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Weyl multipliers for invariant Sobolev spaces

RAMAKRISHNAN RADHA and SUNDARAM THANGAVELU*

Department of Mathematics, Indian Institute of Technology, Madras 600036, India
*Stat-Math. Unit, Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560 059, India
E-mail: radharam@imsc.ernet.in; veluma@isibang.ernet.in

MS received 3 February 1997; revised 1 December 1997

Abstract. A concrete characterization for the LP-multipliers (1 <p < o) for the Weyl
transform is obtained. This is used to study the Weyl multipliers for Laguerre Sobolev spaces
Wm™?(C"). A dual space characterization is obtained for the Weyl multiplier class
My (W (C™).
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1. Introduction

The Laguerre Sobolev spaces W52 (C") were introduced by Peetre and Sparr in [6].
They were also studied by Thangavelu [9] in connection with the spherical means of
the Heisenberg group. This space has an invariant property which is not shared by the
usual Sobolev space W*?(R") namely, it is invariant under the symplectic Fourier
transform. The details and the relation between this space and the usual Sobolev space
can be found in [10].

Fourier multipliers for ordinary Sobolev spaces W™?(R"), (m >0, an integer),
1 < p < o0 have been characterized by Poornima in [7]. The purpose of this paper is to
consider a similar problem for Weyl multipliers for the Laguerre Sobolev spaces
WP (C").

This paper is organized in the following way: In §2, we give the required notations
and collect the necessary background. In §3, we obtain a concrete characterization for
the LP-multipliers (1 < p < co) for the Weyl transform. In §4, we characterize the Weyl
multipliers for W7+ (C"), based on the result which we obtain in §3. In §5, a dual space
characterization is obtained for the space M (W™ (C")).

A

2. Notations and preliminaries

Characterization of Fourier multipliers of L?-spaces is one of the important problems
in multiplier theory. For definition, examples and sufficient conditions for LP-multi-
pliers on R”, we refer to Stein [8]. A necessary condition, namely if m is a multiplier for
L?(R"), then there exists a pseudo measure ¢ such that T,, f= ¢* f(* denotes convol-
ution)is also known. In fact, this result is proved for any locally compact abelian group
G in place of R". This is based on the development of the works of Hormander [3] and
Gaudry [2]. The details can be found in [4].
The Weyl transform W(f) of a function fe L*(C") is defined by

W(f)o@)= Lf(Z) exp(ix(y/2+ &) @({+y)dz, @el?(R7)
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where z = x + iy. The map W from L*( C") to the space of bounded operators on
L?(R"), defined as above, extends uniquely to a bijection from S'( C™ to the space of
continuous linear maps from S(R") to §'(R"). Moreover, W maps L*(C") unitarily
onto the space of Hilbert—Schmidt operators on [*(R". In other words, we have the
Plancherel formula for the Weyl transform, given by

112 =@m) " W) ls:
The inversion formula is given by
f(2)=2m) "t (W(2) W),
where W(z) is the operator valued function

W(z)o(&)=exp(ix(y/2+ &)@+ V)

For details, we refer to Folland [1].
The twisted convolution of two functions f, g € I}(C") is defined by

fxgl2)= J f(z — w)g(w) exp(ilmzw/2)dw.
o

Under this, L}(C") becomes an algebra. Like the ordinary convolution, twisted
convolution also extends from ! (C") to other LP(C") and satisfies the Young’s
inequality ‘
1 1
=—~+-—1.
p 49

Though the twisted convolution is not commutative, it has better behaviour with
« respect to L? estimates. For example, we have the following.

~ =

Ifxgll,<Ufl,1glq

Theorem 2.1. For fand g in L*(C"), f x g is also in L?(C") and

If % gl <@ fl2lg 1
Further, we have W(f x g) = W(f)W(g).

A bounded operator Me 2 (L*(R")) is called a (left) Weyl multiplier of L?(C") if the
operator T, defined on f eL! A LP(C") by W(Ty f)= MW([) extends to a bounded
operator on LP(C"). We denote the Weyl multiplier class by M. The space
M, (L*(C") is identified with .#(C"), the Banach algebra of finite Borel measures on
C" and M, ((L*>(C")is the algebra 2 (L*( R") of all bounded operators on L*(R").For
any p, 1 <p < co, a sufficient condition for L?-Weyl multipliers has been proved by
Mauceri in [5]. However, for the necessary part, only the following is known (see
Mauceri [5]).

