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Getting to the Bottom of It

There are many situations where one wants to maximize or
minimize something. For example, one may want to maximize
returns on an investment or minimize losses, or, as an engineer,
maximize energy efficiency or minimize estimation errors. Isolat-
ing the underlying mathematical problem, one then has a map f
from a given domain  D to the real line and the problem is to find the
point in  D (if any) where  f  attains its maximum or minimum. It
helps to consider  D as being laid out  horizontally (takes some
imagination if, say,  D = the n-dimensional vector space with  n ≥
3) and for each  x in D,   f (x) plotted   vertically to give a graph of
f (x) vs  x. Assuming  f to be continuous,  the graph can be
visualized as a landscape with peaks and valleys. The peaks will
correspond to  local maxima i.e., points where  f is the maximum
with respect to its immediate neighbourhood. The bottoms of the
valleys are then the local minima, defined analogously. For the
sake of being specific, consider the minimization problem. The aim
then is to find the global minimum, the bottom of the lowest valley.

The obvious thing to do is to keep going downhill as long as you can.
This is what  descent algorithms do. Many popular algo-rithms
(steepest descent, conjugate gradient) are of this variety. Even the
other rival class, that of Newton and quasi-Newton algorithms, can
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be construed as  descents modulo some mental gymnastics that
allows the concept of distance to vary from point to point. (The buzz
word here is  variable metric).

But these algorithms, which are deterministic (that is, non-random)
and use only local information, can’t tell one local minimum from
another and can get trapped in one that is far from the best. How
then, is one to find the global minimum? A naive response would be
to   'get a bird’s eye view of the landscape, spot a global minimum
and make a bee-line for it'. But algorithms cannot do what the birds
and the bees can, their proliferation notwithstanding. For any
optimization problem worth its salt, using global information is not
easy. So one attacks the other flank of these algorithms, their
determinism. The trick is to add some random noise to the algorithm
which, whenever the algorithm threatens to sit pretty in a local
minimum (Figure 1a), gives it a gentle uphill push (Figure 1b).  But
if you keep adding noise, you will be marching the algorithm up and
down the hills forever like the proverbial grand old Duke of York. So
one has to reduce the noise level slowly, to attain a balance between
random exploration of the landscape a la a pure random walk, and
exploitation of the gradient (slope) information as in descent
methods. The algorithm described in this article, called   simulated
annealing, does precisely that.

Fate of a Salesman

(a) (b)

Figure 1 a, b.
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Before plunging into the mathematics of the algorithm, we take a
look at an archetypical problem where this algorithm has been
applied. This is the celebrated  travelling salesman problem. A
salesman has to visit  N cities, each of them exactly once, and
return to where he started. He knows the pairwise distances
between these cities and his problem is to find the best sequence
in which the cities should be visited so as to minimize the total
distance travelled.

Each possible ordering of the cities involving each city exactly once
is called a tour. To each tour one assigns a cost, a positive number
equal to the total distance the salesman would travel if he were to
visit the cities in that order. The problem then is to minimize this cost
over the finite set of tours.

This may sound simple. (After all, there are only finitely many
tours!) But it is not. The number of possible tours grows explosively
with  N (as N!). This rules out simple search algorithms. Things still
wouldn’t be too bad if there was enough 'structure'  to the problem,
but there isn’t. The problem is provably hard, i.e., it belongs to an
equivalence class of problems known to be hard in a precise
technical sense.

A popular heuristic algorithm for the travelling salesman problem is
the 2-opt. Here one starts with a tour and randomly picks two
consecutive cities on the tour. They are interchanged to obtain a
new tour. If the new tour has a lower cost  replace the old tour by the
new tour. This procedure is repeated until there is no further
improvement.

The problem with this and other similar heuristics is that they get
stuck in local minima. If the number of cities is small, say, in tens,
they still do reasonably well (in fact, often better than simulated
annealing for a fixed finite run length of the algorithms). If N
exceeds a few hundreds, however, simulated annealing begins to
show a distinct edge over these heuristics.

A salesman has to

visit  N cities, each

of them exactly

once, and return to

where he started.

He knows the

pairwise distances

between these

cities and his

problem is to find

the best sequence

in which the cities

should be visited

so as to minimize

the total distance

travelled.



