{2n}} |H_t^\lambda(f^\lambda)(\mathbf{z}, \mathbf{w})|^2 \mathcal{W}_t^\lambda(\mathbf{z}, \mathbf{w}) d\mathbf{x} d\mathbf{u} d\mathbf{y} d\mathbf{v} d\lambda.$$

Let now φ be a Schwartz class function on \mathbb{R} with unit L^2 -norm and define f by $f(\mathbf{x}, \mathbf{u}, \xi) = \widehat{\varphi}(\xi) F(\mathbf{x}, \mathbf{u})$ with $F \in L^2(\mathbb{R}^{2n})$. Then $f^\lambda(\mathbf{x}, \mathbf{u}) = \varphi(\lambda) F(\mathbf{x}, \mathbf{u})$ and $H_t^\lambda(f^\lambda) = \varphi(\lambda) H_t^\lambda(F)$. For such f the above displayed equation becomes

$$(6.1.6) \quad \int_{\mathbb{R}^{2n}} |F(\mathbf{x}, \mathbf{u})|^2 d\mathbf{x} d\mathbf{u} = \int_{\mathbb{R}} \int_{\mathbb{C}^{2n}} |\varphi(\lambda)|^2 |H_t^\lambda(F)(\mathbf{z}, \mathbf{w})|^2 \mathcal{W}_t^\lambda(\mathbf{z}, \mathbf{w}) d\mathbf{x} d\mathbf{u} d\mathbf{y} d\mathbf{v} d\lambda.$$

From (6.1.6) it is easy to see that for every $\lambda \neq 0$ and all $F \in L^2(\mathbb{R}^{2n})$

$$\int_{\mathbb{R}^{2n}} |F(\mathbf{x}, \mathbf{u})|^2 d\mathbf{x} d\mathbf{u} = \int_{\mathbb{C}^{2n}} |H_t^\lambda(F)(\mathbf{z}, \mathbf{w})|^2 \mathcal{W}_t^\lambda(\mathbf{z}, \mathbf{w}) d\mathbf{x} d\mathbf{u} d\mathbf{y} d\mathbf{v}.$$

By Lemma 4.7, the weight function \mathcal{W}_t^λ is given by (4.2.2). \square

Theorem 6.2. *There is no non-negative left \mathbb{H} -invariant weight function W_t for which (6.1.3) holds for all $f \in L^2(\mathbb{H})$, i.e. $\text{im } \mathcal{H}_t$ is not a weighted Bergman spaces corresponding to a left \mathbb{H} -invariant non-negative weight function.*

Proof. By (6.1.2), W_t is uniquely determined by its restriction to $(i\mathbf{y}, i\mathbf{v}, i\eta)$. By (4.2.2) and (6.1.4),

$$\int_{\mathbb{R}} e^{2\lambda\eta} W_t(i\mathbf{y}, i\mathbf{v}, i\eta) d\eta = e^{2t\lambda^2} p_{2t}^\lambda(2\mathbf{y}, 2\mathbf{v}) \quad (\lambda \in \mathbb{R}^\times).$$

If W_t were non-negative, then for fixed \mathbf{y}, \mathbf{v} and λ the function $\eta \mapsto e^{2\lambda\eta} W_t(i\mathbf{y}, i\mathbf{v}, i\eta)$ would belong to $L^1(\mathbb{R})$. Consequently, we would have

$$(6.1.7) \quad \int_{\mathbb{R}} e^{2(\lambda+is)\eta} W_t(i\mathbf{y}, i\mathbf{v}, i\eta) d\eta = e^{2t(\lambda+is)^2} p_{2t}^{\lambda+is}(2\mathbf{y}, 2\mathbf{v}).$$

The left hand side of (6.1.7) would be holomorphic in $\lambda+is$ since for every $n \in \mathbb{N}_0$ there exists an $\varepsilon > 0$ such that $|\eta|^n e^{2\lambda\eta} W_t(i\mathbf{y}, i\mathbf{v}, i\eta) \leq e^{2\lambda\eta+\varepsilon|\eta|} W_t(i\mathbf{y}, i\mathbf{v}, i\eta)$. However, the right side of (6.1.7) is holomorphic only for $\lambda \neq 0$. If $\lambda = 0$, it becomes

$$p_{2t}^{is}(2\mathbf{y}, 2\mathbf{v}) = c_n \left(\frac{s}{\sin(2st)} \right)^n e^{-s(\cot 2st)(\mathbf{y}^2 + \mathbf{v}^2)},$$

which has an essential singularity at the points $s \in \mathbb{Z}^\times(\pi/t)$. Therefore there is no non-negative W_t that will satisfy (6.1.4) or (6.1.3). \square

6.2. The partial weight functions W_t^+ and W_t^- . Recall the twisted weight function W_t^λ from (4.2.2).

Let $\lambda > 0$ and define a function W_t^+ on $\mathbb{H}_{\mathbb{C}}$ by

$$(6.2.1) \quad W_t^+(\mathbf{z}, \mathbf{w}, \zeta) = \int_{\mathbb{R}} e^{2t(\lambda+\frac{i}{2}s)^2} e^{-2\eta(\lambda+\frac{i}{2}s)} W_t^{\lambda+\frac{i}{2}s}(\mathbf{z}, \mathbf{w}) ds.$$

It is easy to see that W_t^+ is well-defined. Notice that W_t^+ does not depend on ξ . In Proposition 6.3 below we will show that W_t^+ is independent of the choice of $\lambda > 0$.

