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Many scientific and technological problems involve
finding the lowest attainable value of a function. This
article motivates, describes, and discusses one powerful
computational strategy. Itis called "simulated annealing"
inanalogy with the physical process of slowly cooling a
systemto takeittoits ground state.

Getting to the Bottom of It

There are many situations where one wants to maximize or
minimize something. For example, one may want to maximize
returns on aninvestment or minimize losses, or, as an engineer,
maximize energy efficiency or minimize estimation errors. Isolat-
ing the underlying mathematical problem, one thenhasamap f
froma givendomain Dto the real line and the problemisto find the
pointin D (if any) where f attains its maximum or minimum. It
helps to consider D as being laid out horizontally (takes some
imagination if, say, D=the n-dimensional vector space with n>
3) andforeach xin D, f(x)plotted verticallyto give a graph of
f(x) vs x. Assuming fto be continuous, the graph can be
visualized as a landscape with peaks and valleys. The peaks will
correspondto local maximai.e., points where fisthe maximum
with respect to its immediate neighbourhood. The bottoms of the
valleys are then the local minima, defined analogously. Forthe
sake of being specific, consider the minimization problem. The aim
thenis to find the global minimum, the bottom of the lowest valley.

The obvious thing to dois to keep going downhill as long as you can.
This is what descent algorithms do. Many popular algo-rithms
(steepest descent, conjugate gradient) are of this variety. Eventhe
otherrival class, that of Newton and quasi-Newton algorithms, can
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be construed as descents modulo some mental gymnastics that
allows the concept of distance to vary from point to point. (The buzz
word here is variable metric).

Butthese algorithms, which are deterministic (thatis, non-random)
and use only local information, can’t tell one local minimum from
another and can gettrapped in one that is far from the best. How
then, is one to find the global minimum? A naive response would be
to getabird’s eye view of the landscape, spot a global minimum
and make a bee-line forit'. But algorithms cannot do what the birds
and the bees can, their proliferation notwithstanding. For any
optimization problem worth its salt, using global information is not
easy. So one attacks the other flank of these algorithms, their
determinism. The trick is to add some random noise to the algorithm
which, whenever the algorithm threatens to sit pretty in a local
minimum (Figure 1a), gives it a gentle uphill push (Figure 1b). But
if you keep adding noise, you will be marching the algorithm up and
downthe hills forever like the proverbial grand old Duke of York. So
one hasto reduce the noise level slowly, to attain a balance between
random exploration of the landscape a la a pure random walk, and
exploitation of the gradient (slope) information as in descent
methods. The algorithm described in this article, called simulated
annealing, does precisely that.

Fate of a Salesman

Figure 1 a, b.

A naive response
would beto geta
bird’s eye view of
the landscape,
spot a global
minimum and
make a bee-line for
it'. But algorithms
cannot do what the
birds and the bees
can.
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A salesman has to
visit N cities, each
of them exactly
once, and return to
where he started.
He knows the
pairwise distances
between these
cities and his
problem is to find
the best sequence
in which the cities
should be visited
s0 as to minimize
the total distance
travelled.

Before plunging into the mathematics of the algorithm, we take a
look at an archetypical problem where this algorithm has been
applied. This is the celebrated travelling salesman problem. A
salesman has to visit N cities, each of them exactly once, and
return to where he started. He knows the pairwise distances
between these cities and his problem is to find the best sequence
in which the cities should be visited so as to minimize the total
distance travelled.

Each possible ordering of the cities involving each city exactly once
is called atour. To each tour one assigns a cost, a positive number
equal to the total distance the salesman would travel if he were to
visitthe cities in that order. The problem then is to minimize this cost
over the finite set of tours.

This may sound simple. (After all, there are only finitely many
tours!) Butitis not. The number of possible tours grows explosively
with N(as N!). This rules out simple search algorithms. Things still
wouldn’tbe too bad if there was enough 'structure' to the problem,
butthereisn’t. The problemis provably hard, i.e., it belongs to an
equivalence class of problems known to be hard in a precise
technical sense.

A popular heuristic algorithm for the travelling salesman problem s
the 2-opt. Here one starts with a tour and randomly picks two
consecutive cities on the tour. They are interchanged to obtain a
new tour. If the new tour has a lower cost replace the old tour by the
new tour. This procedure is repeated until there is no further
improvement.

The problem with this and other similar heuristics is that they get
stuckinlocal minima. If the number of cities is small, say, intens,
they still do reasonably well (in fact, often better than simulated
annealing for a fixed finite run length of the algorithms). If N
exceeds afew hundreds, however, simulated annealing begins to
show a distinct edge over these heuristics.
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We shall return to this and related problems later after looking into
the formal mathematical aspects of the algorithm. A reader uncom-
fortable with mathematical probability theory may skip the next
section at afirst pass.

