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CONVOLUTION OPERATOR AND MAXIMAL FUNCTION FOR
DUNKL TRANSFORM

SUNDARAM THANGAVELU AND YUAN XU

ABSTRACT. For a family of weight functions, h,, invariant under a finite re-
flection group on R%, analysis related to the Dunkl transform is carried out for
the weighted LP spaces. Making use of the generalized translation operator
and the weighted convolution, we study the summability of the inverse Dunkl
transform, including as examples the Poisson integrals and the Bochner-Riesz
means. We also define a maximal function and use it to prove the almost
everywhere convergence.

1. INTRODUCTION

The classical Fourier transform, initially defined on L'(R%), extends to an isom-
etry of L?(RY) and it commutes with the rotation group. For a family of weight
functions h, invariant under a reflection group G, there is a similar isometry of
L?(R%,h?), called Dunkl transform ([3]), which enjoys properties similar to those

of the classical Fourier transform. We denote this transform by f in the following.
It is defined by

fla) = [ B~ )b )iy

where the usual character e~*®¥) is replaced by F(z, —iy) = Vi(e *"¥))(z), in
which Vj; is a positive linear operator (see the next section). If the parameter x = 0
then hy(z) =1 and V,, = id, so that fbecomes the classical Fourier transform.

The basic properties of the Dunkl transform have been studied in [3, 8l 3] [T5]
and also in [T2, [T9] (see also the references therein). These studies are mostly for
L?(R%) or for Schwartz class functions.

The purpose of this paper is to develop an LP theory for the summability of
the inverse Dunkl transform and prove a maximal inequality that implies almost
everywhere convergence.

The classical Fourier transform behaves well with the translation operator f —
f(-—y), which leaves the Lebesgue measure on R? invariant. However, the measure
h2(z)dz is no longer invariant under the usual translation. One ends up with a
generalized translation operator, defined on the Dunkl transform side by

~

7,f(x) = By, —iz)f(z),  ze€R%
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An explicit formula for 7, is unknown in general. In fact 7, may not even be a
positive operator. Consequently even the boundedness of 7, in LP(R%; h2) becomes
a challenging problem. At the moment an explicit formula for 7, f is known only
in two cases: when f is a radial function and when G = Z¢. Properties of 7, are
studied in Section 3. In particular, the boundedness of the 7, for radial functions
is established.

For f, g in L?(R%; h2) their convolution can be defined in terms of the translation
operator as

(2w 0)@) = [ F)mes” ()02 ()

Based on a sharp Paley-Wiener theorem we are able to prove that f *, ¢. converges
to f in LP(R?; h2) for certain radial ¢ , where ¢. is a proper dilation of ¢. This
and other results are given in Section 4.

The convolution *, can be used to study the summability of the inverse Dunkl
transform. We prove the LP convergence of the summability under mild conditions,
including as examples Gaussian means (heat kernel transform), Abel means and
the Bochner-Riesz means for the Dunkl transform in Section 5.

In Section 6 we define a maximal function and prove that it is strong type (p,p)
for 1 < p < oo and weak type (1,1). As usual, the maximal inequality implies
almost everywhere convergence for the summability.

In the case G = Z4, the generalized translation operator is bounded on LP(R¢; h2).
Many of the results proved in the previous sections hold under conditions that are
more relaxed in this case and the proof is more conventional. This case will be
discussed in Section 7.

The following section is devoted to the preliminaries and background. The basic
properties of the Dunkl transform will also be given.

2. PRELIMINARIES

Let G be a finite reflection group on R? with a fixed positive root system R,
normalized so that (v,v) = 2 for all v € Ry, where (z,y) denotes the usual Eu-
clidean inner product. For a nonzero vector v € R%, let ¢, denote the reflection

with respect to the hyperplane perpendicular to v, xo, = z — 2({x,v)/||v|?*)v,
x € RY. Then G is a subgroup of the orthogonal group generated by the reflections
{oy:v € RL}.

In [1], Dunkl defined a family of first order differential-difference operators, D;,
that play the role of the usual partial differentiation for the reflection group struc-
ture. Let x be a nonnegative multiplicity function v — &k, defined on R, with
the property that x, = x, whenever o, is conjugate to o, in G; then v — kK, is a
G-invariant function. Dunkl’s operators are defined by

D;f(r) = 0if(z) + Z kv%@hfi% 1<i<d,

vERL
where €1, ...,&4 are the standard unit vectors of R%. These operators map PZ to
Pd_,, where P4 is the space of homogeneous polynomials of degree n in d variables.

More importantly, these operators mutually commute; that is, D;D; = D;D;.
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Associated with the reflection group and the function x is the weight function
hy, defined by

(2.1) he(z) = H [{z, v)]", z e R4,
vERL

This is a positive homogeneous function of degree 7, = ) R, v and it is in-
variant under the reflection group G. The simplest example is given by the case
G = 7§ for which h, is just the product weight function

d

hy(z) = H ||, ki > 0.
i=1
The Dunkl transform is taken with respect to the measure h2(z)dz.
There is a linear isomorphism that intertwines the algebra generated by Dunkl’s
operators with the algebra of partial differential operators. The intertwining oper-
ator Vj; is a linear operator determined uniquely by

ViiPa C Pny, Vil=1, DiVe=V.0;, 1<i<d.

The explicit formula of V,, is not known in general. For the group G = Zg, it is an
integral transform

d

(22)  Vif(2) = bn/ flarty, .. wata) [ (U + ) (1 —23)% dt.

[—1,1]4 i=1

If some k; = 0, then the formula holds under the limit relation

li
A—0

mby [0 =0 = [F0)+ FD)/2

It is known that V;; is a positive operator ([I3]); that is, p > 0 implies V;p > 0.

The function E(z,y) := ,.51) [e@’y)}, where the superscript means that V;; is
applied to the x variable, plays an important role in the development of the Dunkl
transform. Some of its properties are listed below ([2]).

Proposition 2.1. For x,y € R",
(1) E(z,y) = E(y,z);
(2) |B(z,y)| < ellll 2y e Cy
(3) Letv(z) =22 +...+ 2%, 2z € C. For z,w € C¢,
ch/ E(z,:E)E(w,x)hi(x)e"‘w|‘2/2d:v = 2B (5 W),
R4

where ¢y, is the constant defined by cgl = f]Rd hi(x)efﬂm"z/zda:,
In particular, the function
B(w,iy) = Vi) o], gy e RY

plays the role of ¢/*#) in the ordinary Fourier analysis. The Dunkl transform is
defined in terms of it by

(2.3) fly) =cn y f(x)E(x, —iy)hi (z)de.
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If k = 0 then V., = id and the Dunkl transform coincides with the usual Fourier
transform. If d = 1 and G = Zg, then the Dunkl transform is related closely to the
Hankel transform on the real line. In fact, in this case,

E(z, —iy) = U(r +1/2)(|lzy|/2) ™2 [Jo1ja(Jyl) — isign(wy) Juraja(Jzy))]
where J, denotes the usual Bessel function
¢ «a 00 (_1)71 ¢ 2n
2.4 J.0) = (% N Gt (R T
(24) ®) <2) ;n!f‘(n—i-a—i—l) <2>
We list some of the known properties of the Dunkl transform below ([3, K]).