Proposition 6.3. *The function W_t^+ satisfies the following properties:*

(i) W_t^+ is independent of the choice of $\lambda > 0$. In particular,

$$W_t^+(\mathbf{z}, \mathbf{w}, \zeta) = \lim_{\lambda \rightarrow 0^+} \int_{\mathbb{R}} e^{2t(\lambda+\frac{i}{2}s)^2} e^{-2\eta(\lambda+\frac{i}{2}s)} W_t^{\lambda+\frac{i}{2}s}(\mathbf{z}, \mathbf{w}) ds.$$

(ii) Let $a > 0$ and $Q \subseteq \mathbb{C}^{2n}$ be a compact set. Then there exists a constant $C = C(Q, a) > 0$ such that for all $\varepsilon \in [a^{-1}, a]$ and $\xi \in \mathbb{R}$

$$\sup_{(\mathbf{z}, \mathbf{w}) \in Q} \int_{\mathbb{R}} |e^{2\varepsilon\eta} W_t^+(\mathbf{z}, \mathbf{w}, \xi + i\eta)| d\eta \leq C.$$

(iii) W_t^+ satisfies (6.1.4) with $\lambda > 0$, i.e.

$$(6.2.2) \quad W_t^\lambda(\mathbf{z}, \mathbf{w}) = e^{-2t\lambda^2} \int_{\mathbb{R}} e^{2\eta\lambda} W_t^+(\mathbf{z}, \mathbf{w}, i\eta) d\eta$$

for $\lambda > 0$.

(iv) W_t^+ is real valued and left \mathbb{H} -invariant.

Proof. (i) Let $\lambda > 0$. We have to show that

$$W_t^+(\mathbf{z}, \mathbf{w}, \zeta) = \int_{\mathbb{R}} e^{2t(\lambda + \frac{i}{2}s)^2} e^{-2\eta(\lambda + \frac{i}{2}s)} W_t^{\lambda + \frac{i}{2}s}(\mathbf{z}, \mathbf{w}) ds$$

is independent of the choice of $\lambda > 0$. This will be a consequence of Cauchy's theorem. Indeed, let us denote the right hand side by $I(\lambda)$. For $R > 0$ and $\lambda_2 > \lambda_1 > 0$, let Γ_R be the contour consisting four lines, $\Gamma_R(\lambda_1) := \{\lambda_1 + is/2 : -2R < s < 2R\}$, $\gamma_{-R} = \{\lambda - iR : \lambda_1 \leq \lambda \leq \lambda_2\}$, $\Gamma_R(\lambda_2) = \{\lambda_2 + is/2 : -2R < s < 2R\}$ and $\gamma_R = \{\lambda + iR : \lambda_1 \leq \lambda \leq \lambda_2\}$, going counterclockwise. As $R \rightarrow \infty$, the integral on $\Gamma_R(\lambda)$ becomes $I(\lambda)$. Cauchy's theorem shows that

$$\int_{\Gamma_R} e^{-2\eta z} e^{2tz^2} W_t^z(\mathbf{z}, \mathbf{w}) dz = 0.$$

It is easy to see that $|\sinh(\lambda + iR)t| \geq \sinh(\lambda t)$ and $|\cosh(\lambda + iR)t| \leq \cosh(\lambda t)$. Thus,

$$|p_{2t}^{\lambda \pm iR}(2\mathbf{y}, 2\mathbf{v})| \leq \left(\frac{\lambda + R}{\sinh \lambda t} \right)^n e^{(\lambda + R) \coth(\lambda t)(|\mathbf{y}|^2 + |\mathbf{v}|^2)}.$$

Together with $|e^{2t(\lambda \pm iR)^2}| = e^{2t\lambda^2} e^{-2tR^2}$, this shows that the integrals on γ_{-R} and on γ_R go to zero as $R \rightarrow +\infty$. Thus, taking $R \rightarrow \infty$ shows that $I(\lambda_1) = I(\lambda_2)$. This completes the proof of (i).