Let MeM,(L?(C"),1 < p < co. Then thereexists a tempered distribution peS'(C")
such that for fe #(C™), Tyef=p X f.

In§3, we try to obtain such a characterization for Me My, (L*( C™"),through elements
in the dual space of a concrete function space, which we call pseudo measures.

Given a function fin I?(C"), 1 < p < oo, we have the special Hermite expansion,
given by

[ve]

f=@n)7™" Y fx o | 2.1)

k=0
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Here ¢, stands for the Laguerre function

of L 2
p(5) =L} 1(;!2|‘)6Xp(—|2'|‘/4),
where L}~ ! is the kth Laguerre polynomial of type (n—1). For various results
concerning the special Hermite expansions, we refer to [11].
Let L be the special Hermite operator defined by

n a a
L=—A+1z)? =i (x-m——y.———).
4 j; 7oy, T 0x;

Then the special Hermite functions are eigenfunctions of the operator L and the series
(2.1)is the eigenfunction expansion associated to L. In view of this and spectral theorem
one can define L*(s real), by

o0

Lf=0Q2mn)™" Y 2k+n)yfx ¢,

k=0

We make use of these operators in the study of Weyl multipliers.

3. Weyl multipliers for L?(C")

Let # =2(L*(R"). We denote by &, =4, (L*(R")), the Hilbert space of Hilbert-
Schmidt operators on (L*( R"), with the norm ||. |, and %, = %, (L*(R"), the ideal of
trace class operators. 4, is a Banach space under the norm ||c||; = tr(|c]) = tr(c*c)'/?
and any element of %, can be written as the product FG of two Hilbert—Schmidt
operators F.G.

Let A(C") denote the space of function f on C" whose Weyl transforms W( f) are in
B, . Define

L= 1w, feA(Cn),

Then A(C") is an algebra with the multiplication operation given by twisted convol-
ution. Since any element of 4, is a product of two Hilbert~Schmidt operators and since
any Hilbert—Schmidt operator is the Weyl transform of an L? function, A( C") contains
precisely functions of the form fx g where f and g are from L. Thus 4A(C" is
a subspace of L*(C"). It is easy to see that it is complete with the norm defined above.
Thus A(C")is a Banach algebra under |.| ,, which also shows that Weyl transform is an
isometric isomorphism of 4(C") onto %, We define P(C") to be the dual space of
A(C"). Then the adjoint of W, W* will map #(L*(R") onto P(C"). We call the
elements of P(C"), pseudo measures. Now, for ce P(C"), W (o) is defined to be the
unique element of Z(L*(R") so that W*(W(s)) = . Thus, we have the following.

Theorem 3.1. The Weyl transform o+ W (o) is an isometric isomorphism of P(C") onto
ZB(L*(R").

Let o,, 0,eP(C"). We define o, X 6, to be that pseudo measure for which
W(o, x 0,) = W(o,) W(o,). This definition makes sense by the above theorem.

Theorem 3.2. Let M be an LP-multiplier for the Weyl transform. Then there exists

a pseudo measure o such that Ty, f= o x ffor every fe L' n LP(C™).

»
t . ¥ -
LA N T




34 Ramakrishnan Radha and Sundaram Thangavelu

Proof. As Me2, by theorem 3.1, there exists an element oceP(C") such that W(s) = M.
If his a function in L?( C"), define, for each geA(C"), h(g) = tr(W(h) W(g)). Then
R@I<IWEH W@, =1 WH g,

which shows that h can be considered as an element of P(C".If fe L' n L?(C™), then
the function T, f'can be regarded as a pseudo measure for which the Weyl transform
W (T f) is defined as earlier. Now we claim that W(Ty f), Weyl transform of the
pseudo measure T, f coincide with the Weyl transform W(T,, f) of the function T, f.
Let Pe4,. Then there exists a g € A(C") such that W(g) = P. Thus we have

(P, W(Ty, f)>(pseudo measure) = < Wig), W(Ty />
={W*W(g), T >
=<9, Ty f>
=(TwS)9)
=tr (W(T, f/)W(g))
=tr (W(Ty f)P)
= (P, W(T,.f)>(function),

as W(T,, f) (function) belongs to M.