GENERAL ⎜ ARTICLE

55RESONANCE ⎜ February  1997

We shall return to this and related problems later after looking into
the formal mathematical aspects of the algorithm. A reader uncom-
fortable with mathematical probability theory may skip the  next
section at a first pass.

You Have Nothing to Lose But Your Chains

For simplicity, let D be a finite set with M elements. The mathemati-
cal model for our algorithm is a Markov chain. A Markov chain on
D is a random process Xn, n = 0, 1, 2, ..., taking
values in D with the property that the probability of its moving from
i to  j at any given time does not depend on how it arrived at  i.
(Technically speaking, its future and past are conditionally inde-
pendent given the present, a good philosophy for life in general.) If
this probability is also independent of the explicit time count (the
clock), we may denote it by  p (i, j). If the proba-bility of the chain
being in  i at a given time is  π (i), the proba-bility of its being in  j
at the next instant will be  Σ π (i) p(i, j). Thus if the probability vector
π (·) satisfies

Σ π (i) p (i, j) = π ( j),  j∈D ,

then we have — if the probability distribution of the chain is          π
(.) at some time, then it is  π (.) forever. Such a  π (.) is called a
stationary distribution. If the chain is irreducible, i.e., can go from
any  i ∈ D to any j ∈ D with positive probability, a unique such π (·)
exists. Also, the fraction of time the chain spends in  i approaches
π (i) in the limit for each  i.

Equation (1) is called  global balance. (Think of equilibrium
concentration at  j being equal to that at  i times the rate of flow from
i to  j, summed over  i.) One also has the  detailed balance equation

π (i) p (i, j) = π ( j) p ( j, i), i,  j∈ D ,
which implies (1) but not vice versa. For most chains  (2)

may not be possible. Mercifully, it is so for the chain we are about(2)

i

j
(1)
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to consider.

Suppose we impose on D a neighbourhood structure whereby
each  i∈ D has N neighbours (N usually much smaller than  M) and
i, j are either neighbours or they are not. Consider a chain which
(i) cannot go from  i  to  j  unless  j is  a neighbour  of   i, (ii) can with
probability

p(i,  j) = (1/N ) exp (– ( f ( j) – f (i))+/ T )

if it is, and (iii) remains in i with the remaining probability. Here T>0
is a parameter called  temperature for reasons that will become
apparent later, and x+ = max (x, 0). The expression (3) can be
thought of as being in two parts: the ‘selection probability’ given by
1/N and the ‘acceptance probability’ given by the exponential term.
The interpretation is that the chain at  i picks a neighbour  j with
equal probability. It moves there with a probability equal to the
acceptance probability and remains at  i with the remaining
probability. Note that the acceptance probability is 1 if   f ( j) < f (i)
1 and <1 otherwise, decreasing as            f ( j) increases. That is,
if the selected move is downhill, it is made with certainty. If it is
uphill, it is made with a small probability which decreases with the
amount of climb involved.

It is easily verified that given (3), (2) is satisfied by

where Z is the normalizing factor. Observe that  f (i) > f (j) implies
πT  (i)<πT (j). Thus πT (·) assigns maximum probability to the   i
where  f  attains its minimum. The chain then spends the maximum
fraction of time in these states. What's more, the smaller the
parameter  T, the larger this fraction (the more peaked πT  (.) is at
the global minimum). Note that the two limiting cases of   T=0 and
T=∞ correspond respectively to pure descent and pure random
walk.
To fix ideas, consider the specific case of D ={1, 2, 3, 4} with each
element a neighbour of every other. Let  f (i) = i for i in D and T =

(3)

πT (i) = Z–1 exp (–f (i) / T ),   i ∈ D,
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1. Then we have (using  e=2.71828...) = base of natural logarithms.

This uniquely specifies  p (i, i) as 1–∑  p (i, j) for each i. In view of
the foregoing, one has

πT  (i) = e–i /(e–1+e–2+e–3+e–4),

which clearly peaks at i=1, the global minimizer of  f.

The foregoing suggests the following algorithm. Run the chain with
a time-varying T=T(t). Decrease T(t) with time t so slowly that the
probability distribution of the chain closely tracks πT (t), thus
concentrating on the global minimum in the limit. This is the
simulated annealing algorithm, named thus by analogy with the
eponymous slow cooling process for hardening metals. The func-
tion t →T(t) is correspondingly called the cooling schedule.