(ii) It follows from (i) that W_t^+ satisfies the bound

$$|W_t^+(\mathbf{z}, \mathbf{w}, \xi + i\eta)| \leq e^{-2\eta\lambda} e^{2t\lambda^2} \int_{\mathbb{R}} e^{-\frac{1}{2}ts^2} \left| W_t^{\lambda + \frac{i}{2}s}(\mathbf{z}, \mathbf{w}) \right| ds.$$

for any $\lambda > 0$. Notice that the integral on the right is independent of η . Thus if we let $\lambda > \epsilon$ if $\eta > 0$ and $\lambda < \epsilon$ if $\eta < 0$, we see that $\eta \mapsto e^{2\epsilon\eta} W_t^+(\mathbf{z}, \mathbf{w}, \xi + i\eta)$ is integrable. This implies (ii).

(iii) This is immediate from the definition (6.2.1) and Fourier inversion (which is justified by (ii)). In fact, we have

$$W_t^+(\mathbf{z}, \mathbf{w}, \zeta) = e^{-2\eta\lambda} \int_{\mathbb{R}} e^{-i\eta s} e^{2t(\lambda + \frac{i}{2}s)^2} W_t^{\lambda + \frac{i}{2}s}(\mathbf{z}, \mathbf{w}) ds$$

and so

$$\int_{\mathbb{R}} e^{2\lambda\eta} W_t^+(\mathbf{z}, \mathbf{w}, \xi + i\eta) e^{i\eta s} d\eta = e^{2t(\lambda + \frac{i}{2}s)^2} W_t^{\lambda + \frac{i}{2}s}(\mathbf{z}, \mathbf{w}).$$

Setting $s = 0$ gives the the stated result.

(iv) We first show that W_t^+ is real valued. In fact, taking the conjugate of the integral (6.2.1) and then changing variable $s \rightarrow -s$ shows that the weight function W_t^+ is real. Finally, the fact that W_t^λ is twisted-translation invariant forces that W_t^+ is left \mathbb{H} -invariant. \square

The function W_t^+ has a natural counterpart W_t^- . For $\lambda < 0$ we define W_t^- by

$$(6.2.3) \quad W_t^-(\mathbf{z}, \mathbf{w}, \zeta) = \int_{\mathbb{R}} e^{2t(\lambda + \frac{i}{2}s)^2} e^{-2\eta(\lambda + \frac{i}{2}s)} W_t^{\lambda + \frac{i}{2}s}(\mathbf{z}, \mathbf{w}) ds.$$

It is more or less obvious that W_t^- satisfies the same properties as W_t^+ listed in Proposition (6.3), i.e. W_t^- is independent of the choice of $\lambda < 0$ etc. In fact, a simple change of variable in the integral and the fact that $p_t^\lambda(2\mathbf{y}, 2\mathbf{v})$ is even in λ leads to the relation

$$W_t^+(\mathbf{z}, \mathbf{w}, i\eta) = W_t^-(\mathbf{z}, \mathbf{w}, -i\eta).$$

We refer to W_t^+ and W_t^- as the *partial weight functions*. Their importance will become clear in the next subsection.

Remark 6.1. We will show in the appendix that both W_t^+ and W_t^- attain positive and negative values. In addition we shall discuss their oscillatory behaviour. A more heuristic explanation of these phenomena might be the following: Both $W_t^+(i\mathbf{y}, i\mathbf{v}, i\eta)$ and $W_t^-(i\mathbf{y}, i\mathbf{v}, i\eta)$ satisfy the differential equation

$$(6.2.4) \quad \frac{\partial}{\partial t} U = \left(\Delta + (1 - |\mathbf{y}|^2 - |\mathbf{v}|^2) \frac{\partial^2}{\partial \eta^2} \right) U.$$

Indeed, this follows from a straightforward computation starting from

$$\frac{\partial}{\partial t} p_t^\lambda(\mathbf{y}, \mathbf{v}) = \left(\Delta - \frac{\lambda^2}{4} (|\mathbf{y}|^2 + |\mathbf{v}|^2) \right) p_t^\lambda(\mathbf{y}, \mathbf{v})$$

for all $\lambda \neq 0$ (see [7]). We note that the differential equation (6.2.4) is parabolic only for $|\mathbf{y}|^2 + |\mathbf{v}|^2 < 1$. If $|\mathbf{y}|^2 + |\mathbf{v}|^2 > 1$, then the right hand side of (6.2.4) resembles a wave equation which in turn might explain the oscillatory behaviour of W_t^+ and W_t^- on the large scale.

6.3. The image of the heat kernel transform. The objective of this section is to prove our main theorem: $\text{im } \mathcal{H}_t = \mathcal{B}_t^+(\mathbb{H}_\mathbb{C}) \oplus \mathcal{B}_t^-(\mathbb{H}_\mathbb{C})$ is a sum of two weighted Bergman spaces.

To exhibit the Bergman structure of the spaces $\mathcal{B}_t^+(\mathbb{H}_\mathbb{C})$ and $\mathcal{B}_t^-(\mathbb{H}_\mathbb{C})$ needs some preparation.