Thus (W(T,, f)), the Weyl transform of the pseudo measure T, f coincides with
ordinary W(T,, f) (Weyl transform of the function T\ f), which is precisely MW(f).
Again, as f can be considered as a pseudo measure, o x f makes sense and W(o xf)
= W(o) W(f). But W(s) = M, from which it follows that W(o xf)=W(T,.f), whichin
turn implies that Ty, f=0 xf. : O

4. Laguerre Sobolev spaces

Let m be a positive integer. The Sobolev spaces WT'P(C") are defined using certain
vector on C".

The special Hermite operator L can be written as
1 & - =
j=

where the vector fields Z; and Z ;on C" are given by

o 1. _ a4 1
Zj_a—Z;_*_sz, Z~—-“——“Z~.
Form>1, an integerz_we define W7*?(C") to be the collection of those functions f
in I7(C") for which Z* Z# € I7(C"), |o| + || < m. Here '

Z =Z°1” Zaztz.. VA A =Z_/131 Z‘Iziz . 'Z_f",
a.feN". When m is an even integer it follows that /2 JeL?(C") whenever fe W™?(C").
Now if we define

lwee= 3 122 2%f),,

lal+1B[<m

then WP turns out to be a Banach space under I-Nyppr -
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Let D(W '?)(C") denote the collection of functions of the form
ji=1 j=1

wheref,,f;:g;€e WPP(C"forj=1,2,...,n Then D(W}?)(C") becomes a Banach space
if we define the norm ||.|| , as follows:

1l = inf{jl:lﬁfn( 1 fo i 155 i g nw;.-')},

where the infimum is taken over all representations of f in the above form. Clearly
Wi?(C" is contained in D(W?)(C™, which in turn is contained in LF(C™. In
Proposition 4.1 we will actually show that D(WL?)(C") =L~ (CH.

Given a bounded operator M on L*(R"™, we can define an operator T,, on
L2A(W1P)(C") by W( Ty, f) = MW( f)- We say that M is a left W }** multiplier for the
Weyl transform if T, extends to a bounded operator on (W}*)(C").

We first prove the following result.

Theorem 4.1. Let 1 < p < o0. Then we have the Sollowing:
My (WLP) =My (D(W1P)) = M, (D(WL?), L?).

Proof. As D(W[P)< L?, we get
My (D(W?),D(W ) = My, (D(W L), L), (4.1)
Suppose MeM y(D(W '), L?). Let fe W 1. Define Ty on WP nL*(C" by W(T,, f)

=MW(f). As W* <« D(W}?), T, fe L. Let Aj=—(0/0x;) + x;, AF = (8/0x;) + x;.
Then

W(Z, Ty f) = iW(Ty, f) A, = MiW(f) 4, = W(T, Z,]) (42)
and
W(Zj Tuf)= IW(Ty )AF = W( TMij). 4.3)

Further, as feW'?, Z,f, Z. feD(W ), and so TuZ;f, TyZ,fe L*. Thus it follows
from (4.2) and (4.3), that Z iTuf, Z; Ty, fe IP, which will then imply that T, fe W}?. By
definition, ‘

ITuflie=1 Tl + 3 1Z, T f 1y + 3 12,1,
j=1 ji=1

But
[l TMf”p< Culfllp< Cull fllwre,
q ”ZJ'TMf“p= [ TuZ;fl,<Cyl Ziflp< Cpll fllwre
an
”ZJTMf”p< Cull fllwee.
Thus

[T f 1, < @u+1)Cofll fllwer,
which shows that T}, is a bounded operator on W}?(C". Hence
My (D(W1?), LP) = My (WE?), (4.4)
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Now let M € M (W L?). For fe D(W1?), we define

TMf Ty fo+ ZZTMf—i- ZZTMgJ

j=1

To prove TM is well defined, assume that fe D(W[F)is a representation of 0, viz

Jo+ Zijj+ szgj:09 fOﬁfjsngW}.’p’lgj<n'
j=1 i=1

Consider

W)= W(Tufo)+ Y WZTyf) + S W(Z,Tug))

j=1 i=1

=MW(f,)+ Z IMW(f;)A; + ZlMWg)A* '

j=
i=1 i=1
=0.
Thus TM is well defined and W(TM f)=MW(f). The proof will be complete if we could
show that T, is bounded. Let SfeD(WP). Consider

| TMf”D = max(” T fo lwin | Toi f; lwin | Tyg;ltwie)

1<jgn

< Coe max ([ fo iy 1L w195 1w

<j<n

which is true for any representation f, + ) " j=1 Z,f;+y" t-1Z;g; of f. Hence it follows
that | T, fllp < C |l fll 5, which shows that T, is a bounded operator on D( W 1) Thus

My (WLP) = My (D(W7)). (4.5)

From (4.1), (4.4) and (4.5) we get the required result. O
Forme N, D(W7?) is defined as earlier, viz

DWpr) = {f fo+ ZZf+ ZZQJ},
where f,, Ss g,EWDPCn), j=1, 2,. .., n. With this definition, we have the following.