Proposition 2.2. (1) For f € L*(R%; h2), [ is in Co(RY).
(2) When both f and f are in L*(R%; h2) we have the inversion formula

~

@)= [ B Flohi .
(3) The Dunkl transform extends to an isometry of L?(R%; h2).
(4) For Schwartz class functions f, D;f(y) = iy; f(y).

There are two more results that we will need. They require a little more prepa-
ration. First we need the definition of h-harmonics. The h-Laplacian is defined by
Ap =D} +...+D? and it plays the role similar to that of the ordinary Laplacian.
Let P? denote the subspace of homogeneous polynomials of degree n in d variables.
An h-harmonic polynomial P of degree n is a homogeneous polynomial P € P2
such that A, P = 0. Furthermore, let H%(h2) denote the space of h-harmonic
polynomials of degree n in d variables and define

(Foghei=an [ f@glahd (@)do(a).

where a;! = [gu1 hZ(z)dw. Then (P,Q). = 0 for P € HZ(hZ) and Q € IIY

n—1-
The spherical h-harmonics are the restriction of h-harmonics to the unit sphere.
The standard Hilbert space theory shows that

L*(h}) = Y P Ha (kD).
n=0

Throughout this paper, we fix the value of A := A, as

d—2
(2.5) A=, + — with Y = Z Ky-

vERL

Using the spherical-polar coordinates x = rz’, where 2’ € S%~1, we have

(2.6) f(:z:)hi(a:)d:z: = / / f(m:/)hi (x’)dw(a:/)TQ)‘”Jrldr
Rd 0 Jgd-1
from which it follows that
et = / hi(x)efHIHQ/Qd:z: = 22D (N, + Day b
Rd

The following formula is useful for computing the Dunkl transform of certain
functions ([3]).
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Proposition 2.3. Let f € Hi(h2), y € R? and > 0. Then the function
@) =an [ FOB( g hOdul€)
G-

satisfies Apg = —p2g and

o) = =5 () () s e

]

We will also use the Hankel transform H, defined on the positive reals R;. For
a>-—1/2,

. 2a+1
(2.7) H,f(s):= +1 / f(r dr.
The inverse Hankel transform is given by
1 = Ja(rs)
2. = H, atlgs,
(28) F0) = £ / Ok

which holds under mild conditions on f; for example, it holds if f is piecewise
continuous and of bounded variation in every finite subinterval of (0, 00), and \/rf €
LY(R,) (20, p. 456)).

Proposition 2.4. If f(z) = fo(|z[l), then f(x) = Hy, fo(|lz])-
Proof. This follows immediately from (Z8) and Proposition O

3. GENERALIZED TRANSLATION

One of the important tools in the classical Fourier analysis is the convolution

(f*a)( / fW)g(z —y)dy,

which depends on the translation 7, : f(z) — f(z —y). There is a generalized
translation for the reflection invariant weight function, which we study in this sec-
tion.

3.1. Basic properties and explicit formulas. Taking the Fourier transform,
we see that the translation 7,f = f(- — y) of R? satisfies ;U\f(:v) = e~ i) f(x).
Looking at the Fourier transform side, an analogue of the translation operator for
the Dunkl transform can be defined as follows:

Definition 3.1. Lety € R? be given. The generalized translation operator f v+ 1, f
is defined on L*(R%; h2) by the equation

(3.1) nf(@) = By, —iz)f(z), wzeR"

Note that the definition makes sense as the Dunkl transform is an isometry of
L?(R%; h2) onto itself and the function E(y, —ix) is bounded. When the function
f is in the Schwartz class the above equation holds pointwise. Otherwise it is to
be interpreted as an equation for L? functions. As an operator on L?*(R%; h2), T,
is bounded. A priori it is not at all clear whether the translation operator can
be defined for L? functions for p different from 2. One of the important issues is
to prove the LP boundedness of the translation operator on the dense subspace of
Schwartz class functions. If it can be done then we can extend the definition to all
LP functions.
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The above definition gives 7, f as an L? function. It is useful to have a class of
functions on which (3.1) holds pointwise. One such class is given by the subspace
AR ={f € 'R ) : f e L'RY D))
Note that A,(R?) is contained in the intersection of L!(R%; h2) and L> and hence
is a subspace of L2(R%; h2). For f € A.(R?) we have

(32) nf(e) = [ Blir. B O F(€n (e

Before stating some properties of the generalized translation operator let us
mention that there is an abstract formula for 7, given in terms of the intertwining
operator V,; and its inverse. It takes the form of ([I9])

(3.3) Ty f(2) =V VW (VI )@ —y)]

for f being Schwartz class functions. We note that V! satisfies the formula
Vol f(x) = e P f(x)|,—0. The above formula, however, does not provide much
information on 7,f. The generalized translation operator has been studied in
13, 15, [9]. In [T9) the equation B3] is taken as the starting point.

The following proposition collects some of the elementary properties of this op-
erator which are easy to prove when both f and g are from A, (R?).

Proposition 3.2. Assume that f € A.(R?) and g € L*(R?; h2) is bounded. Then
W) [ ni©a@n©d = [ FOm @

(2) Tyf(x) =72 f(~y).

Proof. The property (2) follows from the definition since F(\x,&) = E(z, A§) for
any A € C. To prove (1) assume first that both f and g are from A, (R%). Then
both integrals in (1) are well defined. From the definition

[ nit@semeas - ( Bliz. ) <—z’y,£>A<5>hi<5>ds) ()2 ()
/ e ~iy, 2(E)de.

We also have
[ romsem@ic= [ ([ Binopi9a@meE) s
R4 R4 R4
[ P3O By, On ()de
| FOIOB =iy O ()ds.
This proves (1) when both f and g are from A, (R9).
Suppose now f € A.(R?) but g is in the intersection of L'(R% h2) and L°°.

Note that g € L?(R% h2) and so 7,9 is defined as an L? function. Since f is in
L?(R%; h2) and bounded, both integrals are finite. The equation

/ reaenieE = [ Featem e
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which is true for Schwartz class functions remains true for f,g € L?(R%; h2) as well.
Using this we get

[t @g@iz@a= [ f(-ag(-an )iz
Rd

R4
_ / By, —ie)J©a(-m (€)de.