In the Long Run . . .

But does the algorithm work provably? Yes, if T(t) decreases slowly
enough to ensure Σt exp (–d/T (t)) = ∞ where d = the ‘depth’ of the
problem. This is defined as the maximum of the minimum one has
to climb from any point in  D in order to get to some global minimum.
The convergence, however, is only in probability. That is, the
probability of the chain being away from the set S of global minima
goes to zero. This does not ensure that with probability one, the
algorithm hits  S and stays there. That would be  almost sure
convergence in probabilistic jargon, a stronger concept. In both,
the probability of the set of   bad sample points (i.e., the set An on
which Xn ∉S) shrinks to zero. But in the former, these can wander
all over the sample space while shrinking (Figure 2a), unlike the
latter, where they do so in a more or less nested fashion (Figure
2b). (The outer square in these figures represents the underlying
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sample space.) Unfortunately, almost sure convergence to S need
not hold. One can concoct situations wherein the algorithm leaves
S infinitely often, though such occurrences become increasingly
rare. But the fraction of time spent in S does go to unity.

To get a feel for this rather subtle point, consider the sequence
{a(n)} which is 1 when  n=2m  for some m ≥ 1, zero otherwise. It
becomes 1 increasingly rarely and the fraction of time it spends in
zero approaches one, though it does not converge to zero.

Intuitively, what is required to make the algorithm stick to a global
minimum is that the immediate valley surrounding it be deep.

But these are only asymptotic results. While commenting on what
happens in the long run, the economist John Maynard Keynes
once quipped that in the long run, we are all dead. A similar
cynicism may be warranted here in the absence of good rate of
convergence results. Few analytic results are available, such as
some that predict inverse polynomial (in  t) decay of the probability
of not hitting  S until time  t. But the constants up front involved in
these estimates are too large to make them practically useful. One
thus has to fall back on empirical observations, which are encour-
aging for certain classes of problems. We shall discuss these in the

(a)

(b)

Figure 2 a,b.
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last section.

From Child’s Play to Statistical Mechanics

We now present two interpretations of the algorithm. The first is
simply an analogy with a children’s toy wherein a metal ball in a
maze is to be pushed to its center by repeatedly tilting the maze in
a suitable manner.  One starts out with rather large tilts, and then
smaller ones as the ball approaches the center.  The addition of
slowly diminishing noise to the basic descent scheme can also be
thought of as randomly tilting the landscape, the extent of which
diminishes with time. The algorithm trapped in a local minimum is
thus  poured out by tilting the landscape. This analogy is not as far
fetched as it may seem. It is quite accurate for simulated annealing
in a finite dimensional vector space (as opposed to a finite set D)
which, unfortunately, we will not consider here because of its
technicalities.

The second interpretation runs deeper and in fact, motivated the
Monte Carlo Markov chains that preceded simulated annealing.
(They correspond to the constant T version thereof.) Recall that a
thermodynamic system in equilibrium at a constant temperature T
minimizes its (Helmholtz) free energy, which is its internal energy
minus T times its entropy. Statistical mechanics, which aims to
derive thermodynamics from microscopic phenomena, translates
this into the following: Let D be a discrete set of possible states and
f (i) the energy in state i∈D. If pi is the probability of the system
being in state  i, Σ pi  f (i) is the average energy. On the other hand,
the entropy of   p=[ p1, ... , pm ] is given by  –Σ pi  ln pi , its information
content. This can be justified axiomatically and the readers
unfamiliar with information theory are requested to accept it on
faith. The free energy minimization principle then requires  p to
minimize  Σ  pi  ( f (i)+T ln pi  ) sub-ject to Σ pi =1. This is a strictly
convex function (i.e., function with the property that the line joining
any two points on its graph lies above the graph) on a bounded
convex domain (i.e., a set that contains every line segment whose
end points are in the set.) This makes it an optimization theorist’s
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dream problem. It has a unique solution given by p=πT . In the T →
0 limit, the problem reduces to minimizing Σ pi  f (i), which is
tantamount to our original problem. (Think about it! Strictly speak-
ing, it is a ‘relaxation’ of the original problem in optimization
parlance.) The algorithm thus simulates convexification of the
problem, with lowering of T corresponding to gradually distorting
the convex problem to the original. There are optimization tech-
niques called  homotopy methods which actually do this. The
difference here is that the convexification is not explicit. It arises
through the average behavior of a random phenomenon.