You Have Nothing to Lose But Your Chains

For simplicity, let Dbe afinite set with Melements. The mathemati-
cal model for our algorithm is a Markov chain. A Markov chain on
Dis arandom process X, n=0, 1, 2, ..., taking

values in Dwith the property that the probability of its moving from
ito jat any given time does not depend on how it arrived at i.
(Technically speaking, its future and past are conditionally inde-
pendent given the present, a good philosophy for life in general.) If
this probability is also independent of the explicit time count (the
clock), we may denote itby p (i, j). If the proba-bility of the chain
beingin iatagiventimeis m (i), the proba-bility of its beingin j
atthe nextinstantwillbe X (i) p(i, j). Thus if the probability vector
7 (-) satisfies

() p (i, p=n(j), D, '

(1)
then we have/— if the probability distribution of the chainis =
(.) at some time, then itis m (.) forever. Such a n (.) is called a
stationary distribution. If the chain is irreducible, i.e., can go from
any ie Dtoany je Dwith positive probability, a unique such xt ()
exists. Also, the fraction of time the chain spendsin iapproaches
7 (/) in the limit for each .

Equation (1) is called global balance. (Think of equilibrium
concentration at jbeing equalto thatat itimes the rate of flow from
ito j,summedover i) One also hasthe detailed balance equation

n(@pi)=n(Hp()i je D,
which implies (1) but not vice versa. For most chains (2)
may not be possible. Mercifully, itis so for the chain we are ab¢)t
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That s, if the
selected move is
downhill, it is made
with certainty. If it
is uphill, it is made
with a small
probability which
decreases with the
amount of climb
involved.

" This is because the exponent
in equation (3) becomes zero,
from the definition of the "f"
operation given below equation

@)

toconsider.

Suppose we impose on D a neighbourhood structure whereby
each ie Dhas Nneighbours (Nusually much smallerthan M)and
i, jare either neighbours or they are not. Consider a chain which
(i) cannotgo from J to j unless jis a neighbour of j, (ii) can with
probability

p(i, )= (/N)exp (= (f()=Ff(H)7T)

ifitis, and (iii) remains in iwith the remaining probability. Here T%8)
is a parameter called temperature for reasons that will become
apparent later, and x* = max (x, 0). The expression (3) can be
thought of as being in two parts: the ‘selection probability’ given by
1/Nand the ‘acceptance probability’ given by the exponential term.
The interpretation is that the chain at /picks a neighbour jwith
equal probability. It moves there with a probability equal to the
acceptance probability and remains at i with the remaining
probability. Note that the acceptance probability is 1if () < f(J)
Tand <1 otherwise, decreasing as f(j)increases. Thatis,
if the selected move is downhill, it is made with certainty. Ifitis
uphill, itis made with a small probability which decreases with the
amount of climb involved.

Itis easily verified that given (3), (2) is satisfied by

where Zis the normaliziqg factor. Observe that f(i) > f(j) implies
n, ()<n, (). TRER G a&Rds thkiflim roBabiity to the i
where f attains its minimum. The chain then spends the maximum
fraction of time in these states. What's more, the smaller the
parameter T, the larger this fraction (the more peaked it (.) is at
the global minimum). Note that the two limiting cases of T=0and
T=c correspond respectively to pure descent and pure random
walk.

Tofix ideas, consider the specific case of D={1, 2, 3, 4} with each
element a neighbour of every other. Let (i) = iforiin Dand T=
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1. Thenwe have (using e=2.71828...) = base of natural logarithms.

p(4’ 3):p(472):p(4’ 1):p(372):p(3’ 1):p(27 1)=1/3;
p(1,2)=p(2,3)=p(3,4)=1/(3e) .
mlﬁ @rylgtﬂp@,sppgfllﬂgéz)(/, Has1-Y, p (i, j) foreach i. In view of

E]ﬁf,oé{?goj n@ee has

n, () =e7/(e7'+e2+e3+e™),
JEI
which clearly peaks at =1, the global minimizer of £.

The foregoing suggests the following algorithm. Run the chain with
atime-varying T=T({). Decrease T(f) with time tso slowly that the
probability distribution of the chain closely tracks T (g thus
concentrating on the global minimum in the limit. This is the
simulated annealing algorithm, named thus by analogy with the
eponymous slow cooling process for hardening metals. The func-
tion t—T({) is correspondingly called the cooling schedule.