By the same argument the integral on the right hand side is also given by the same
expression. Hence (1) is proved. O

We need to prove further properties of 7,. In the classical case the ordinary
translation satisfies

[ ta=pio= [ fwye

Such a property is true for 7, if f is a Schwartz class function. Indeed
| mt@m@is = mHo) = Fo).

Here we have used the fact that 7, takes S into itself. For f € A, (R?) though 7, f
is defined we do not know if it is integrable. We now address the question whether
the above property holds at least for a subclass of functions.

For this purpose we make use of the following result which gives an explicit
formula for 7, f when f is radial, see [I5]. We use the notation 2’ = ﬁ for non-zero

T € R%
Proposition 3.3. Let f € A.(R?) be radial and let f(z) = fo(||z||). Then

(@) = Vi [fo (VI=IP +TolP =20 Tyl ) | ).

This formula is proved in [I5] for all Schwartz class functions. However a different
proof can be given using expansions in terms of h—harmonics. For that one needs
to invert Hankel transforms of h—harmonic coefficients of f of various orders. Once
we assume that f € A, (R?) it follows that all h— harmonic coefficients of f and
their Hankel transforms are integrable so that inversion is valid. A special case of
the above theorem is the following formula

(3.4) ryae(x) = e U+ B2ty )

where

qi(z) = (2t)_(7+%)e_t”m”2
is the so called heat kernel. This formula has already appeared in [I2]. The other
known formula for 7, f is the case when G = Z4.

Theorem 3.4. Let f € A,(R?) be radial and nonnegative. Then 7,f > 0,7,f €
LY (R4 h2) and
/ 7, f(z)h2 (z)dx = f(x)h2(z)d.
Rd R4
Proof. As f is radial, the explicit formula in Proposition shows that 7, f > 0

since Vj; is a positive operator. Taking g(z) = e~tlzl” and making use of B we
get

/Tyf(x)e—t|\w|\2hi($)dx: Fla)e 4181 By /2t /2ty b (z)da.
R4 Rd
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As |E(z,y)| < el*l¥l we can take limit as t — 0 to get

lim Tyf($)€_t||mll2hi($)d$ = f(x)h?(z)dx.
Rd R4

t—0
Since 7, f > 0, monotone convergence theorem applied to the integral on the left

completes the proof. O

We would like to relax the condition on f in the above proposition. In order to
do that we introduce the notion of generalized (Dunkl) convolution.

Definition 3.5. for f,g € L?>(R%; h2) we define
Frug(@) = [ f)mg” W)hi(y)dy
R

where g (y) = g(=y)-

Note that as 7,9V € L?(R% h2) the above convolution is well defined. We can
also write the definition as

froota) = [ FOa© B k.

If we assume that g is also in L*(R%; h2) so that g is bounded, then by Plancherel
theorem we obtain

1S * gll2 < Mgl allflls.2-

We are interested in knowing under what conditions on g the operator f — f %, g
defined on the Schwartz class can be extended to LP(R%; h2) as a bounded operator.
But now we use the L? boundedness of the convolution to prove the following.

Theorem 3.6. Let g € LY(R% h2) be radial, bounded and nonnegative. Then
749 > 0,7,9 € LY(R%; h2) and

/Rd Tyg(x)h% (x)de = /Rd g(@)h2 (@)de.

Proof. Let ¢; be the heat kernel defined earlier so that ¢;(§) = e—tlel®, By Plancherel
theorem

19 e gt — 9120 = / GEOPQ — 17282 () e
R4

which shows that ¢ *, ¢¢ — ¢ in L?(R%h2) as t — 0. Since 7, is bounded on

L?*(R%; h2) we have 7, (g%, q:) — 7,9 in L}(R%; h2) ast — 0. By passing to a subse-

quence if necessary we can assume that the convergence is also almost everywhere.
Now as g is radial and nonnegative, the convolution

9 #r q(z) = /Rd 9(W)Tea (Y2 (y)dy

is also radial and nonnegative. We also note that g *,. ¢; € A.(RY) as g is both
in LY(R?%; h2) and L?(R% h2); in fact g *, ¢ € L*(R% h?) as ¢ € A.(R%)and, by
Plancherel theorem and Holder’s inequality, ||g%x G llx1 = 3@ llx1 < 9lls.2]le ] 5 2-
Thus by Theorem Bl we know that 7,(g *, ¢;)(z) > 0. This gives us

}1_{% Ty(g *K Qt)(x) = Tyg(l') >0
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for almost every z. Once the nonnegativity of 7,g(x) is proved it is easy to show
that it is integrable. As before

/ ryg(x)e” 11 h2 (2)dw = / g(@)e~ U=IPF10ID) B (v/2ta, v/2ty)h2 (2)da.
]Rd

Rd
Taking limit as ¢ goes to 0 and using monotone convergence theorem we get

/Rd Tyg(@)h () dw = / g(z)R2 (z)dx.

Rd
This completes the proof. ([

There is another way of proving the above result which avoids the intermediate
steps. Assuming that [,, g(z)h?(x)dz = 1, our result is an immediate consequence
of Proposition 6.2 in [T9].We are thankful to the referee for pointing this out. We
are now in a position to prove the following result. Let L” ,(R% h2) denote the
space of all radial functions in LP(R%; h2).

Theorem 3.7. The generalized translation operator T, initially defined on the in-
tersection of L*(R%; h2) and L™, can be extended to all radial functions in LP(R%; h2),
1<p<2, and 7, : LY (R h2) — LP(R% h2) is a bounded operator.

rad
Proof. For real valued f € L*(R% h2) N L™ which is radial the inequality —|f| <
f < |f| together with the nonnegativity of 7, on radial functions in L!(R%; h2)NL>
shows that |7, f(z)] < 7| f|(z). Hence

/ Iry £ (@) 12 (@) < / @2 @)z < [[fler.
Rd Rd

We also have ||, f|lx,2 < || fllx,2. By interpolation we get, as L? is the interpo-
lation space between L' and L2, ||7,fllxp < ||fllsyp for all 1 < p < 2 for all

f €Ll (R4 Ah2). This proves the theorem. For the inerpolation theorem used here

rad
see [18]. O
Theorem 3.8. For every f € LY, ,(R% h2),

/ myf(@)hi(x)de = | f(x)hi(z)da.
R4 Rd

Proof. Choose radial functions f, € A,(R%) so that f, — f and 7,f, — 7,f in
LY(R4; h2). Since

[ @ @de = [ fu@ryg@li(@)ds
Rd Rd
for every g € A.(R?) we get, taking limit as n tends to infinity,

| mt@aamieis = [ far g@hid.