Theorem 4.2. Let 1 < p < o0 and m, an integer > 1. Then we have the following

MW( Wr,p) = MW(D( W'E’p)) = MW(D(WT,P), WLM‘ 1,p).

PROPOSITION 4.1
Let1<p<co. Then D(WLP) =P,

Proof. Let fel?. Write f=LL™* £, viz

- baltess) fafinins)
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Weclaim that Z;,L™! fand Z,L™* fare in W 1?(C"). In theorem 2.2.2 of [11]1it has
been proved that Z; L™"/? and Z; L™ '/? are bounded operators on I[P(C",1<p< 0.
The same argument shows that Z; L™* and Z ;L™ 'are also bounded on LP(C") (see the
reasoning below).

Letnow S;f=Z,Z L™ f, S¥f=Z,Z,L7' f. We claim that S;f, S¥feL”. In view of
Theorem 2.2.1 of [11], we have to show that § ; and- ST are twisted convolution
operators with Calderon—Zygmund kernels and they are bounded on L?. Consider the
operator §;. We can write

_ 2p,+2
S f=—Q2n) MYy L = 4.6
if = —@n) %(mquij¢w, (46)
as Zj((rb;w) = 1(2\)])1/2 qbu,v-—z;j’ ZJ(¢[4_\;) - l(zvj + 2)1/2 qbu.,v +& and L((buv) = (2[V| + n)d)#v'
From (4.6), it is clear that S ;s bounded on L* And S jis given by S; f=fx k; where

k=22, f k,(z)dt

0
and k,(z) is the kernel of exp(— ¢ L) given by

k(z) = (sinh2r) ""exp(— cotht|z|?).
We can show that k; satisfies
|ki(2)| < clz] 727,
IVky(2) <clzl =2t

Thus, from theorem 2.2.1 of [11], we conclude that S ;1s bounded on L?. Similarly we
canshow that S¥ is bounded on L?. Then, it follows that Z L™, Z, L7 fe WP which
shows that f'e D(W }7).

We can also prove the following.

PROPOSITION 4.2

Let1<p<oco. Then D(WP'?) = W™ " for m>1 any integer.

Putting the above facts together, we obtain the following.

Theorem 4.3, Let 1 < p < o0 and m, any integer 2> 1. Then the space of Weyl multipliers

Jor the Laguerre Sobolev space W1**(C") coincide with the space of Weyl multipliers for
LP(C"). ‘

This, combined with the theorem 3.2, leads to the following Corollary.

COROLLARY 4.1

- Let 1 <p< oo and m, any integer > 1. Let M be a Weyl multiplier for the Laguerre
Sobolev space WP(C"). Then there exists a pseudo measure ¢ such that
Tyf=0oxf YfeC*(Cn.

5. The space M, (W *'(C™)

We first remark that M, (L'(C") = M ,,(W 1 (C"). For, suppose MeM 5 (L'(C),
define T, on L*n(Wp'(C") by W(T,f)=MW(f). Let feWpl. Then Z,f,
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Z, fe L'. Therefore, it is easy to verify that W(Ty Z;f) = W(Z; T\, f)and W(T\, Z,f) =
W(Z; Ty f). Then, as MeM (L', L"), it follows that T, fe W' and | T, fllp}<
Cull fllws for every few .,

Let S denote the collection of elements f of the form /=  f; x g;, where f;,eD(W '),
9:€Co(C™, Y11 fi I plg: 1l < co. Then S is a Banach space under the norm

I/ ls= inf(Z 1fillp !Igillw),

where the infimum is taken over all representations of f in the above form. Then we
prove the following theorem.

Theorem 5.1. Thereis anisometric isomorphism of M (W 1'*) onto the dual space S* of S.