First we define subspaces of $L^2(\mathbb{H})$ by

$$L_+^2(\mathbb{H}) = \{f \in L^2(\mathbb{H}) : f^\lambda = 0, \quad \lambda \leq 0\}$$

and

$$L_-^2(\mathbb{H}) = \{f \in L^2(\mathbb{H}) : f^\lambda = 0, \quad \lambda \geq 0\}.$$

Notice that both subspaces are \mathbb{H} -invariant and

$$L^2(\mathbb{H}) = L_+^2(\mathbb{H}) \oplus L_-^2(\mathbb{H}).$$

Next we recall some facts on the heat kernel transform on the real line. The heat kernel on \mathbb{R} is given by

$$q_t(x) = (4\pi t)^{-\frac{1}{2}} e^{-\frac{x^2}{4t}} \quad (x \in \mathbb{R}).$$

Define a weighted Bergman space on \mathbb{C} by

$$\mathcal{B}_t(\mathbb{C}) = \{g \in \mathcal{O}(\mathbb{C}) : \|g\|^2 = \int_{\mathbb{C}} |g(x+iy)|^2 e^{-\frac{y^2}{2t}} dx dy < \infty\}$$

and recall that the mapping

$$h_t : L^2(\mathbb{R}) \rightarrow \mathcal{B}_t(\mathbb{C}), \quad g \mapsto (f * q_t)^\sim$$

is (up to scale) an \mathbb{R} -equivariant isometric isomorphism.

Set $\mathbb{R}^+ = (0, \infty)$ and $\mathbb{R}^- = (-\infty, 0)$. With $L_+^2(\mathbb{R}) = \{f \in L^2(\mathbb{R}) : \text{supp } \hat{f} \subseteq \mathbb{R}^+\}$ and $L_-^2(\mathbb{R}) = \{f \in L^2(\mathbb{R}) : \text{supp } \hat{f} \subseteq \mathbb{R}^-\}$ we have $L^2(\mathbb{R}) = L_+^2(\mathbb{R}) \oplus L_-^2(\mathbb{R})$. Finally, let us write $\mathcal{B}_t^\pm(\mathbb{C}) = h_t(L_\pm^2(\mathbb{R}))$. Clearly we have $\mathcal{B}_t(\mathbb{C}) = \mathcal{B}_t^+(\mathbb{C}) \oplus \mathcal{B}_t^-(\mathbb{C})$.

Let $R > 0$. Denote by B_R the open ball centered at 0 with radius R in \mathbb{C}^n . Further define $K_R = B_R \times B_R \times \mathbb{C} \subseteq \mathbb{H}_\mathbb{C}$ and note that $\bigcup_{R>0} K_R = \mathbb{H}_\mathbb{C}$.

We define $\mathcal{V}_t^+(\mathbb{H}_\mathbb{C})$ as the vector space consisting of all holomorphic functions F on $\mathbb{H}_\mathbb{C}$ such that

- $F|_{K_R} \in L^2(K_R, |W_t^+| dz)$ for all $R > 0$,
- $\lim_{R \rightarrow \infty} \int_{K_R} |F(z)|^2 W_t^+(z) dz < \infty$,
- $F(\mathbf{z}, \mathbf{w}, \cdot) \in \mathcal{B}_t^+(\mathbb{C})$ for all $\mathbf{z}, \mathbf{w} \in \mathbb{C}^n$.

We endow $\mathcal{V}_t^+(\mathbb{H}_\mathbb{C})$ with a sesquilinear bracket

$$(6.3.1) \quad \langle F, G \rangle_+ = \lim_{R \rightarrow \infty} \int_{K_R} F(z) \overline{G(z)} W_t^+(z) dz,$$

for $F, G \in \mathcal{V}_t^+(\mathbb{H}_\mathbb{C})$. Similarly one defines $\mathcal{V}_t^-(\mathbb{H}_\mathbb{C})$ and $\langle \cdot, \cdot \rangle_-$.

Remark 6.2. One might ask if one cannot define $\mathcal{V}_t^\pm(\mathbb{H}_\mathbb{C})$ in a simpler manner: avoid the exhaustion $\bigcup_{R>0} K_R = \mathbb{H}_\mathbb{C}$ and just require $|F|^2 W_t^\pm$ to be absolutely integrable on $\mathbb{H}_\mathbb{C}$. However, this will not work, and the reason for this is the bad oscillatory behaviour of W_t^\pm (see the appendix).

A priori it is not clear that $\langle F, F \rangle_\pm \geq 0$. This will be shown next.

Lemma 6.4. *The bracket $\langle \cdot, \cdot \rangle_\pm$ induces on $\mathcal{V}_t^\pm(\mathbb{H}_\mathbb{C})$ a pre Hilbert space structure.*

Proof. It is sufficient to treat the case “+” only. All what is left to show is that $\langle F, F \rangle_+ \geq 0$ and $\langle F, F \rangle_+ = 0$ if and only if $F = 0$.