Now take g(z) = e~tI7II* and take limit as ¢ goes to 0.. Since 7, f € L*(R% h2) by
dominated convergence theorem we obtain

/ ry f@h2 (@)de = | f@)h? (@)de

for f € L'(R%; h2). O

We remark that it is still an open problem whether 7, f can be defined for all
fe LNR%RY).
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3.2. Positivity of 7,. As an immediate consequence of the explicit formula for the
generalized translation of radial functions, if f(z) € A,(R?) is nonnegative, then
7y f(x) >0 for all y € R ([I5H]).

One would naturally expect that the generalized translation defines a positive
operator; that is, 7, f(z) > 0 whenever f(x) > 0. This, however, turns out not to
be the case. For G = Zs, the explicit formula given in Section 7 shows that 7, is
not positive in general (signed hypergroup, see [I1]). Below we give an example to
show that 7, is not positive in a case where the explicit formula is not available.
It depends on a method of computing generalized translation of simple functions.
The explicit formula (3.2) can be used to define 7, f when f is a polynomial.

Lemma 3.9. Lety € RY. For1<j<d, r,{z;} =z; —y;; and for 1 < j k < d,
r{@jan} = (25 —y)(@n —ye) =k Y [Vil(@,9) = Val(wow,9))].

vERL

Proof. We use B4) and the fact that D;7, = 7,D;. On the one hand, since the
difference part of D; becomes zero when applied to radial functions,

7, Dy thel’ = _9¢r, ({.}je—tn-n2) ().
On the other hand it is easy to verify that
D;ryetlel* = p, {e—a||w||2+||y||2>E(2m,y)} = ote=tU=IP+IVI") B2t ) (y; — ;).
Together, this leads to the equation
(3.5) 7 (xje—tnwW) = 2e~t U+ B (2ta, ) (z; — ).

Taking the limit as t — 0 gives 7, {z;} = z; — y;.
Next we repeat the above argument, taking ([B3) as the starting point. Using
the product formula for Dy [B, p. 156], a simple computation gives

DkTy (;[;je—tHiE'P) — Dk |:(.’I]] _ y])e_t(HIH2+”U”2)i|

— o~ tUl+lyl?) { — 2t(z; — y;)(zk — y) E(2tx, y)

r‘)kﬁjz E(2tzo,, y)]
v

+ 0k ;B (2tx,y) + 2 Z Ko

vER

On the other hand, computing Dy, (xje_t””””z) leads to

- (Dk(xje—t|\m|\2)) = 97, (zzpet1o1%) 1 1 e tlal? {5&3‘ +2 ) kK ﬁkﬁﬂ
veER v
Hence, using 8), the equation Dyr,(z e~ 121%) = 7, Dy (2;¢ 171" gives
Ty (Ijiﬂke_tlm‘z) = e~ tlal*+ vl {(%‘ —yj)(xk — yr) E(2tz, y)
vpv; E(2tx,y) — E(2txo,,
n Z oy ]2 ( Y) ( y)}
2 ] t
+
Taking the limit as t — 0 gives the formula of 7, {x;zx}. O

Proposition 3.10. The generalized translation T, is not a positive operator for the
symmetric group Sq.
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Proof. The formula 7,{z;x} depends on the values of V.z;. For symmetric group
Saq of d objects, the formula of V,,z; is given by ([])

Vij = (A +z;+hlz)), |pl=a1+... +2a

1
dr +1
Let z(j, k) denote the transposition of x; and xj variables. It follows that

r{a3} = (25— y) + 5 ) Villz, ) = Vi((2(k, 5), )]

k#j

= (z; — yj) +HZ i — o) Vily; — ye)]
k#j

= (2~ )’ + 57 ; () — 2 (s — o).

Choosing z = (1,0,0,...,0) and y = (0,2,2,...,2), we see that 7,({-}3)(x) =
—((d—=2)k+1)/(dk + 1) < 0. This proves the proposition. O

Let us point out that, by [3), this proposition also shows that V=1 is not a
positive operator for the symmetric group. In the case of Zs, an explicit formula of

V.1 is known ([22]) which is not positive.

3.3. Paley-Wiener theorem and the support of 7,. In this subsection we
prove a sharp Paley-Wiener theorem and study its consequences. The usual ver-
sion of Paley-Wiener theorem has been already proved by de Jeu in his thesis
(Leiden,1994). Another type of Paley-Wiener theorem has been proved in [T9)].
Our result is a refined version of the usual Paley-Wiener which is analogous to
an intrinsic version of Paley-Wiener theorem for the Fourier transform studied by
Helgason [[[]. Recently, a geometric form of the Paley-Wiener theorem has been
conjectured and studied in [9].

Let us denote by {Y;, : 1 < j < dimH%(h2)} an orthonormal basis of HZ(h2).
First we prove a Paley-Wiener theorem for the Dunkl transform.

Theorem 3.11. Let f € S and B be a positive number. Then f is supported in
{z : ||z|| < B} if and only if for every j and n, the function

Flo) =7 [ FoaYn@hi @)oo
extends to an entire function of p € C satisfying the estimate

Fjn(0)] < eI,

Proof. By the definition of f and Proposition ZZ3
[ Tl a(ahi ) dota)
—c [ [ B i)Y @)oo ) )y
Rd d—1

) Puctnplvll) o
= [ 0 R

J n
/ fg . AkTJr E:P) 2AK+n+1dT7
(rp)
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where c is a constant and
Fra®) =17 [ 0 )

Thus, Fj, is the Hankel transform of order A\. + n of the function f;,(r). The
theorem then follows from the Paley-Wiener theorem for the Hankel transform (see,
for example, [6]). O

Corollary 3.12. A function f € S is supported in {z : |z|| < B} if and only if f
extends to an entire function of ¢ € C* which satisfies

F(O)] < eIl

Proof. The direct part follows from the fact that E(z, —i() is entire and |E(z, —i¢)| <
celzl-ISCl For the converse we look at

| T Wl MEaew). pec

where dw is the surface measure on S9!, This is certainly entire and, from the
proof of the previous theorem, has a zero of order n at the origin. Hence,

pm / Fow' )Y ) h2 (0 Yo ()
Sd* 1

is an entire function of exponential type B, from which the converse follows from
the theorem. O

Proposition 3.13. Let f € S be supported in {z : ||x|| < B}. Then 7, f is supported
in{x: ||zl < B+ |yll}-

~

Proof. Let g(z) = 7, f(x). Then §(&) = E(y, —i€)f(£) extends to C? as an entire
function of type B + ||y||. O

This property of 7, has appeared in [T9]. We note that the explicit formula for
Ty shows that the support set of 7, given in Proposition B3 is sharp.
An important corollary in this regard is the following result.