Proof. By theorem 4.1, we have M, (W;')=M,(D(W}'), L'). Suppose MeMy
(DWpY), LY. Forf=Y f; x g;€ S, define B,,(f) =Y, Tar f; X 9;(0). As Ty, f; € L and
gi € Co, Tye f; X g; € Cq and T, f; x g;(0) is meaningful. To prove B,, is well defined, let

f=Yf; x g; be a representation of 0. Choose an approximate identity {e,} = CZ(C")
for D(W3;'') such that |le, ||, < 1. As

I Tale, X f3) X gi = Tari X Gill oo < 1 Tag(er X £1) = T fill 1 195

< | Tagllllew % fi = f; I l1gi [l o
left hand side tends to 0 as o — 0. Further,

| 2 Tar(ea x£;) x g0 < | Tl X lleg % fillp 194

< | Tl g Ifilpligille (as e, ll; <1),
which shows that )" Ty (e, % f;) x ¢;(0) converges to Y, T\f; x ¢;(0). Now for each a,
YTlex < £) % 0(0) = (Tye, < T f; x 9)0)=0.
Thus Y, Ty, f; x g;(0) =0, proving that B,, is well defined. § o satisfies
IBu () <N Tyl zi:“fi Ip19:ll s

which is true for every representation ) f; x g; of f;, showing that | B, (f)| < || Tyc |l | flls or

I Barlls™ < 1| Tl (5.1)
On the other hand, '
[ Tyl = sup Ifip<t I Ty f1l, (feD(WL1))
and
But I Tuf 1 = 1T fICT=sup 11Ty @) (g€C).
u

| Ty S =1Tpr f x gO) = 1Bse(f X DI < Brg IS* 1 Fllp 9]
from which it follows that

I Tl < 1Byl S*. (5.2)
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From (5.1) and (5.2), we see that T,,—f 1, is an isometry. To prove the mapping is
surjective, let us assume that feS*. Fix feD(Wp!'), define for each geC,,

F ;(g9)=B(f x g). Then
[Fp @ =1B(f>xDI<IBIS* ] flplgl s

which shows that F, is a continuous linear functional on C,. Hence there exists
a unique u, € M(C") such that

(9)=B(fx g)=p,(g) = p, x g(0). (5.3)

Choose an approximate identity {e } = C®(C" for D(W}!'). Then corresponding
to each e,, we have a unique y,, in M(C") satisfying (5.3). Since p,,e M(C")= M,
(LY C"), u,, is identified with M, = M, e M ,,(L*(C") such that

Ty f=pe. xf VfeL'(C". (5.4)

As {e,} is an approximate identity for D(W i), we get e, x hx g —hx g|,—0 as
o— 0. Then as feS*, we have

limf(e, x h x g)= B(h x g).

Thus, it follows from (5.3) that lim, u, (h x g) exists for every he C®(C") and
g€ Cy(C"). As the collection of elements h x g, he C®(C"), geC,(C"), is dense in

C,(C"), we have lim, u,,(g) exists for every g € C,(C"). There exists a ue M(C") such

that u,, converges to u in the weak * topology. Also || u|| = lim, || 4, ||. As ue M(C"), puis
identified with an operator MeM (L' (C")) such that T, f= u x ffor every fe L*(C").
As u,, converges to u, it follows from (5.4) that lim, T, f= T, f for every feL*(C"). By
the remark mentioned earlier, we get MeM (W ') = M (D(W;*).L'). The proof
will be complete if we could show that f§,, coincides with § on S. For heC®(C"),
geCo(C"), we have

Bu(h x g)=1lmT,, h x g(0)
=limpy,, x h x g(0)

=limp(e, x h x g)

=B(hx g).

Using the density argument, we can show that fB,,(fx g)=pB(fxg) for every
feD(W3t), geC,, thus proving our assertion.

If we deﬁne S.. (meN) to be the collection of elements f of the form f= ) f; x g,
where f,e D(WT'), g,€Co, Y| filpllgill < 0. Then S,, becomes a Banach space.
Using the facts that || f1|, < | f|, for every feD, M y,(L*) = M , (W) and by making
'use of the proof of Theorem 5.1,we obtain the following.

Theorem5.2. Let mbe aninteger such that m > 1. Then there is a continuous lsomorphzsm
of M5 (W7pt) onto the dual space S* of S,,.
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