Fix $F \in \mathcal{V}_t^+(\mathbb{H}_\mathbb{C})$. Then $F(\mathbf{z}, \mathbf{w}, \cdot) \in \mathcal{B}_t^+(\mathbb{C})$ implies the existence of a function $g(\mathbf{z}, \mathbf{w}, \cdot) \in L_+^2(\mathbb{R})$ such that

$$F(\mathbf{z}, \mathbf{w}, \zeta) = h_t(g(\mathbf{z}, \mathbf{w}, \cdot))(\zeta) = \int_{\mathbb{R}} g(\mathbf{z}, \mathbf{w}, s) q_t(\zeta - s) ds.$$

Therefore, up to an irrelevant constant only depending on t , the following equality holds:

$$\int_{\mathbb{R}} F(\mathbf{z}, \mathbf{w}, \xi + i\eta) e^{i\lambda\xi} d\xi = e^{\lambda\eta} e^{-t\lambda^2} g^\lambda(\mathbf{z}, \mathbf{w}).$$

Consequently, as W_t^+ is independent of ξ ,

$$\int_{K_R} |F(z)|^2 W_t^+(z) dz = \int_{B_R^2} \int_0^\infty \int_{\mathbb{R}} |g^\lambda(\mathbf{z}, \mathbf{w})|^2 e^{2\lambda\eta} e^{-2t\lambda^2} W_t^+(\mathbf{z}, \mathbf{w}, i\eta) d\eta d\lambda d\mathbf{z} d\mathbf{w}.$$

In view of (6.2.2) we thus get

$$\int_{K_R} |F(z)|^2 W_t^+(z) dz = \int_{B_R} \int_{B_R} \int_0^\infty |g^\lambda(\mathbf{z}, \mathbf{w})|^2 W_t^\lambda(\mathbf{z}, \mathbf{w}) d\lambda d\mathbf{z} d\mathbf{w}.$$

But $W_t^\lambda \geq 0$ and so

$$\langle F, F \rangle_+ = \lim_{R \rightarrow \infty} \int_{B_R} \int_{B_R} \int_0^\infty |g^\lambda(\mathbf{z}, \mathbf{w})|^2 W_t^\lambda(\mathbf{z}, \mathbf{w}) d\lambda d\mathbf{z} d\mathbf{w} \geq 0$$

and $\langle F, F \rangle_+ = 0$ if and only if $g^\lambda = 0$ for all λ , i.e. $F = 0$. This completes the proof of the lemma. \square

Let us write \mathcal{H}_t^\pm for the heat kernel transform when restricted to $L_\pm^2(\mathbb{H})$. Define Hilbert spaces of holomorphic functions by $\mathcal{B}_t^\pm(\mathbb{H}_\mathbb{C}) = \text{im } \mathcal{H}_t^\pm$ and note that

$$\text{im } \mathcal{H}_t = \mathcal{B}_t^+(\mathbb{H}_\mathbb{C}) \oplus \mathcal{B}_t^-(\mathbb{H}_\mathbb{C}).$$

Let us remark that this decomposition can be also achieved using the Hilbert transform in the last variable.

Theorem 6.5. *Let $t > 0$. Then $\mathcal{B}_t^\pm(\mathbb{H}_\mathbb{C})$ is the Hilbert completion of $(\mathcal{V}_t^\pm(\mathbb{H}_\mathbb{C}), \langle \cdot, \cdot \rangle_\pm)$ with $\langle \cdot, \cdot \rangle_\pm$ given by (6.3.1).*

Proof. We restrict ourselves to the “+”-case. Define a dense subspace of $L_+^2(\mathbb{H})^0$ of $L_+^2(\mathbb{H})$ by

$$L_+^2(\mathbb{H})^0 = \{f \in L_+^2(\mathbb{H}) : \lambda \mapsto f^\lambda \text{ compactly supported in } (0, \infty)\}$$

We claim that $\mathcal{H}_t(L_+^2(\mathbb{H})^0) \subset \mathcal{V}_t^+(\mathbb{H})$. Let $f \in L_+^2(\mathbb{H})^0$ and set $F = \mathcal{H}_t^+(f)$. Choose $a > 0$ such that $f^\lambda = 0$ for λ outside of (a^{-1}, a) . Proceeding as in Lemma 6.4 and using the estimate Proposition 6.3 (ii) we see that $\mathcal{H}_t^+(f)$ satisfies the first condition in the definition of $\mathcal{V}_t^+(\mathbb{H}_\mathbb{C})$. Furthermore (6.1.5) implies that

$$\int_{K_R} |F(z)|^2 W_t^+(z) dz = \int_{B_R} \int_{B_R} \int_0^\infty |H_t^\lambda(f^\lambda)(\mathbf{z}, \mathbf{w})|^2 W_t^\lambda(\mathbf{z}, \mathbf{w}) d\lambda d\mathbf{z} d\mathbf{w}.$$

As $W_t^\lambda \geq 0$, it hence follows that $\int_{K_R} |F(z)|^2 W_t^+(z) dz$ is increasing in R . Similar reasoning as in (6.1.6) now shows that

$$\lim_{R \rightarrow \infty} \int_{K_R} |F(z)|^2 W_t^+(z) dz = \|f\|^2 < \infty.$$

Furthermore, for fixed (\mathbf{z}, \mathbf{w}) we have $F(\mathbf{z}, \mathbf{w}, \cdot) \in \mathcal{B}_t(\mathbb{C})$ as a quick inspection of (6.1.5) shows. This proves our claim.