Theorem 3.14. If f € C3°(R?) is supported in ||z| < B then |1,f — fllp, <

cllyll (B + ||y||)% for 1 <p < oo where N = d + 2. Consequently, lim,_¢ |7y f —
fl

Proof. From the definition we have

Tyf(d?)—f(x):/ (E(y, —i€) — 1) E(w,i€) F(§) 7 (€)de.

Rd

wp = 0.

Using mean value theorem and estimates on the derivatives of F(z,i§) we get the
estimate

I = Tl < el | NENIFOIRE (e

As 7, f is supported in ||z|| < (B + ||y||) we obtain

N

Iy f = Fllp < cllyll(B+ lyl)>

which goes to zero as y goes to zero. (I
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4. THE GENERALIZED CONVOLUTION

4.1. Convolution. Recall that in section 3 we have defined the convolution f *, g
when f,g € L?(R%; h2) by

R A

This convolution has been considered in [I2, [T9]. It satisfies the following basic
properties:

(1) f*ng:f'a;

(2) frrg=gx*xf.
We have also noted that the operator f — fx, g is bounded on L?(R%; h2) provided
g is bounded. We are interested in knowing under what conditions on g the operator
f — [ #, g can be extended to LP as a bounded operator. If only the generalized
translation operator can be extended as a bounded operator on LP(R%; h2), then
the convolution will satisfy the usual Young’s inequality. At present we can only
say something about convolution with radial functions.

Theorem 4.1. Let g be a bounded radial function in L'(R?; h2). Then

Foale) = [ Fma” W)k )y

initially defined on the intersection of L*(R% h2) and L?*(R%;h2) extends to all
LP(R4;h2), 1 < p < o0 as a bounded operator. In particular,

(4.1) 1f #5 gllwp < N9l all fllsp-

Proof. For g € L*(R%; h2) which is bounded and radial we have |7,g| < 7,|g| which
shows that

[ ms@li@is < [ lg@n(z)ds.
R4 R4
Therefore,

/Rd |f #x g(@) % (@)dz < || fllw1llglle.1-

We also have ||f #x glloo < || flloollgllx,1. By interpolation we obtain || f #. gllx,p <

lglleallflls.p- O
For ¢ € L'(R%; h2) and ¢ > 0, we define the dilation ¢. by
(4.2) ¢:(x) = e~ 1t Dg(a/e).
A change of variables shows that
be(2)h2 (z)dx = o(2)h? (z)dz, for all € > 0.
R R

Theorem 4.2. Let ¢ € L*(R% h2) be a bounded radial function and assume that
¢ Jpa @(2)hZ(x)de = 1. Then for f € LP(RYR2), 1 < p < 00, and f € Cy(R?),
b =00,

il_r% ILf *r b — f”li-,P =0.
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Proof. For a given n > 0 we choose g € C§° such that ||g — f|lxp < n/3. The
triangle inequality and ) lead to

2
I|f *r e — f”li,p < 577 + g *x G — QHK,P

where we have used ||g — f|lxp < n/3. Since ¢ is radial we can choose a radial
function 9 € Cg§° such that

16— ¥llea < (12l|gllup) .
If we let a = ¢p [pa ¥(y)hZ(y)dy then by the triangle inequality, () and E3),

19 %k de — llop < Ngllnplld = Vlle1 + 19 *s e — agllsp +la = 1[|gllkp
<n/6+ g *x the — agllwp

since [|gllx.pll¢ — Pl < 75 and

la — 1] = Ch/ (¢ (x) — () bl (x)dz| < (12]|g]lep) "' n-
R4
Thus
5
||f ko Qe — f”n,p < 677 + ||g ¥ e — ag”n,p-

Hence it suffices to show that ||g *, ¥ — ag||x,p < 1n/6.
But now g € A,(R?) and so

9 %*r de(x) = /Rd 97202 (y)hi:(y)dy = /Rd 79 (y) b= (—y)hZ (y)dy.
We also know that 7_;g(y) = 7_yg(x) as g € C5°. Therefore,
940 0c@) = [ maao W)y,
In view of this
40 0:0) = agla) = [ | (rgle) = o) (o)A )y
which gives by Minkowski’s integral inequality
I9/400: = aglon < [ 1m0 = alleptic IR ().

If ¢ is supported in ||z|| < B then the estimate in Theorem B4 gives

N
lo%x e = agllen < [ ol B+ i) [0-() 14 )y

<ce [ Il B+ lewl) [wlln iy

which can be made smaller that { by choosing € small. This completes the proof
of the theorem. O

The explicit formula in the case of G = Z¢ allows us to prove an analogous result
without the assumption that ¢ is radial, see Section 7.
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5. SUMMABILITY OF THE INVERSE DUNKL TRANSFORM

Let ® € L'(R% h2) be continuous at 0 and assume ®(0) = 1. For f € S and
€ > 0 define

T.fa) = on [ FBliz.)@(-en)hi )iy

It is clear that T, extends to the whole of L? as a bounded operator which follows
from Plancherel theorem. We study the convergence of T, f as ¢ — 0. Note that
Tof = f by the inversion formula for the Dunkl transform. If 7, f can be extended
to all f € LP(R% h2) and if T.f — f in LP(R%; h2), we say that the inverse Dunkl
transform is ®-summable.

Proposition 5.1. Let ® and ¢ = ® both belong to L' (R%; h2). If ® is radial then

Tof(x) = (f *x 62)()
for all f € L>(R% h2) and ¢ > 0.

Proof. Under the hypothesis on ® both T, and the operator taking f into (f *, ¢.)
extend to L?(R?; h2) as bounded operators. So it is enough to verify T.f(z) =
(f*.:0c)(x) for all f in the Schwartz class. By the definition of the Dunkl transform,

T.@) = on [ | TR @)@(-en)h )y
—an [ rad(©on | Ben) Bl i)y (e

— cpe(@42) /R T OB (TR (€)e

= (f*x ¢5)(x)

where we have changed variable { — —¢ and used the fact that 7_, f(—¢) = 7¢ f(2).
O

If the radial function ¢ satisfies the conditions of Theorem we obtain the
following result.

Theorem 5.2. Let ®(x) € L*(R% h2) be radial and assume that d € LY(RY; h2)
is bounded and ®(0) = 1. For f € LP(R% k%), T.f converges to f in LP(R%; h2) as
e—0, for1 <p<oo.

The following remarks on the above theorem are in order. In general the convolu-
tion f* g of an LP function f with an L' function g is not defined as the translation
operator is not defined for general L? functions even when p = 1. However, when
g satisfies the conditions of Theorem we can define the convolution f *x g by
integrating f against 7,9 which makes sense, see Definition 3.5. It is in this sense
the above convolution f * . is to be understood. Then as f * . agrees with T, f
on Schwartz functions and as the convolution operator extends to L? as a bounded
operator our theorem is proved.