In the Long Run...

But does the algorithm work provably? Yes, if T(f) decreases slowly
enoughto ensure X, exp (—d/ T (1)) = > where d=the ‘depth’ of the
problem. This is defined as the maximum of the minimum one has
toclimb fromany pointin Din orderto getto some global minimum.
The convergence, however, is only in probability. That is, the
probability of the chain being away from the set Sof global minima
goes to zero. This does not ensure that with probability one, the
algorithm hits S and stays there. That would be almost sure
convergencein probabilistic jargon, a stronger concept. In both,
the probability of the set of badsample points (i.e., the set A on
which X ¢ S) shrinks to zero. Butin the former, these can wander
all over the sample space while shrinking (Figure 2a), unlike the
latter, where they do so in a more or less nested fashion (Figure
2b). (The outer square in these figures represents the underlying

That is, the
probability of the
chain being away
from the set S of
global minima
goes to zero. This
does not ensure
that with probability
one, the algorithm
hits S and stays
there.
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Figure 2 a,b.

While commenting
on what happens
in the long run, the
economist John
Maynard Keynes
once quipped that
in the long run, we
are all dead.

sample space.) Unfortunately, almost sure convergence to Sneed
not hold. One can concoct situations wherein the algorithm leaves
Sinfinitely often, though such occurrences become increasingly
rare. But the fraction of time spentin S does go to unity.

To get a feel for this rather subtle point, consider the sequence
{a(n)} which is 1 when n=2™ for some m=> 1, zero otherwise. It
becomes 1 increasingly rarely and the fraction of time it spendsin
zero approaches one, though it does not converge to zero.

Intuitively, whatis required to make the algorithm stick to a global
minimum is that the immediate valley surrounding it be deep.

But these are only asymptotic results. While commenting on what
happens in the long run, the economist John Maynard Keynes
once quipped that in the long run, we are all dead. A similar
cynicism may be warranted here in the absence of good rate of
convergence results. Few analytic results are available, such as
some that predictinverse polynomial (in ) decay of the probability
of not hitting Suntiltime t. Butthe constants up frontinvolvedin
these estimates are too large to make them practically useful. One
thus has to fall back on empirical observations, which are encour-
aging for certain classes of problems. We shall discuss these in the
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last section.
From Child’s Play to Statistical Mechanics

We now present two interpretations of the algorithm. The firstis
simply an analogy with a children’s toy wherein a metal ball in a
maze is to be pushedtoits center by repeatedly tilting the maze in
a suitable manner. One starts out with rather large tilts, and then
smaller ones as the ball approaches the center. The addition of
slowly diminishing noise to the basic descent scheme can also be
thought of as randomly tilting the landscape, the extent of which
diminishes with time. The algorithm trapped in alocal minimum is
thus poured outby tilting the landscape. This analogy is notas far
fetched asitmay seem. ltis quite accurate for simulated annealing
in afinite dimensional vector space (as opposed to a finite set D)
which, unfortunately, we will not consider here because of its
technicalities.

The second interpretation runs deeper and in fact, motivated the
Monte Carlo Markov chains that preceded simulated annealing.
(They correspond to the constant Tversion thereof.) Recallthata
thermodynamic systemin equilibrium at a constanttemperature T
minimizes its (Helmholtz) free energy, which is its internal energy
minus Ttimes its entropy. Statistical mechanics, which aims to
derive thermodynamics from microscopic phenomena, translates
this into the following: Let Dbe a discrete set of possible states and
f(i) the energy in state ic D. If p,is the probability of the system
beinginstate /, X p, f(i) is the average energy. On the other hand,
the entropy of p=[p,, ..., p, ]isgivenby —Xp, Inp,, its information
content. This can be justified axiomatically and the readers
unfamiliar with information theory are requested to acceptit on
faith. The free energy minimization principle then requires pto
minimize X p, (f()+TIn p,) sub-jectto X p=1. This is a strictly
convex function (i.e., function with the propértythatthe line joining
any two points on its graph lies above the graph) on a bounded
conve)’( domain (i.e., a setthat contains every line segment whose
end points are in the set.) This makes it an optimization theorist’s

The first is simply
an analogy with a
children’s toy
wherein a metal
ball in a maze is to
be pushed to its
center by
repeatedly tilting
the maze in a
suitable manner.
One starts out with
rather large tilts,
and then smaller
ones as the ball
approaches the
center.
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dream problem. It has a unique solution given by p=rt,.Inthe T—
0 limit, the problem reduces to minimizing Z p, f (i), which is
tantamount to our original problem. (Think about it! Strictly speak-
ing, it is a ‘relaxation’ of the original problem in optimization
parlance.) The algorithm thus simulates convexification of the
problem, with lowering of T corresponding to gradually distorting
the convex problem to the original. There are optimization tech-
niques called homotopy methods which actually do this. The
difference here is that the convexification is not explicit. Itarises
through the average behavior of arandom phenomenon.