As a byproduct of our reasoning above we have shown that $\mathcal{H}_t^+ : L_+^2(\mathbb{H})^0 \rightarrow \mathcal{V}_t^+(\mathbb{H})$ is an isometric map. It remains to verify that each function $F \in \mathcal{V}_t^+(\mathbb{H}_\mathbb{C})$ can be written as $\mathcal{H}_t^+(f)$ for some $f \in L_+^2(\mathbb{H})$. Let $g^\lambda(\mathbf{z}, \mathbf{w})$ be the function associated to F as in the proof of Lemma 6.4. Then for almost all λ there exists an $f^\lambda \in L^2(\mathbb{R}^{2n})$ such that $g^\lambda = H_t^\lambda(f^\lambda)$. It is easy to check that the prescription

$$f(\mathbf{x}, \mathbf{u}, \xi) = \int_{\mathbb{R}} e^{-i\lambda\xi} f^\lambda(\mathbf{x}, \mathbf{u}) d\lambda$$

defines a function in $L_+^2(\mathbb{H})$ such that $\mathcal{H}_t^+(f) = F$. This completes the proof of the theorem. \square

7. APPENDIX: THE OSCILLATORY BEHAVIOUR OF THE PARTIAL WEIGHT FUNCTIONS

This appendix is devoted to a closer study of the partial weight functions W_t^\pm . In particular we will detect “good” and “bad” directions for W_t^\pm , meaning rays in $\mathbb{H}_\mathbb{C}$ on which W_t^\pm stays positive resp. starts to oscillate. It is no loss of generality to treat the case of W_t^+ only.

We start with an explicit formula for the function W_t^+ . Recall that the kernel p_t^λ admits an expansion of the type [7, p. 85]

$$p_t^\lambda(\mathbf{y}, \mathbf{v}) = (2\pi)^{-n} \lambda^n \sum_{k=0}^{\infty} e^{-(2k+n)|\lambda|t} L_k^{n-1} \left(\frac{|\lambda|}{2} (|\mathbf{y}|^2 + |\mathbf{v}|^2) \right) e^{-\frac{|\lambda|}{4}(|\mathbf{y}|^2 + |\mathbf{v}|^2)},$$

where L_k^{n-1} is the Laguerre polynomial of degree k with parameter $n-1$, which can be extended analytically to $\lambda + is$ for $\lambda \neq 0$. Let $H_k(x)$ denote the Hermite polynomial, which can be defined by Rodrigue’s formula $H_k(x) = (-1)^k e^{x^2} \frac{d^k}{dx^k} e^{-x^2}$.

Proposition 7.1. *For $n = 1$ and $\beta := (y^2 + v^2)$,*

$$W_{t/2}^+(iy, iv, i\eta) = c\sqrt{\frac{\pi}{t}} \sum_{k=0}^{\infty} e^{-\frac{1}{4}\mu_k^2} \times \left[\mu_k \sum_{j=0}^k \frac{1}{j!} \left(\frac{\beta}{\sqrt{t}} \right)^j H_j(-\mu_k \sqrt{t}) \binom{k}{j} + \frac{\beta}{t} \sum_{j=0}^{k-1} \frac{1}{j!} \left(\frac{\beta}{\sqrt{t}} \right)^j H_j(-\mu_k \sqrt{t}) \binom{k}{j+1} \right]$$

where $\mu_k = (2k + 1 + (2\eta + \beta)/t)/2$.

Proof. The integral formula of W_t^+ shows that, for a fixed $\lambda > 0$,

$$\begin{aligned} W_{t/2}^+(iy, iv, i\eta) &= c \int_{\mathbb{R}} e^{t(\lambda+is)^2} e^{-2\eta(\lambda+is)} p_t^{\lambda+is}(2y, 2v) ds \\ &= c e^{-(t+2\eta)\lambda+t\lambda^2-\lambda\beta} \sum_{k=0}^{\infty} e^{-2kt\lambda} \int_{\mathbb{R}} (\lambda+is) e^{-ts^2} L_k^{n-1}(2\lambda\beta + 2is\beta) \\ &\quad \times e^{-ist(2\lambda-2k-\beta-2\eta/t)} e^{-is\beta} ds \\ &= c e^{-(t+2\eta)\lambda+t\lambda^2-\lambda\beta} \sum_{k=0}^{\infty} e^{-2kt\lambda} (\lambda + \partial_{\alpha}) L_k^{n-1}(2\beta(\lambda + \partial_{\alpha})) \int_{\mathbb{R}} e^{i\alpha s} e^{-ts^2} ds \\ &= c \sqrt{\frac{\pi}{t}} e^{-(t+2\eta)\lambda+t\lambda^2-\lambda\beta} \sum_{k=0}^{\infty} e^{-2kt\lambda} (\lambda + \partial_{\alpha}) L_k^{n-1}(2\beta(\lambda + \partial_{\alpha})) e^{-\frac{1}{4t}\alpha^2} \end{aligned}$$