We consider several examples. In our first example we take ® to be the Gaussian
function, ®(z) = e~ 1?I°/2, By (3) of Proposition ) with z = iy and w = 0,
®(z) = e~ I1#I”/2. We choose & = 1//2f and define

q(z) = Do (z) = (2t)~ Okt 8) o~ llzl* /4t
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Then ¢;(z) satisfies the heat equation for the h-Laplacian,
Apu(z,t) = dwu(x,t),

where A} is applied to = variables. For this ®, our summability method is just
f *x qi. By B3, the generalized translation of ¢; is given explicitly by

Tz oy )
V2t V2t
which is the heat kernel for the solution of the heat equation for h-Laplacian. Then
a corollary of Theorem gives the following result in [T4].

(@) = (26) =0t D el +ll) /4t g (

Theorem 5.3. Suppose f € LP(R4;h2), 1 < p < o0 or f € Co(R?), p = <.
(1) The heat transform

Hf(@) = (F o)) = o [ S@ma@hi s, t>0

converges to f in LP(R% h2) ast — 0.
(2) Define Hof(x) = f(x). Then the function Hyf(x) solves the initial value

problem
Apu(z,t) = u(z,t), u(z,0) = f(x), (z,t) € RY x [0, 00).

Our second example is the analogue of the Poisson summability, where we take
®(z) = e~ I7ll. This case has been studied in [I6]. In this case, one can compute the
Dunkl transform @ just as in the case of the ordinary Fourier transform, namely,
using

(5.1) e —t*/du gy,

oL

v Jo Vu
and making use of the fact that the transform of Gaussian is itself (see [I| p. 6]).
The result is

—_— T d+1

el = g, 1 ) cam= ot DO+ 7).
(1 + [Ja]|?) 75 VT

In this case, we define the Poisson kernel as the dilation of :13,

e
5.2 P.(x) :==cax .
o @ (62 + ||| )= +5

Since ®(0) = 1, it is easy to see that [ P(x,e)h?(x)dx = 1. We have

Theorem 5.4. Suppose f € LP(R%; h2), 1 < p < oo, or f € Co(R?), p = co. Then
the Poisson integral f %, P. converges to f in LP(R%;h2).

Again the proof is a corollary of Theorem E2l For x = 0, it becomes the Poisson
summability for the classical Fourier analysis on R%. We remark that this theorem
is already proved in M. Rosler’s habilitation thesis by using a different method. We
are thankful to the referee for pointing this out.

Next we consider the analogue of the Bochner-Riesz means for which

®(z) = {(1 =)’ el <1,

0, otherwise
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where 0 > 0. As in the case of the ordinary Fourier transform, we take ¢ = 1/R
where R > 0. Then the Bochner-Riesz means is defined by

)

sw@ = [ (1-1) Fopun e

I
Recall that we have defined \, = ('1—52) 4+ v, and N = d + 2.

Theorem 5.5. If f € LP(R%A2), 1 < p < oo, or f € Co(R?), p = oo, and
d> (N —1)/2, then

Hs?%f_an.,p_’Ov as R — oo.

Proof. The proof follows as in the case of ordinary Fourier transform [I8, p. 171].
From Proposition 24 and the properties of the Bessel function, we have

®(z) = 22|z M0, s (lf]))-

Hence, by J,(r) = O(r~1/2), & € L*(R%; h2) under the condition § > A, + 1/2 =
(N —1)/2. 0

We note that A\, = (d — 2)/2 + =, where 7, is the sum of all (nonnegative)
parameters in the weight function. If all parameters are zero, then h,(z) =1 and
we are back to the classical Fourier transform, for which the index (d — 1)/2 is the
critical index for the Bochner-Riesz means. We do not know if the index (N —1)/2
is the critical index for the Bochner-Riesz means of the Dunkl transforms.

6. MAXIMAL FUNCTION AND ALMOST EVERYWHERE SUMMABILITY

For f € L*(R% h2) we define the maximal function M, f by
1
Mﬁf(x) = §1>]_18 WU[ * XBT(:I:)L

where xp, is the characteristic function of the ball B, of radius r centered at 0
and di; = a,;/(d + 27,). Using Z8) we have [ h2(y)dy = (a./(d + 27,))rdt2r=,
Therefore, we can also write M, f(z) as

qup Jrs L @)Tex5, W)H (0)dy
>0 fBT hi (y)dy

If ¢ € C§°(RY) is a radial function such that xz, (z) < ¢(z) then from Theorem 6
it follows that 7,x,(z) < Ty¢(x). But 7,4 is bounded; hence 7,xp, is bounded
and compactly supported so that it belongs to LP(R%; h2). This means that the
maximal function M, f is defined for all f € LP(R?; h2). We also note that as
TyXB, > 0 we have M, f(z) < M,|f|(z).

M f(x) =

Theorem 6.1. The mazimal function is bounded on LP(R% h2) for 1 < p < oo;
moreover it is of weak type (1,1), that is, for f € L*(R% h2) and a > 0,

C
/ B2 (@)de < 1]l
E(a) a

where E(a) = {z : M f(z) > a} and c is a constant independent of a and f.
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Proof. Without loss of generality we can assume that f > 0. Let 0 =d + 27y, + 1
and define for j > 0, B, ; = {z: 2777 r <||z|| <279r}. Then
Xz, (y) = (277r)7(27r) " xB,, (y)
27
(@702 + P2 P
< CER7Ir)TTIPy S (y),

<C@Ir)et (y)

where P. is the Poisson kernel defined in (E2) and C is a constant independent of
r and j.. Since xp, and P. are both bounded, integrable radial functions, it follows
from Theorem B that

Tz X B, ; (y) < C(2ij7a)0717-mp2*jr(y)'

This shows that for any positive integer m
[ 50 roxn, iy < @0 [ f@n P W)k )y
=0 =0

< Crit 2 sup f x, Py(z).
>0

As ZJ 0 XB.,(y) converges to xp,(y) in L'(R% hZ), the boundedness of 7, on
L (R h2) shows that E}n:o TeXB,,; (y) converges to 7, x5, (y) in LY (R4 h2). By
passing to a subsequence if necessary we can assume that Z;‘n:O TeXB,, (y) con-
verges to T, x g, (y) for almost every y. Thus all the functions involved are uniformly
bounded by 7;xp, (y). This shows that > 7" 72xp, ,(y) converges to 7,x5, (y) in
LP (R%; h?) and hence

m— 00

lim f ZTIXBM Yh2( dy—/ fW)TaxB, (Y)he(y)dy.