One may then ask: Why not do the deterministic minimization of
free energy directly? The reason is that in most applications,  D is
very large and complex, the space of probability vectors on  D even
more so. Thus the deterministic problem is not usually computationally
amenable. There are, however, applications (like image process-
ing) where the above considerations have led to deterministic
approximations of simulated annealing. These are called mean field
annealing methods, after the ‘mean field’ theories of physics
wherein one replaces fluctuating quantities by their averages.

The Good, the Bad, and the Ugly

When should one use simulated annealing? The following consid-
erations give some intuition about this. Consider successive blocks
of a fixed, large number of iterations. The higher the value of   T, the
more the algorithm will wander in any such block. Thus at high T, it
sees the landscape on a coarse scale, seeking only the broad
valleys. As T is lowered, it starts seeing finer length scales and
hence smaller valleys.

Keeping this in mind, consider the three functions displayed in
Figure 3. The first is a  good function, smooth, convex, with a unique
local-cum-global minimum. Any reasonable algorithm will work for
this. The second function is  bad, but not altogether so. Reasonable
heuristics like the multistart method (which initiates several descent
algorithms at many randomly chosen initial conditions) will do well

i
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on this with a high probability. This is more than what one can say
for the third function, which is really ugly. It has local minima at all
length scales, making it tough for even the most reasonable of the
traditional heuristics. But when things get tough, the tough get going
and simulated annealing, which is  intelligent brute force by
another, is a tough algorithm. In fact, it is only the large and ugly
problems for which it starts showing significant gains.

But do we encounter such ugly problems in practice? Plenty!
Combinatorial optimization is a real gold mine of these. (Perhaps
‘minefield’ would be a better metaphor.) Examples are: graph
matching, graph partitioning, graph colouring, and travelling sales-
man problems. In fact, the algorithm was originally introduced for
solving combinatorial optimization problems in VLSI circuit design.

Another major area is image processing, where a noisy image
(sometimes misleadingly called a dirty picture) is cleaned by
optimally fitting to it a nicer image with respect to some error

Figure 3 a–c.
(a)

(b)

(c)
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criterion.

The reader might have heard of neural networks  which are large
networks of simple nonlinear elements whose parameters are
adjusted to perform specific tasks like associative memory or
pattern classification. One of these is the  Boltzmann machine,
which uses simulated annealing for optimal parameter adjustments.

Condensed matter physicists encounter complex systems called
spin glasses with really ugly energy functions. Simulated annealing
is a useful tool for numerically analyzing these.

The above problems have an important feature in common, which
we illustrate in the case of the travelling salesman problem de-
scribed in an earlier section. D then is the set of all possible tours.
Two tours are neighbours if one is obtainable from the other by
interchanging the placing of two cities that occur successively. For
large N, the tour length is difficult to compute, but the difference in
tour length of two neighbours is not. That is,  f (i) is hard to find, but
f (j) – f (i) is not when i, j are neighbours. This is another important
feature of typical application domains of simulated annealing. In
fact, if it were not so, simple random walk would do better simply by
keeping track of the lowest point visited so far.

Finally, the remarks at the beginning of this section also give a clue
as to what T to start with. If  T is too high, it is virtually a random walk
and we are wasting resources. If too low, one may take forever to
move out of the current valley.  As T decreases from high to low,
one expects πT to go from an almost flat distribution to a humped
one. In many cases, the transition is fairly sharp around a critical
temperature Tc . The rule of thumb is to use Tc as the initial T. Of
course, Tc has to be guessed or estimated, which is another
problem altogether.

In practice, of course, there are many ad hoc add-on features to
speed-up the algorithm or reduce its resource requirements,
usually at the expense of exact optimality. After all, there is a
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science of optimization and there is also an art to it. It is the former
that is being conveyed to you in this article. The latter cannot be,
since one has to simply ‘grow into it’ through experience.
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