where $\alpha = t(2\lambda - 2k - 1 - (2\eta + \beta)/t)$ and $\partial_{\alpha} = \partial/\partial_{\alpha}$.

Using the Rodrigue's formula of the Hermite polynomials and the explicit formula of L_k^{γ} , we conclude that

$$\begin{aligned} L_k^{n-1}(2\beta(\lambda + \partial_{\alpha})) e^{-\frac{1}{4t}\alpha^2} &= \sum_{l=0}^k \frac{(-k)_l}{l!l!} (2\beta)^l (\lambda + \partial_{\alpha})^l e^{-\frac{1}{4t}\alpha^2} \\ &= \sum_{l=0}^k \frac{(-k)_l}{l!l!} (2\beta)^l \sum_{j=0}^l \binom{l}{j} \frac{1}{(2\sqrt{t})^j} (-1)^j e^{-\frac{1}{4t}\alpha^2} H_j \left(\frac{\alpha}{2\sqrt{t}} \right) \\ &= e^{-\frac{1}{4t}\alpha^2} \sum_{j=0}^k \frac{1}{j!} \frac{\beta}{(\sqrt{t})^j} H_j \left(\frac{\alpha}{2\sqrt{t}} \right) L_{k-j}^j(2\beta\lambda), \end{aligned}$$

upon changing summations, simplifying and using the explicit formula of L_k^j . Let α be fixed. It turns out that the generating function of the above quantity is given by

$$e^{-\frac{1}{4t}\alpha^2} \sum_{k=0}^{\infty} \left(\sum_{j=0}^k \frac{1}{j!} \frac{\beta}{(\sqrt{t})^j} H_j \left(\frac{\alpha}{2\sqrt{t}} \right) L_{k-j}^j(2\beta\lambda) \right) s^k = \exp \left[-\frac{2\beta s \mu}{1-s} - \frac{\beta s}{(1-s)\sqrt{t}} \right]$$

where $\alpha = 2t(\lambda - \mu)$. Since the generating function is independent of λ , this shows that the inner sum is in fact independent of λ . We can, in particular, set $\lambda = 0$ in the inner sum and set $\mu = (2k + 1 + (2\eta + \beta)/t)/2$. Recall that $L_{k-j}^j(0) = \binom{k}{j}$. The change of variable from α to μ also leads to $\partial_{\alpha} = -\frac{1}{2t}\partial_{\mu}$. A simple computation

then leads to

$$(\lambda + \partial_\alpha) L_k^{n-1}(2\beta(\lambda + \partial_\alpha)) e^{-\frac{1}{4t}\alpha^2} = e^{-t(\lambda - \mu)^2} \\ \times \left[\mu \sum_{j=0}^k \frac{1}{j!} \left(\frac{\beta}{\sqrt{t}} \right)^j H_j(-\sqrt{t}\mu) \binom{k}{j} + \frac{\beta}{t} \sum_{j=0}^{k-1} \frac{1}{j!} \left(\frac{\beta}{\sqrt{t}} \right)^j H_j(-\sqrt{t}\mu) \binom{k}{j+1} \right]$$

from which the stated formula follows readily. \square

We note that the formula proved above shows explicitly that W_t^+ is independent of λ without using the contour integral and Cauchy's theorem.

Proposition 7.2. *The function W_t^+ is positive in a neighborhood of $(0, 0, 0)$. Furthermore, $W_t^+(0, 0, i\eta)$ is non-negative for all η .*

Proof. Setting $\beta = 0$ in the explicit formula of W_t^+ gives

$$W_{t/2}^+(0, 0, i\eta) = c \sqrt{\frac{\pi}{t}} \sum_{k=0}^{\infty} e^{-\frac{1}{4}(2k+1+2\eta/t)^2} \left(2k+1 + \frac{2\eta}{t} \right),$$

which is clearly positive if $\eta \geq 0$. Furthermore, if $\eta/t = -m$ for $m \in \mathbb{N}$ then the sum can be written as

$$\sum_{k=0}^{\infty} e^{-\frac{t}{4}(2k+1-2m)^2} (2k+1-2m) = \sum_{k=0}^{\infty} e^{-\frac{t}{4}(2k+1)^2} (2k+1) - \sum_{k=1}^m e^{-\frac{t}{4}(2k-1)^2} (2k-1)$$