Thus we have proved that

f e xB, (2) < Crit?¥=sup f *, Pi(x)
>0
which gives the inequality M, f(z) < CP*f(z), where P* f(x) = sup,~¢ f *x Pi(x)
is the maximal function associated to the Poisson semigroup.
Therefore it is enough to prove the boundedness of P* f. Here we follow a general
procedure used in [I7]. By looking at the Dunkl transforms of the Poisson kernel
and the heat kernel we infer that

2
f 4 Pyl / (f % g) (2)e /255~ 24,
~ Vor

which implies, as in [I'], p. 49], that

P f(z) < Csup - / Qsf(x
>0t
where Qs f(z) = f *, qs(x) is the heat semigroup. Hence using the Hopf- Dunford-
Schwartz ergodic theorem as in [Id, p. 48], we get the boundedness of P*f on
LP(R%; h2) for 1 < p < oo and the weak type (1,1). O
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The maximal function can be used to study almost everywhere convergence of
f *. @ as they can be controlled by the Hardy-Littlewood maximal function M, f
under some conditions on ¢. Recall that N = d + 2~,.

Theorem 6.2. Let ¢ € A.(R?) be a real valued radial function which satisfies
(@) < c(L+ [l2])~N 1. Then

sup | f *, ¢c(2)] < eM,, f(x).
e>0

Consequently, [ *, ¢-(x) — f(x) for almost every x as € goes to O for all f in
IP(R%A2), 1< p < oo,

Proof. We can assume that both f and ¢ are nonnegative. Writing

Pe(y) = Z be(Y)Xe2i <yl <e2i+1 (V)

j=—00
we have
m m
Z Be(Y)TaXeoi <yl <c2i+1 (¥) <€ Z (1+2)) N o Xeai <y <e2+1 (1)
j=—m j=—m

This shows that

S @)e=) Z Xezi <yl <ezrtr WhE)dy < ¢ Y (1+4e27) N1 (e2))N M, f ()

j=—m j=—m

< cMy f(x).

Since ¢(y) < e(1+]||y]) V=1 < cPi(y) it follows that 7, ¢(y) < c7, Pi(y) is bounded.
Arguing as in the previous theorem we can show that the left hand side of the above
inequality converges to f #, ¢(x). Thus we obtain

sup |f #x ¢ (z)] < My f(x)
e>0

from which the proof of almost everywhere convergence follows from the standard
argument. O

The above two theorems show that the maximal functions My f and P*f are
comparable. As a corollary we obtain almost everywhere convergence of Bochner-
Riesz means.

Corollary 6.3. When § > % the Bochner-Riesz means Sf%f(:v) converges to
f(z) for almost every z for all f € LP(R%;h2), 1 < p < co.

We expect the corollary to be true for all § > (NQ—_l) as in the case of the Fourier
transform. This can be proved if in the above theorem the hypothesis on ¢ can
be relaxed to |¢(x)] < (1 + |lz])~N ¢ for some ¢ > 0. Since we do not know
if 7,((1 + [|=||)~1) is bounded or not we cannot repeat the proof of the above
theorem.
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7. PRODUCT WEIGHT FUNCTION INVARIANT UNDER Z$

Recall that in the case G = Z¢, the weight function A, is a product function

d

(7.1) h(@) =[] 2

=1

i Kj Z 0.

3

In this case the explicit formula of the intertwining operator V; is known (see
Z32)) and there is an explicit formula for 7,,. The following formula is contained in
[TT], where it is studied under the context of signed hypergroups.

Theorem 7.1. For G = Z§ and h,, in (1),

Tyf(x):Tyl"'Tydf(x)v Yy = (ylv'-'vyd)eRdv
where for G = Zy and hy(t) = |t|" on R,

(72) Tf(t) :%/llf (Vs 57 =2stu) (1+ \/ﬁ)%(u)du

1t t—s
+ = (—\/t2—|—52—2stu) (1——)<I>,.€ u)du,
2/,1f V2 + 52 — 2stu W
where @, (u) = b (1+u)(1—u?)"1. Consequently, for eachy € R, the generalized
translation operator T, for Z& extends to a bounded operator on LP(R?; h2). More
precisely, ||y fllnp < 3| fllap, 1 <p < oo

Since the generalized translation operator 7, extends to a bounded operator on
LP(RY; h2), many results stated in the previous sections can be improved and the
proofs can be carried out more conveniently as in the classical Fourier analysis. In
particular, the properties of 7, given in Proposition B2, Theorem B and Theorem
all hold under the more relaxed condition of f € L*(R%; h2).

The standard proof [23] can now be used to show that the generalized convolution
satisfies the following analogous of Young’s inequality.

Proposition 7.2. Let G = Z$. Let p,q,r > 1 and p~' = ¢~ + 771 — 1. Assume
f € LIRY R2) and g € L"(R?, h2), respectively. Then

1S #5 9llnp < el fllwallglln.r

In the following we give several results that improve the corresponding results in
the previous sections significantly. We start with an improved version of Theorem
The boundedness of 7, allows us to remove the assumption that ¢ is radial.

Theorem 7.3. Let ¢ € L*(R, h2) and assume [p. ¢(x)h2(x)dz = 1. Then for
feLPRYR2), 1<p<oo, or f€Co(RY) if p= oo,

iii%nf*n(bs_f”n,p:oa 1<p<oo.
Proof. First we assume that f € C5°(R?). By Theorem B4 |7, f () — f()||n,p —
Oasy — 0 for 1 < p < co. In general, for f € LP(Rd;hi) we write f = f1 + fo

where f; is continuous with compact support and || f2||x,, < 0. Then the first term
of the inequality

Iy f (@) = f(@)llkp < Iy fr(2) = fr(@)lkp + 1Ty f2(2) = f2() [l p
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goes to zero as ¢ — 0 and the second term is bounded by (1 + ¢)d as ||, fallx,p <
|| flx,p- This proves that |7, f(z) — f(x)]lx,p — 0 as y — 0. We have then

on [ |1 e 0e(e) = F@) PR o)

= Ch
R4

<an [ Inf = T lo-@) Ik oo

n | (@) = FaDah )iy Wi @)

—an [ I = FIEla(@)b ()do
which goes to zero as ¢ — 0. 0

Our next result is about the boundedness of the spherical means operator. As
in [T0], we define the spherical mean operator on A, (R%)by

5:@) = an [ 1 f@IE)ds(y).

The generalized convolution of f with a radial function can be expressed in terms of
the spherical means S, f. In fact, if f € A,(R?) and g(z) = go(||z|)) is an integrable
radial function then, using the spherical-polar coordinates,

(F 5w0)(@) = en [ 7 f@lau)h )y
=cp /00 2o (r) /SGF1 Toy F(2)D2 (Y )dy dr

0
= Z—h S, f(z)go(r)r*=+1dr.
x Jo

We shall make use of this later in this section. Regarding boundedness we have
Theorem 7.4. Let G =74. For f € LP(RY, h2),

1S fllep < Cllfllsp, — 1<p<oo.
Furthermore, ||Syf — fllxp— 0 as r — 0+.