One may then ask: Why not do the deterministic minimization of
free energy directly? The reasonis thatin most applications, Dis
very large and complex, the space of probability vectors on Deven
more so. Thus the deterministic problem is not usually computationally
amenable. There are, however, applications (like image process-
ing) where the above considerations have led to deterministic
approximations of simulated annealing. These are called mean field
annealing methods, after the ‘mean field’ theories of physics
wherein one replaces fluctuating quantities by their averages.

The Good, the Bad, and the Ugly

When should one use simulated annealing? The following consid-
erations give some intuition about this. Consider successive blocks
of afixed, large number of iterations. The higherthe value of T,the
more the algorithm will wander in any such block. Thus at high T, it
sees the landscape on a coarse scale, seeking only the broad
valleys. As Tis lowered, it starts seeing finer length scales and
hence smallervalleys.

Keeping this in mind, consider the three functions displayed in
Figure 3. Thefirstisa goodfunction, smooth, convex, with a unique
local-cum-global minimum. Any reasonable algorithm will work for
this. The second functionis bad, but not altogether so. Reasonable
heuristics like the multistart method (which initiates several descent
algorithms at many randomly chosen initial conditions) will do well
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nthiswithrarhighrprobabitity-Thisismore thanwhatonecansa
forthe third function, which is really ugly. It has local minima at all
length scales, making it tough for even the most reasonable of the
traditional heuristics. But when things gettough, the tough get going
and simulated annealing, which is intelligent brute force by
another, is atough algorithm. In fact, itis only the large and ugly
problems for which it starts showing significant gains.

But do we encounter such ugly problems in practice? Plenty!
Combinatorial optimization is a real gold mine of these. (Perhaps
‘minefield’ would be a better metaphor.) Examples are: graph
matching, graph partitioning, graph colouring, and travelling sales-
man problems. Infact, the algorithm was originally introduced for
solving combinatorial optimization problems in VLSI circuit design.

Another major area is image processing, where a noisy image
(sometimes misleadingly called a dirty picture) is cleaned by
optimally fitting to it a nicer image with respect to some error

Figure 3 a-c.
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criterion.

The reader might have heard of neural networks which are large
networks of simple nonlinear elements whose parameters are
adjusted to perform specific tasks like associative memory or
pattern classification. One of these is the Boltzmann machine,
which uses simulated annealing for optimal parameter adjustments.

Condensed matter physicists encounter complex systems called
spin glasseswith really ugly energy functions. Simulated annealing
is a useful tool for numerically analyzing these.

The above problems have animportant feature in common, which
we illustrate in the case of the travelling salesman problem de-
scribedin an earlier section. Dthenis the set of all possible tours.
Two tours are neighbours if one is obtainable from the other by
interchanging the placing of two cities that occur successively. For
large N, the tour length is difficult to compute, but the difference in
tourlength of two neighbours is not. Thatis, f(i)is hardto find, but
f(j)—f()) is notwhen i/, jare neighbours. This is anotherimportant
feature of typical application domains of simulated annealing. In
fact, ifit were not so, simple random walk would do better simply by
keeping track of the lowest point visited so far.

Finally, the remarks at the beginning of this section also give a clue
astowhat Tto startwith. If Tistoo high, itis virtually a random walk
and we are wasting resources. If too low, one may take foreverto
move out of the current valley. As Tdecreases from highto low,
one expects n.to go from an almost flat distribution to a humped
one. In many cases, the transition is fairly sharp around a critical
temperature T . The rule of thumb is to use T_as the initial T. Of
course, T, has to be guessed or estimated, which is another
problem altogether.

In practice, of course, there are many ad hoc add-on features to
speed-up the algorithm or reduce its resource requirements,
usually at the expense of exact optimality. After all, there is a
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science of optimization andthereis alsoan arttoit. Itis the former
thatis being conveyed to youin this article. The latter cannot be,
since one has to simply ‘grow into it’ through experience.
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TS NEW MILITARY SATELLITE CAN SPOT PEOPLE ON EARTH......

Mohan Devadas

THESE HUMANS MAY LACK VISION.... BUT THEY SURE MAKE uf FOR
PooR SIEGHT !
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