which is strictly positive. Similarly, the sum is strictly positive if $\eta/t = -m - 1/2$. Hence, we are left with the case of $2\eta/t = -2m - 1 + r$, where $0 < r < 1$. In this case, the sum becomes

$$S_m := 2 \sum_{k=0}^{\infty} e^{-(k-m+r/2)^2 t} (k-m+r/2) = 2 \sum_{k=0}^{\infty} e^{-(k+s)^2 t} (k+s) - \sum_{k=1}^m e^{-(k-s)^2 t} (k-s)$$

where $0 < s = r/2 < 1/2$. Set $g_k(s) = e^{-(k+s)^2 t} (k+s) - e^{-(k+1-s)^2 t} (k+1-s)$. It is easy to see that $g'_k(s) > 0$ for $0 < s < 1$. Hence g_k is increasing. It follows that

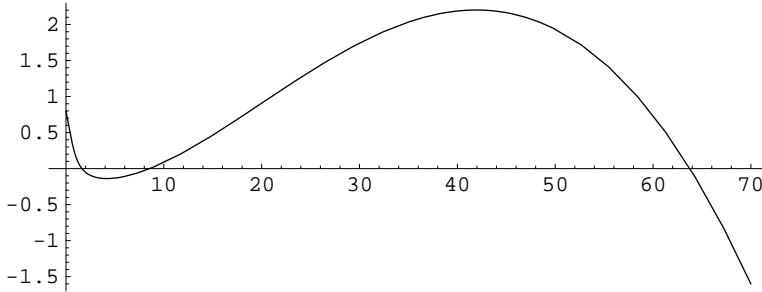
$$\sum_{k=0}^{\infty} e^{-\frac{t}{4}(2k+1)^2} (2k+1) - \sum_{k=1}^{\infty} e^{-\frac{t}{4}(2k-1)^2} (2k-1) = \sum_{k=0}^{\infty} g_k(s) \geq \sum_{k=0}^{\infty} g_k(0) = 0,$$

from which the stated result follows. \square

However, the weight function $W_t^+(iy, iv, i\eta)$ is not non-negative for all (y, v, η) . In fact, if $2\eta = -(y^2 + v^2)$, then $2\eta + \beta = 0$ and

$$W_{t/2}^+(iy, iv, i\eta) = c \sqrt{\frac{\pi}{t}} \sum_{k=0}^{\infty} e^{-(k+\frac{1}{2})^2} \left[\left(k + \frac{1}{2} \right) \sum_{j=0}^k \frac{1}{j!} \left(\frac{\beta}{\sqrt{t}} \right)^j H_j(-\sqrt{t}(k + \frac{1}{2})) \binom{k}{j} \right. \\ \left. + \frac{\beta}{t} \sum_{j=0}^{k-1} \frac{1}{j!} \left(\frac{\beta}{\sqrt{t}} \right)^j H_j(-\sqrt{t}(k + \frac{1}{2})) \binom{k}{j+1} \right].$$

For each fixed t , this is a function of β and it appears to be oscillatory. The graph for $t = 1$ is shown below.



The function oscillates in growing intervals and increasing amplitudes. To demonstrate the oscillatory nature of the function, what we have shown above is the function $W(iy, iv, -i\beta/2)/\log(2 + \beta^2)$ without the factor $c\sqrt{\pi}$. It is a function of β , where $\beta = y^2 + v^2$.

REFERENCES

- [1] V. Bargmann, *On a Hilbert space of analytic functions and an associated integral transform*, Comm. Pure Appl. Math. **14** (1961), 187–214
- [2] B. Hall, *The Segal-Bargmann “coherent state” transform for compact Lie groups*, J. Funct. Anal. **122** (1994), no. **1**, 103–151
- [3] B. Hall, *The inverse Segal-Bargmann transform for compact Lie groups*, J. Funct. Anal. **143** (1997), no. **1**, 98–116
- [4] B. Krötz, *Formal dimension for semisimple symmetric spaces*, Compositio Math. **125** (2001), no. **2**, 155–191
- [5] B. Krötz, and R.J. Stanton, *Holomorphic extension of representations (II): geometry and harmonic analysis*, GAFA, to appear
- [6] M. Stenzel, *The Segal-Bargmann transform on a symmetric space of compact type*, J. Funct. Anal. **165** (1999), no. **1**, 44–58
- [7] S. Thangavelu, *An Introduction to the Uncertainty Principle*, Birkhäuser, Boston, 2003.
- [8] S. Thangavelu, *Harmonic analysis on the Heisenberg group*, Birkhäuser, Boston, 1998.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403-1222.
E-mail address: kroetz@math.uoregon.edu

STAT-MATH DIVISION, INDIAN STATISTICAL INSTITUTE, 8TH MILE, MYSORE ROAD, BANGALORE-560 059, INDIA.
E-mail address: veluma@isibang.ac.in

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403-1222.
E-mail address: yuan@math.uoregon.edu