Proof. Using Holder’s inequality,
SH@P < ax [ Ir @R ) ds(y).

Hence, a simple computation shows that

o [ 5@ @ <an [ o [ m f@P @) )
= o [ Il R det)

<l flln,p-

Furthermore, we have

1508 = P2y < ax [ I = SIE P2 W)

which goes to zero as r — 0 since || 7y f — fllxp — 0. O
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We remark that the spherical mean value operator is bounded on LP for any
finite reflection group not just for G = Zg4. To see this we can make use of a
positive integral representation of the spherical mean operator proved in [I5]. In
fact it easily follows that S, is actually a contraction on LP spaces.

The boundedness of 7, f in LP(R% h2) also allows us to relax the condition of
Theorem 22

Theorem 7.5. Set G =Z4. Let ¢(z) = ¢o(||z|) € L (R4, h2) be a radial function.
Assume that ¢g is differentiable, lim, o ¢o(r) = 0 and [;° r2*+2|go(r)|dr < oo,
then
[(f #s @) ()] < My f ().

In particular, if € LY (R, h2) and cp, [ ¢(x)h2(x)dz = 1, then

(1) For 1 <p< oo, f*, ¢ converges to f as e — 0 in LP(R%; h2);

(2) For f € LYR, Rh2), (f *. ¢-)(x) converges to f(x) as € — 0 for almost all

r € R%

Proof. By definition of the spherical means S;f, we can also write

S s
M. (x)_fgg [T 1221t

Since |Myf(z)] < c¢M,|f|(x), we can assume f(z) > 0. The assumption on ¢
shows that

i oo(r) [0 =t oor) [ @Iy

= lim ¢o(r) g Fy)hi(y)dy = 0.

Hence, using the spherical-polar coordinates and integrating by parts, we get

(f e 8)(@) = / " G0 (r) S, f(a)dr
~ [T [ st ra o,
0 0

which implies that

(7)) < M) [ o0

0
the boundedness of the last integral proves the maximal inequality. ([

As an immediate consequence of the this theorem, the Bochner-Riesz means
converge almost everywhere if § > (N — 1)/2 for G = Z4, which closes the gap left
open in Corollary B3

We can further enhance Theorem [L3 by removing the assumption that ¢ is radial.
For this purpose, we make the following simple observation about the maximal
function: If f is nonnegative then we can drop the absolute value sign in the
definition of the maximal function, even though 7, f may not be nonnegative.

Lemma 7.6. If f € L*(R%, h2) is a nonnegative function then

. fBT Ty f(2)hii (y)dy
M) = o e R )y
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In particular, if f and g are two nonnegative functions then
My f+ Meg = M(f +9).

Proof. Since 1,x g, (z) is nonnegative, we have

(f *x xB,) () = /Rd FW)myxs, (x)hi(y)dy

is nonnegative if f is nonnegative. Hence we can drop the absolute value sign in
the definition of M, f. O

Theorem 7.7. Set G = Z4. Let ¢ € LY(RY h2) and let ¢(z) = o(|z]) €
LY(R4,h2) be a nonnegative radial function such that |¢p(z)| < ¥(z). Assume
that 1o is differentiable, lim, oo Yo(r) = 0 and [;° 2 2|¢o(r)|dr < co. Then
SUPso | f 1 Ge()| s of weak type (1,1). In particular, if ¢ € L'(R% h2) and
ch Jga S(@)hZ(x)dx = 1, then for f € LY (R, h2), (f *x ¢:)(z) converges to f(z) as
e — 0 for almost all x € R%.

Proof. Since M, f(x) < My|f|(x), we can assume that f(z) > 0. The proof uses
the explicit formula for 7, f. Let us first consider the case of d = 1. Since % is an
even function, 7,1 is given by the formula

Ty f(z) = /_11 f (m) O, (t)dt

by [C2). Since (z —y)(1+¢) = (x — yt) — (y — xt), we have

(1+t)<2.

Consequently, by the explicit formula of 7, f ([Z2), the inequality |¢(x)| < ¥(x)
implies that ,

|7'y¢(x)| < Ty7/}($) + 27~—y7/}(x)7
where 7,1 is defined by

Note that 7,4 differs from 7,9 by a factor of (14-t) in the weight function. Changing
variables ¢t — —t and y — —y in the integrals shows that

/ S )y (@)h2 () dy = / F(y)my b (2)h2 (y)dy.
R R

where F(y) = (f(y) + f(—y))/2. Hence, it follows that

|(f % @) ()| = /Rf(y)Tysb(x)hi(y)dy’ < (f s ) (@) + 2(F # )(2).

The same consideration can be extended to the case of Zg ford > 1. Let {e1,...,eq}
be the standard Euclidean basis. For §; = £1 define z0; =  — (1 + J;)x;e; (that
is, multiplying the j-th component of x by d; gives xd;). For 1 < j < d we define

Fippi =27F > f(@dj, - 05,).
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In particular, F;(z) = (F'(z) + F(z0;))/2, Fj, j,(z) = (F(x) + F(xd;,) + F(xd;,) +
F(26,6;,))/4, and the last sum is over Z¢, Fy . 4(z) =274 ZUGZ% f(zo). Follow-
ing the proof in the case of d =1 it is not hard to see that

d
(f % @) (@)] < (f %0 ) () + 2D (Fjn 0)(@) +4 > (Fjy gy #n ¥0)(2)

j=1 J1#72
o A 2U P ke ) ().

For G = Z4, the explicit formula of 7, shows that M, f(z) is even in each of its
variables. Hence, applying the result of the previous theorem on each of the above
terms, we get

d
|(f *x &) (2)| < M f(x) + 2ZMﬁFj($) +4 Z M Fj, j,(z)
j=1 1z
>4+ 20MFy L a(w).

Since all F; are clearly nonnegative, by Lemma [[6 the last expression can be
written as M, H, where H is the sum of all functions involved. Consequently, since
[1E5u....iallet < [[fllx,1, it follows that

h2 (y)dy S C”H”KJ

K

<c¢

/ 1 £1l,1
d .
{e:(f*xd)(z)>a} a

Hence, f *, ¢ is of weak type (1, 1), from which the almost everywhere convergence
follows as usual. O

We note that we do not know if the inequality |(f *. ¢)(z)| < cM, f(z) holds
in this case, since we only know M, (R(d)f)(z) = R(0)M, f(x) = M, f(xd), where
R(0)f(x) = f(xd) for 6 € G, from which we cannot deduce that M. F;, _; () <
cM,. f (z).
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